Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 5,879 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Kevin Buzzard, Yury Kudryashov
-/
import linear_algebra.quotient
/-!
# Isomorphism theorems for modules.
* The Noether's first, second, and third isomorphism theorems for modules are proved as
`linear_map.quot_ker_equiv_range`, `linear_map.quotient_inf_equiv_sup_quotient` and
`submodule.quotient_quotient_equiv_quotient`.
-/
universes u v
variables {R M M₂ M₃ : Type*}
variables [ring R] [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃]
variables [module R M] [module R M₂] [module R M₃]
variables (f : M →ₗ[R] M₂)
/-! The first and second isomorphism theorems for modules. -/
namespace linear_map
open submodule
section isomorphism_laws
/-- The first isomorphism law for modules. The quotient of `M` by the kernel of `f` is linearly
equivalent to the range of `f`. -/
noncomputable def quot_ker_equiv_range : (M ⧸ f.ker) ≃ₗ[R] f.range :=
(linear_equiv.of_injective (f.ker.liftq f $ le_rfl) $
ker_eq_bot.mp $ submodule.ker_liftq_eq_bot _ _ _ (le_refl f.ker)).trans
(linear_equiv.of_eq _ _ $ submodule.range_liftq _ _ _)
/-- The first isomorphism theorem for surjective linear maps. -/
noncomputable def quot_ker_equiv_of_surjective
(f : M →ₗ[R] M₂) (hf : function.surjective f) : (M ⧸ f.ker) ≃ₗ[R] M₂ :=
f.quot_ker_equiv_range.trans
(linear_equiv.of_top f.range (linear_map.range_eq_top.2 hf))
@[simp] lemma quot_ker_equiv_range_apply_mk (x : M) :
(f.quot_ker_equiv_range (submodule.quotient.mk x) : M₂) = f x :=
rfl
@[simp] lemma quot_ker_equiv_range_symm_apply_image (x : M) (h : f x ∈ f.range) :
f.quot_ker_equiv_range.symm ⟨f x, h⟩ = f.ker.mkq x :=
f.quot_ker_equiv_range.symm_apply_apply (f.ker.mkq x)
/--
Canonical linear map from the quotient `p/(p ∩ p')` to `(p+p')/p'`, mapping `x + (p ∩ p')`
to `x + p'`, where `p` and `p'` are submodules of an ambient module.
-/
def quotient_inf_to_sup_quotient (p p' : submodule R M) :
p ⧸ (comap p.subtype (p ⊓ p')) →ₗ[R] _ ⧸ (comap (p ⊔ p').subtype p') :=
(comap p.subtype (p ⊓ p')).liftq
((comap (p ⊔ p').subtype p').mkq.comp (of_le le_sup_left)) begin
rw [ker_comp, of_le, comap_cod_restrict, ker_mkq, map_comap_subtype],
exact comap_mono (inf_le_inf_right _ le_sup_left) end
/--
Second Isomorphism Law : the canonical map from `p/(p ∩ p')` to `(p+p')/p'` as a linear isomorphism.
