Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 8,471 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/-
Copyright (c) 2021 Chris Birkbeck. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Birkbeck
-/
import linear_algebra.matrix.nonsingular_inverse
import linear_algebra.special_linear_group

/-!
# The General Linear group $GL(n, R)$

This file defines the elements of the General Linear group `general_linear_group n R`,
consisting of all invertible `n` by `n` `R`-matrices.

## Main definitions

* `matrix.general_linear_group` is the type of matrices over R which are units in the matrix ring.
* `matrix.GL_pos` gives the subgroup of matrices with
  positive determinant (over a linear ordered ring).

## Tags

matrix group, group, matrix inverse
-/

namespace matrix
universes u v
open_locale matrix
open linear_map

-- disable this instance so we do not accidentally use it in lemmas.
local attribute [-instance] special_linear_group.has_coe_to_fun

/-- `GL n R` is the group of `n` by `n` `R`-matrices with unit determinant.
Defined as a subtype of matrices-/
abbreviation general_linear_group (n : Type u) (R : Type v)
  [decidable_eq n] [fintype n] [comm_ring R] : Type* := (matrix n n R)ˣ

notation `GL` := general_linear_group

namespace general_linear_group

variables {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R]

/-- The determinant of a unit matrix is itself a unit. -/
@[simps]
def det : GL n R →* Rˣ :=
{ to_fun := λ A,
  { val := (↑A : matrix n n R).det,
    inv := (↑(A⁻¹) : matrix n n R).det,
    val_inv := by rw [←det_mul, ←mul_eq_mul, A.mul_inv, det_one],
    inv_val := by rw [←det_mul, ←mul_eq_mul, A.inv_mul, det_one]},
  map_one' := units.ext det_one,
  map_mul' := λ A B, units.ext $ det_mul _ _ }

/--The `GL n R` and `general_linear_group R n` groups are multiplicatively equivalent-/
def to_lin : (GL n R) ≃* (linear_map.general_linear_group R (n → R)) :=
units.map_equiv to_lin_alg_equiv'.to_mul_equiv

/--Given a matrix with invertible determinant we get an element of `GL n R`-/
def mk' (A : matrix n n R) (h : invertible (matrix.det A)) : GL n R :=
unit_of_det_invertible A

/--Given a matrix with unit determinant we get an element of `GL n R`-/
noncomputable def mk'' (A : matrix n n R) (h : is_unit (matrix.det A)) : GL n R :=
nonsing_inv_unit A h

/--Given a matrix with non-zero determinant over a field, we get an element of `GL n K`-/
def mk_of_det_ne_zero {K : Type*} [field K] (A : matrix n n K) (h : matrix.det A ≠ 0) :
  GL n K :=
mk' A (invertible_of_nonzero h)

lemma ext_iff (A B : GL n R) : A = B ↔ (∀ i j, (A : matrix n n R) i j = (B : matrix n n R) i j) :=
units.ext_iff.trans matrix.ext_iff.symm

/-- Not marked `@[ext]` as the `ext` tactic already solves this. -/
lemma ext ⦃A B : GL n R⦄ (h : ∀ i j, (A : matrix n n R) i j = (B : matrix n n R) i j) :
  A = B :=
units.ext $ matrix.ext h

section coe_lemmas

variables (A B : GL n R)

@[simp] lemma coe_mul : ↑(A * B) = (↑A : matrix n n R) ⬝ (↑B : matrix n n R) := rfl

@[simp] lemma coe_one : ↑(1 : GL n R) = (1 : matrix n n R) := rfl

lemma coe_inv : ↑(A⁻¹) = (↑A : matrix n n R)⁻¹ :=
begin
  letI := A.invertible,
  exact inv_of_eq_nonsing_inv (↑A : matrix n n R),
end

/-- An element of the matrix general linear group on `(n) [fintype n]` can be considered as an
element of the endomorphism general linear group on `n → R`. -/
def to_linear : general_linear_group n R ≃* linear_map.general_linear_group R (n → R) :=
units.map_equiv matrix.to_lin_alg_equiv'.to_ring_equiv.to_mul_equiv

-- Note that without the `@` and `‹_›`, lean infers `λ a b, _inst_1 a b` instead of `_inst_1` as the
-- decidability argument, which prevents `simp` from obtaining the instance by unification.
-- These `λ a b, _inst a b` terms also appear in the type of `A`, but simp doesn't get confused by
-- them so for now we do not care.
@[simp] lemma coe_to_linear :
  (@to_linear n ‹_› ‹_› _ _ A : (n → R) →ₗ[R] (n → R)) = matrix.mul_vec_lin A :=
rfl

@[simp] lemma to_linear_apply (v : n → R) :
  (@to_linear n ‹_› ‹_› _ _ A) v = matrix.mul_vec_lin ↑A v :=
rfl

end coe_lemmas

end general_linear_group

namespace special_linear_group

variables {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R]

instance has_coe_to_general_linear_group : has_coe (special_linear_group n R) (GL n R) :=
⟨λ A, ⟨↑A, ↑(A⁻¹), congr_arg coe (mul_right_inv A), congr_arg coe (mul_left_inv A)⟩⟩

