Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 17,076 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Kevin Buzzard, Yury Kudryashov
-/
import group_theory.quotient_group
import linear_algebra.span
/-!
# Quotients by submodules
* If `p` is a submodule of `M`, `M ⧸ p` is the quotient of `M` with respect to `p`:
that is, elements of `M` are identified if their difference is in `p`. This is itself a module.
-/
-- For most of this file we work over a noncommutative ring
section ring
namespace submodule
variables {R M : Type*} {r : R} {x y : M} [ring R] [add_comm_group M] [module R M]
variables (p p' : submodule R M)
open linear_map quotient_add_group
/-- The equivalence relation associated to a submodule `p`, defined by `x ≈ y` iff `-x + y ∈ p`.
Note this is equivalent to `y - x ∈ p`, but defined this way to be be defeq to the `add_subgroup`
version, where commutativity can't be assumed. -/
def quotient_rel : setoid M :=
quotient_add_group.left_rel p.to_add_subgroup
lemma quotient_rel_r_def {x y : M} : @setoid.r _ (p.quotient_rel) x y ↔ x - y ∈ p :=
iff.trans (by { rw [left_rel_apply, sub_eq_add_neg, neg_add, neg_neg], refl }) neg_mem_iff
/-- The quotient of a module `M` by a submodule `p ⊆ M`. -/
instance has_quotient : has_quotient M (submodule R M) := ⟨λ p, quotient (quotient_rel p)⟩
namespace quotient
/-- Map associating to an element of `M` the corresponding element of `M/p`,
when `p` is a submodule of `M`. -/
def mk {p : submodule R M} : M → M ⧸ p := quotient.mk'
@[simp] theorem mk_eq_mk {p : submodule R M} (x : M) :
(@_root_.quotient.mk _ (quotient_rel p) x) = mk x := rfl
@[simp] theorem mk'_eq_mk {p : submodule R M} (x : M) : (quotient.mk' x : M ⧸ p) = mk x := rfl
@[simp] theorem quot_mk_eq_mk {p : submodule R M} (x : M) : (quot.mk _ x : M ⧸ p) = mk x := rfl
protected theorem eq' {x y : M} : (mk x : M ⧸ p) = mk y ↔ -x + y ∈ p := quotient_add_group.eq
protected theorem eq {x y : M} : (mk x : M ⧸ p) = mk y ↔ x - y ∈ p :=
(p^.quotient.eq').trans (left_rel_apply.symm.trans p.quotient_rel_r_def)
instance : has_zero (M ⧸ p) := ⟨mk 0⟩
instance : inhabited (M ⧸ p) := ⟨0⟩
@[simp] theorem mk_zero : mk 0 = (0 : M ⧸ p) := rfl
@[simp] theorem mk_eq_zero : (mk x : M ⧸ p) = 0 ↔ x ∈ p :=
by simpa using (quotient.eq p : mk x = 0 ↔ _)
instance add_comm_group : add_comm_group (M ⧸ p) :=
quotient_add_group.add_comm_group p.to_add_subgroup
@[simp] theorem mk_add : (mk (x + y) : M ⧸ p) = mk x + mk y := rfl
@[simp] theorem mk_neg : (mk (-x) : M ⧸ p) = -mk x := rfl
@[simp] theorem mk_sub : (mk (x - y) : M ⧸ p) = mk x - mk y := rfl
section has_smul
variables {S : Type*} [has_smul S R] [has_smul S M] [is_scalar_tower S R M] (P : submodule R M)
instance has_smul' : has_smul S (M ⧸ P) :=
⟨λ a, quotient.map' ((•) a) $ λ x y h, left_rel_apply.mpr $
by simpa [smul_sub] using P.smul_mem (a • 1 : R) (left_rel_apply.mp h)⟩
/-- Shortcut to help the elaborator in the common case. -/
instance has_smul : has_smul R (M ⧸ P) :=
quotient.has_smul' P
@[simp] theorem mk_smul (r : S) (x : M) : (mk (r • x) : M ⧸ p) = r • mk x := rfl
instance smul_comm_class (T : Type*) [has_smul T R] [has_smul T M] [is_scalar_tower T R M]
[smul_comm_class S T M] : smul_comm_class S T (M ⧸ P) :=
{ smul_comm := λ x y, quotient.ind' $ by exact λ z, congr_arg mk (smul_comm _ _ _) }
instance is_scalar_tower (T : Type*) [has_smul T R] [has_smul T M] [is_scalar_tower T R M]
[has_smul S T] [is_scalar_tower S T M] : is_scalar_tower S T (M ⧸ P) :=
{ smul_assoc := λ x y, quotient.ind' $ by exact λ z, congr_arg mk (smul_assoc _ _ _) }
instance is_central_scalar [has_smul Sᵐᵒᵖ R] [has_smul Sᵐᵒᵖ M] [is_scalar_tower Sᵐᵒᵖ R M]
[is_central_scalar S M] : is_central_scalar S (M ⧸ P) :=
{ op_smul_eq_smul := λ x, quotient.ind' $ by exact λ z, congr_arg mk $ op_smul_eq_smul _ _ }
end has_smul
section module
variables {S : Type*}
instance mul_action' [monoid S] [has_smul S R] [mul_action S M] [is_scalar_tower S R M]
(P : submodule R M) : mul_action S (M ⧸ P) :=
function.surjective.mul_action mk (surjective_quot_mk _) P^.quotient.mk_smul
instance mul_action (P : submodule R M) : mul_action R (M ⧸ P) :=
quotient.mul_action' P
instance distrib_mul_action' [monoid S] [has_smul S R] [distrib_mul_action S M]
[is_scalar_tower S R M]
(P : submodule R M) : distrib_mul_action S (M ⧸ P) :=
function.surjective.distrib_mul_action
⟨mk, rfl, λ _ _, rfl⟩ (surjective_quot_mk _) P^.quotient.mk_smul
instance distrib_mul_action (P : submodule R M) : distrib_mul_action R (M ⧸ P) :=
quotient.distrib_mul_action' P
instance module' [semiring S] [has_smul S R] [module S M] [is_scalar_tower S R M]
(P : submodule R M) : module S (M ⧸ P) :=
function.surjective.module _
⟨mk, rfl, λ _ _, rfl⟩ (surjective_quot_mk _) P^.quotient.mk_smul
instance module (P : submodule R M) : module R (M ⧸ P) :=
quotient.module' P
variables (S)
/-- The quotient of `P` as an `S`-submodule is the same as the quotient of `P` as an `R`-submodule,
where `P : submodule R M`.
