Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 8,471 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
/-
Copyright (c) 2021 Chris Birkbeck. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Birkbeck
-/
import linear_algebra.matrix.nonsingular_inverse
import linear_algebra.special_linear_group
/-!
# The General Linear group $GL(n, R)$
This file defines the elements of the General Linear group `general_linear_group n R`,
consisting of all invertible `n` by `n` `R`-matrices.
## Main definitions
* `matrix.general_linear_group` is the type of matrices over R which are units in the matrix ring.
* `matrix.GL_pos` gives the subgroup of matrices with
positive determinant (over a linear ordered ring).
## Tags
matrix group, group, matrix inverse
-/
namespace matrix
universes u v
open_locale matrix
open linear_map
-- disable this instance so we do not accidentally use it in lemmas.
local attribute [-instance] special_linear_group.has_coe_to_fun
/-- `GL n R` is the group of `n` by `n` `R`-matrices with unit determinant.
Defined as a subtype of matrices-/
abbreviation general_linear_group (n : Type u) (R : Type v)
[decidable_eq n] [fintype n] [comm_ring R] : Type* := (matrix n n R)ˣ
notation `GL` := general_linear_group
namespace general_linear_group
variables {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R]
/-- The determinant of a unit matrix is itself a unit. -/
@[simps]
def det : GL n R →* Rˣ :=
{ to_fun := λ A,
{ val := (↑A : matrix n n R).det,
inv := (↑(A⁻¹) : matrix n n R).det,
val_inv := by rw [←det_mul, ←mul_eq_mul, A.mul_inv, det_one],
inv_val := by rw [←det_mul, ←mul_eq_mul, A.inv_mul, det_one]},
map_one' := units.ext det_one,
map_mul' := λ A B, units.ext $ det_mul _ _ }
/--The `GL n R` and `general_linear_group R n` groups are multiplicatively equivalent-/
def to_lin : (GL n R) ≃* (linear_map.general_linear_group R (n → R)) :=
units.map_equiv to_lin_alg_equiv'.to_mul_equiv
/--Given a matrix with invertible determinant we get an element of `GL n R`-/
def mk' (A : matrix n n R) (h : invertible (matrix.det A)) : GL n R :=
unit_of_det_invertible A
/--Given a matrix with unit determinant we get an element of `GL n R`-/
noncomputable def mk'' (A : matrix n n R) (h : is_unit (matrix.det A)) : GL n R :=
nonsing_inv_unit A h
/--Given a matrix with non-zero determinant over a field, we get an element of `GL n K`-/
def mk_of_det_ne_zero {K : Type*} [field K] (A : matrix n n K) (h : matrix.det A ≠ 0) :
GL n K :=
mk' A (invertible_of_nonzero h)
lemma ext_iff (A B : GL n R) : A = B ↔ (∀ i j, (A : matrix n n R) i j = (B : matrix n n R) i j) :=
units.ext_iff.trans matrix.ext_iff.symm
/-- Not marked `@[ext]` as the `ext` tactic already solves this. -/
lemma ext ⦃A B : GL n R⦄ (h : ∀ i j, (A : matrix n n R) i j = (B : matrix n n R) i j) :
A = B :=
units.ext $ matrix.ext h
section coe_lemmas
variables (A B : GL n R)
@[simp] lemma coe_mul : ↑(A * B) = (↑A : matrix n n R) ⬝ (↑B : matrix n n R) := rfl
@[simp] lemma coe_one : ↑(1 : GL n R) = (1 : matrix n n R) := rfl
lemma coe_inv : ↑(A⁻¹) = (↑A : matrix n n R)⁻¹ :=
begin
letI := A.invertible,
exact inv_of_eq_nonsing_inv (↑A : matrix n n R),
end
/-- An element of the matrix general linear group on `(n) [fintype n]` can be considered as an
element of the endomorphism general linear group on `n → R`. -/
def to_linear : general_linear_group n R ≃* linear_map.general_linear_group R (n → R) :=
units.map_equiv matrix.to_lin_alg_equiv'.to_ring_equiv.to_mul_equiv
-- Note that without the `@` and `‹_›`, lean infers `λ a b, _inst_1 a b` instead of `_inst_1` as the
-- decidability argument, which prevents `simp` from obtaining the instance by unification.
-- These `λ a b, _inst a b` terms also appear in the type of `A`, but simp doesn't get confused by
-- them so for now we do not care.