@[simp] lemma coe_to_GL_det (g : special_linear_group n R) : (g : GL n R).det = 1 :=
units.ext g.prop

end special_linear_group

section

variables {n : Type u} {R : Type v} [decidable_eq n] [fintype n] [linear_ordered_comm_ring R ]

section
variables (n R)

/-- This is the subgroup of `nxn` matrices with entries over a
linear ordered ring and positive determinant. -/
def GL_pos : subgroup (GL n R) :=
(units.pos_subgroup R).comap general_linear_group.det
end

@[simp] lemma mem_GL_pos (A : GL n R) : A ∈ GL_pos n R ↔ 0 < (A.det : R) := iff.rfl
end

section has_neg

variables {n : Type u} {R : Type v} [decidable_eq n] [fintype n] [linear_ordered_comm_ring R ]
[fact (even (fintype.card n))]

/-- Formal operation of negation on general linear group on even cardinality `n` given by negating
each element. -/
instance : has_neg (GL_pos n R) :=
⟨λ g, ⟨-g, begin
    rw [mem_GL_pos, general_linear_group.coe_det_apply, units.coe_neg, det_neg,
      (fact.out $ even $ fintype.card n).neg_one_pow, one_mul],
    exact g.prop,
  end⟩⟩

@[simp] lemma GL_pos.coe_neg_GL (g : GL_pos n R) : ↑(-g) = -(g : GL n R) := rfl
@[simp] lemma GL_pos.coe_neg (g : GL_pos n R) : ↑(-g) = -(g : matrix n n R) := rfl

@[simp] lemma GL_pos.coe_neg_apply (g : GL_pos n R) (i j : n) :
  (↑(-g) : matrix n n R) i j = -((↑g : matrix n n R) i j) :=
rfl

instance : has_distrib_neg (GL_pos n R) :=
subtype.coe_injective.has_distrib_neg _ GL_pos.coe_neg_GL (GL_pos n R).coe_mul

end has_neg

namespace special_linear_group

variables {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [linear_ordered_comm_ring R]

/-- `special_linear_group n R` embeds into `GL_pos n R` -/
def to_GL_pos : special_linear_group n R →* GL_pos n R :=
{ to_fun := λ A, ⟨(A : GL n R), show 0 < (↑A : matrix n n R).det, from A.prop.symm ▸ zero_lt_one⟩,
  map_one' := subtype.ext $ units.ext $ rfl,
  map_mul' := λ A₁ A₂, subtype.ext $ units.ext $ rfl }

instance : has_coe (special_linear_group n R) (GL_pos n R) := ⟨to_GL_pos⟩

lemma coe_eq_to_GL_pos : (coe : special_linear_group n R → GL_pos n R) = to_GL_pos := rfl

lemma to_GL_pos_injective :
  function.injective (to_GL_pos : special_linear_group n R → GL_pos n R) :=
(show function.injective ((coe : GL_pos n R → matrix n n R) ∘ to_GL_pos),
 from subtype.coe_injective).of_comp

/-- Coercing a `special_linear_group` via `GL_pos` and `GL` is the same as coercing striaght to a
matrix. -/
@[simp]
lemma coe_GL_pos_coe_GL_coe_matrix (g : special_linear_group n R) :
    (↑(↑(↑g : GL_pos n R) : GL n R) : matrix n n R) = ↑g := rfl

@[simp] lemma coe_to_GL_pos_to_GL_det (g : special_linear_group n R) :
  ((g : GL_pos n R) : GL n R).det = 1 :=
units.ext g.prop

variable [fact (even (fintype.card n))]

@[norm_cast] lemma coe_GL_pos_neg (g : special_linear_group n R) :
  ↑(-g) = -(↑g : GL_pos n R) := subtype.ext $ units.ext rfl

end special_linear_group

section examples

/-- The matrix [a, -b; b, a] (inspired by multiplication by a complex number); it is an element of
$GL_2(R)$ if `a ^ 2 + b ^ 2` is nonzero. -/
@[simps coe {fully_applied := ff}]
def plane_conformal_matrix {R} [field R] (a b : R) (hab : a ^ 2 + b ^ 2 ≠ 0) :
  matrix.general_linear_group (fin 2) R :=
general_linear_group.mk_of_det_ne_zero !![a, -b; b, a]
  (by simpa [det_fin_two, sq] using hab)

/- TODO: Add Iwasawa matrices `n_x=!![1,x; 0,1]`, `a_t=!![exp(t/2),0;0,exp(-t/2)]` and
  `k_θ=!![cos θ, sin θ; -sin θ, cos θ]`
-/

end examples

namespace general_linear_group
variables {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R]

-- this section should be last to ensure we do not use it in lemmas
section coe_fn_instance

/-- This instance is here for convenience, but is not the simp-normal form. -/
instance : has_coe_to_fun (GL n R) (λ _, nn → R) :=
{ coe := λ A, A.val }

@[simp] lemma coe_fn_eq_coe (A : GL n R) : ⇑A = (↑A : matrix n n R) := rfl

end coe_fn_instance

end general_linear_group

end matrix