-/
def restrict_scalars_equiv [ring S] [has_smul S R] [module S M] [is_scalar_tower S R M]
(P : submodule R M) :
(M ⧸ P.restrict_scalars S) ≃ₗ[S] M ⧸ P :=
{ map_add' := λ x y, quotient.induction_on₂' x y (λ x' y', rfl),
map_smul' := λ c x, quotient.induction_on' x (λ x', rfl),
..quotient.congr_right $ λ _ _, iff.rfl }
@[simp] lemma restrict_scalars_equiv_mk
[ring S] [has_smul S R] [module S M] [is_scalar_tower S R M] (P : submodule R M)
(x : M) : restrict_scalars_equiv S P (mk x) = mk x :=
rfl
@[simp] lemma restrict_scalars_equiv_symm_mk
[ring S] [has_smul S R] [module S M] [is_scalar_tower S R M] (P : submodule R M)
(x : M) : (restrict_scalars_equiv S P).symm (mk x) = mk x :=
rfl
end module
lemma mk_surjective : function.surjective (@mk _ _ _ _ _ p) :=
by { rintros ⟨x⟩, exact ⟨x, rfl⟩ }
lemma nontrivial_of_lt_top (h : p < ⊤) : nontrivial (M ⧸ p) :=
begin
obtain ⟨x, _, not_mem_s⟩ := set_like.exists_of_lt h,
refine ⟨⟨mk x, 0, _⟩⟩,
simpa using not_mem_s
end
end quotient
section
variables {M₂ : Type*} [add_comm_group M₂] [module R M₂]
lemma quot_hom_ext ⦃f g : M ⧸ p →ₗ[R] M₂⦄ (h : ∀ x, f (quotient.mk x) = g (quotient.mk x)) :
f = g :=
linear_map.ext $ λ x, quotient.induction_on' x h
/-- The map from a module `M` to the quotient of `M` by a submodule `p` as a linear map. -/
def mkq : M →ₗ[R] M ⧸ p :=
{ to_fun := quotient.mk, map_add' := by simp, map_smul' := by simp }
@[simp] theorem mkq_apply (x : M) : p.mkq x = quotient.mk x := rfl
lemma mkq_surjective (A : submodule R M) : function.surjective A.mkq :=
by rintro ⟨x⟩; exact ⟨x, rfl⟩
end
variables {R₂ M₂ : Type*} [ring R₂] [add_comm_group M₂] [module R₂ M₂] {τ₁₂ : R →+* R₂}
/-- Two `linear_map`s from a quotient module are equal if their compositions with
`submodule.mkq` are equal.