-/
noncomputable def quotient_inf_equiv_sup_quotient (p p' : submodule R M) :
(p ⧸ (comap p.subtype (p ⊓ p'))) ≃ₗ[R] _ ⧸ (comap (p ⊔ p').subtype p') :=
linear_equiv.of_bijective (quotient_inf_to_sup_quotient p p')
begin
rw [← ker_eq_bot, quotient_inf_to_sup_quotient, ker_liftq_eq_bot],
rw [ker_comp, ker_mkq],
exact λ ⟨x, hx1⟩ hx2, ⟨hx1, hx2⟩
end
begin
rw [← range_eq_top, quotient_inf_to_sup_quotient, range_liftq, eq_top_iff'],
rintros ⟨x, hx⟩, rcases mem_sup.1 hx with ⟨y, hy, z, hz, rfl⟩,
use [⟨y, hy⟩], apply (submodule.quotient.eq _).2,
change y - (y + z) ∈ p',
rwa [sub_add_eq_sub_sub, sub_self, zero_sub, neg_mem_iff]
end
@[simp] lemma coe_quotient_inf_to_sup_quotient (p p' : submodule R M) :
⇑(quotient_inf_to_sup_quotient p p') = quotient_inf_equiv_sup_quotient p p' := rfl
@[simp] lemma quotient_inf_equiv_sup_quotient_apply_mk (p p' : submodule R M) (x : p) :
quotient_inf_equiv_sup_quotient p p' (submodule.quotient.mk x) =
submodule.quotient.mk (of_le (le_sup_left : p ≤ p ⊔ p') x) :=
rfl
lemma quotient_inf_equiv_sup_quotient_symm_apply_left (p p' : submodule R M)
(x : p ⊔ p') (hx : (x:M) ∈ p) :
(quotient_inf_equiv_sup_quotient p p').symm (submodule.quotient.mk x) =
submodule.quotient.mk ⟨x, hx⟩ :=
(linear_equiv.symm_apply_eq _).2 $ by simp [of_le_apply]
@[simp] lemma quotient_inf_equiv_sup_quotient_symm_apply_eq_zero_iff {p p' : submodule R M}
{x : p ⊔ p'} :
(quotient_inf_equiv_sup_quotient p p').symm (submodule.quotient.mk x) = 0 ↔ (x:M) ∈ p' :=
(linear_equiv.symm_apply_eq _).trans $ by simp [of_le_apply]
lemma quotient_inf_equiv_sup_quotient_symm_apply_right (p p' : submodule R M) {x : p ⊔ p'}
(hx : (x:M) ∈ p') :
(quotient_inf_equiv_sup_quotient p p').symm (submodule.quotient.mk x) = 0 :=
quotient_inf_equiv_sup_quotient_symm_apply_eq_zero_iff.2 hx
end isomorphism_laws
end linear_map
/-! The third isomorphism theorem for modules. -/
namespace submodule
variables (S T : submodule R M) (h : S ≤ T)
/-- The map from the third isomorphism theorem for modules: `(M / S) / (T / S) → M / T`. -/
def quotient_quotient_equiv_quotient_aux :
(M ⧸ S) ⧸ (T.map S.mkq) →ₗ[R] M ⧸ T :=
liftq _ (mapq S T linear_map.id h)
(by { rintro _ ⟨x, hx, rfl⟩, rw [linear_map.mem_ker, mkq_apply, mapq_apply],
exact (quotient.mk_eq_zero _).mpr hx })
@[simp] lemma quotient_quotient_equiv_quotient_aux_mk (x : M ⧸ S) :
quotient_quotient_equiv_quotient_aux S T h (quotient.mk x) = mapq S T linear_map.id h x :=
liftq_apply _ _ _
@[simp] lemma quotient_quotient_equiv_quotient_aux_mk_mk (x : M) :
quotient_quotient_equiv_quotient_aux S T h (quotient.mk (quotient.mk x)) = quotient.mk x :=
by rw [quotient_quotient_equiv_quotient_aux_mk, mapq_apply, linear_map.id_apply]
/-- **Noether's third isomorphism theorem** for modules: `(M / S) / (T / S) ≃ M / T`. -/
def quotient_quotient_equiv_quotient :
((M ⧸ S) ⧸ (T.map S.mkq)) ≃ₗ[R] M ⧸ T :=
{ to_fun := quotient_quotient_equiv_quotient_aux S T h,
inv_fun := mapq _ _ (mkq S) (le_comap_map _ _),
left_inv := λ x, quotient.induction_on' x $ λ x, quotient.induction_on' x $ λ x, by simp,
right_inv := λ x, quotient.induction_on' x $ λ x, by simp,
.. quotient_quotient_equiv_quotient_aux S T h }
end submodule
|