@[simp] lemma coe_to_linear :
(@to_linear n ‹_› ‹_› _ _ A : (n → R) →ₗ[R] (n → R)) = matrix.mul_vec_lin A :=
rfl
@[simp] lemma to_linear_apply (v : n → R) :
(@to_linear n ‹_› ‹_› _ _ A) v = matrix.mul_vec_lin ↑A v :=
rfl
end coe_lemmas
end general_linear_group
namespace special_linear_group
variables {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R]
instance has_coe_to_general_linear_group : has_coe (special_linear_group n R) (GL n R) :=
⟨λ A, ⟨↑A, ↑(A⁻¹), congr_arg coe (mul_right_inv A), congr_arg coe (mul_left_inv A)⟩⟩
@[simp] lemma coe_to_GL_det (g : special_linear_group n R) : (g : GL n R).det = 1 :=
units.ext g.prop
end special_linear_group
section
variables {n : Type u} {R : Type v} [decidable_eq n] [fintype n] [linear_ordered_comm_ring R ]
section
variables (n R)
/-- This is the subgroup of `nxn` matrices with entries over a
linear ordered ring and positive determinant. -/
def GL_pos : subgroup (GL n R) :=
(units.pos_subgroup R).comap general_linear_group.det
end
@[simp] lemma mem_GL_pos (A : GL n R) : A ∈ GL_pos n R ↔ 0 < (A.det : R) := iff.rfl
end
section has_neg
variables {n : Type u} {R : Type v} [decidable_eq n] [fintype n] [linear_ordered_comm_ring R ]
[fact (even (fintype.card n))]
/-- Formal operation of negation on general linear group on even cardinality `n` given by negating
each element. -/
instance : has_neg (GL_pos n R) :=
⟨λ g, ⟨-g, begin
rw [mem_GL_pos, general_linear_group.coe_det_apply, units.coe_neg, det_neg,
(fact.out $ even $ fintype.card n).neg_one_pow, one_mul],
exact g.prop,
end⟩⟩
@[simp] lemma GL_pos.coe_neg_GL (g : GL_pos n R) : ↑(-g) = -(g : GL n R) := rfl
@[simp] lemma GL_pos.coe_neg (g : GL_pos n R) : ↑(-g) = -(g : matrix n n R) := rfl
@[simp] lemma GL_pos.coe_neg_apply (g : GL_pos n R) (i j : n) :
(↑(-g) : matrix n n R) i j = -((↑g : matrix n n R) i j) :=
rfl
instance : has_distrib_neg (GL_pos n R) :=
subtype.coe_injective.has_distrib_neg _ GL_pos.coe_neg_GL (GL_pos n R).coe_mul
end has_neg
namespace special_linear_group
variables {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [linear_ordered_comm_ring R]
/-- `special_linear_group n R` embeds into `GL_pos n R` -/
def to_GL_pos : special_linear_group n R →* GL_pos n R :=
{ to_fun := λ A, ⟨(A : GL n R), show 0 < (↑A : matrix n n R).det, from A.prop.symm ▸ zero_lt_one⟩,
map_one' := subtype.ext $ units.ext $ rfl,
map_mul' := λ A₁ A₂, subtype.ext $ units.ext $ rfl }
instance : has_coe (special_linear_group n R) (GL_pos n R) := ⟨to_GL_pos⟩
lemma coe_eq_to_GL_pos : (coe : special_linear_group n R → GL_pos n R) = to_GL_pos := rfl
lemma to_GL_pos_injective :
function.injective (to_GL_pos : special_linear_group n R → GL_pos n R) :=
(show function.injective ((coe : GL_pos n R → matrix n n R) ∘ to_GL_pos),
from subtype.coe_injective).of_comp
/-- Coercing a `special_linear_group` via `GL_pos` and `GL` is the same as coercing striaght to a
matrix. -/
@[simp]
lemma coe_GL_pos_coe_GL_coe_matrix (g : special_linear_group n R) :
(↑(↑(↑g : GL_pos n R) : GL n R) : matrix n n R) = ↑g := rfl
@[simp] lemma coe_to_GL_pos_to_GL_det (g : special_linear_group n R) :
((g : GL_pos n R) : GL n R).det = 1 :=
units.ext g.prop
variable [fact (even (fintype.card n))]
@[norm_cast] lemma coe_GL_pos_neg (g : special_linear_group n R) :
↑(-g) = -(↑g : GL_pos n R) := subtype.ext $ units.ext rfl
end special_linear_group
section examples
/-- The matrix [a, -b; b, a] (inspired by multiplication by a complex number); it is an element of
$GL_2(R)$ if `a ^ 2 + b ^ 2` is nonzero. -/
@[simps coe {fully_applied := ff}]
def plane_conformal_matrix {R} [field R] (a b : R) (hab : a ^ 2 + b ^ 2 ≠ 0) :
matrix.general_linear_group (fin 2) R :=
general_linear_group.mk_of_det_ne_zero !![a, -b; b, a]
(by simpa [det_fin_two, sq] using hab)
/- TODO: Add Iwasawa matrices `n_x=!![1,x; 0,1]`, `a_t=!![exp(t/2),0;0,exp(-t/2)]` and
`k_θ=!![cos θ, sin θ; -sin θ, cos θ]`
-/
end examples
namespace general_linear_group
variables {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R]
-- this section should be last to ensure we do not use it in lemmas
section coe_fn_instance
/-- This instance is here for convenience, but is not the simp-normal form. -/
instance : has_coe_to_fun (GL n R) (λ _, n → n → R) :=
{ coe := λ A, A.val }
@[simp] lemma coe_fn_eq_coe (A : GL n R) : ⇑A = (↑A : matrix n n R) := rfl
end coe_fn_instance
end general_linear_group
end matrix
|