See note [partially-applied ext lemmas]. -/
@[ext]
lemma linear_map_qext ⦃f g : M ⧸ p →ₛₗ[τ₁₂] M₂⦄ (h : f.comp p.mkq = g.comp p.mkq) : f = g :=
linear_map.ext $ λ x, quotient.induction_on' x $ (linear_map.congr_fun h : _)
/-- The map from the quotient of `M` by a submodule `p` to `M₂` induced by a linear map `f : M → M₂`
vanishing on `p`, as a linear map. -/
def liftq (f : M →ₛₗ[τ₁₂] M₂) (h : p ≤ f.ker) : M ⧸ p →ₛₗ[τ₁₂] M₂ :=
{ map_smul' := by rintro a ⟨x⟩; exact f.map_smulₛₗ a x,
..quotient_add_group.lift p.to_add_subgroup f.to_add_monoid_hom h }
@[simp] theorem liftq_apply (f : M →ₛₗ[τ₁₂] M₂) {h} (x : M) :
p.liftq f h (quotient.mk x) = f x := rfl
@[simp] theorem liftq_mkq (f : M →ₛₗ[τ₁₂] M₂) (h) : (p.liftq f h).comp p.mkq = f :=
by ext; refl
/--Special case of `liftq` when `p` is the span of `x`. In this case, the condition on `f` simply
becomes vanishing at `x`.-/
def liftq_span_singleton (x : M) (f : M →ₛₗ[τ₁₂] M₂) (h : f x = 0) : (M ⧸ R ∙ x) →ₛₗ[τ₁₂] M₂ :=
(R ∙ x).liftq f $ by rw [span_singleton_le_iff_mem, linear_map.mem_ker, h]
@[simp] lemma liftq_span_singleton_apply (x : M) (f : M →ₛₗ[τ₁₂] M₂) (h : f x = 0) (y : M) :
liftq_span_singleton x f h (quotient.mk y) = f y := rfl
@[simp] theorem range_mkq : p.mkq.range = ⊤ :=
eq_top_iff'.2 $ by rintro ⟨x⟩; exact ⟨x, rfl⟩
@[simp] theorem ker_mkq : p.mkq.ker = p :=
by ext; simp
lemma le_comap_mkq (p' : submodule R (M ⧸ p)) : p ≤ comap p.mkq p' :=
by simpa using (comap_mono bot_le : p.mkq.ker ≤ comap p.mkq p')
@[simp] theorem mkq_map_self : map p.mkq p = ⊥ :=
by rw [eq_bot_iff, map_le_iff_le_comap, comap_bot, ker_mkq]; exact le_rfl
@[simp] theorem comap_map_mkq : comap p.mkq (map p.mkq p') = p ⊔ p' :=
by simp [comap_map_eq, sup_comm]
@[simp] theorem map_mkq_eq_top : map p.mkq p' = ⊤ ↔ p ⊔ p' = ⊤ :=
by simp only [map_eq_top_iff p.range_mkq, sup_comm, ker_mkq]
variables (q : submodule R₂ M₂)
/-- The map from the quotient of `M` by submodule `p` to the quotient of `M₂` by submodule `q` along
`f : M → M₂` is linear. -/
def mapq (f : M →ₛₗ[τ₁₂] M₂) (h : p ≤ comap f q) :
(M ⧸ p) →ₛₗ[τ₁₂] (M₂ ⧸ q) :=
p.liftq (q.mkq.comp f) $ by simpa [ker_comp] using h
@[simp] theorem mapq_apply (f : M →ₛₗ[τ₁₂] M₂) {h} (x : M) :
mapq p q f h (quotient.mk x) = quotient.mk (f x) := rfl
theorem mapq_mkq (f : M →ₛₗ[τ₁₂] M₂) {h} : (mapq p q f h).comp p.mkq = q.mkq.comp f :=
by ext x; refl
@[simp] lemma mapq_zero (h : p ≤ q.comap (0 : M →ₛₗ[τ₁₂] M₂) := by simp) :
p.mapq q (0 : M →ₛₗ[τ₁₂] M₂) h = 0 :=
by { ext, simp, }
/-- Given submodules `p ⊆ M`, `p₂ ⊆ M₂`, `p₃ ⊆ M₃` and maps `f : M → M₂`, `g : M₂ → M₃` inducing
`mapq f : M ⧸ p → M₂ ⧸ p₂` and `mapq g : M₂ ⧸ p₂ → M₃ ⧸ p₃` then
`mapq (g ∘ f) = (mapq g) ∘ (mapq f)`. -/
lemma mapq_comp {R₃ M₃ : Type*} [ring R₃] [add_comm_group M₃] [module R₃ M₃]
(p₂ : submodule R₂ M₂) (p₃ : submodule R₃ M₃)
{τ₂₃ : R₂ →+* R₃} {τ₁₃ : R →+* R₃} [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃]
(f : M →ₛₗ[τ₁₂] M₂) (g : M₂ →ₛₗ[τ₂₃] M₃) (hf : p ≤ p₂.comap f) (hg : p₂ ≤ p₃.comap g)
(h := (hf.trans (comap_mono hg))) :
p.mapq p₃ (g.comp f) h = (p₂.mapq p₃ g hg).comp (p.mapq p₂ f hf) :=
by { ext, simp, }
@[simp] lemma mapq_id (h : p ≤ p.comap linear_map.id := by simp) :
p.mapq p linear_map.id h = linear_map.id :=
by { ext, simp, }
lemma mapq_pow {f : M →ₗ[R] M} (h : p ≤ p.comap f) (k : ℕ)
(h' : p ≤ p.comap (f^k) := p.le_comap_pow_of_le_comap h k) :
p.mapq p (f^k) h' = (p.mapq p f h)^k :=
begin
induction k with k ih,
{ simp [linear_map.one_eq_id], },
{ simp only [linear_map.iterate_succ, ← ih],
apply p.mapq_comp, },
end
theorem comap_liftq (f : M →ₛₗ[τ₁₂] M₂) (h) :
q.comap (p.liftq f h) = (q.comap f).map (mkq p) :=
le_antisymm
(by rintro ⟨x⟩ hx; exact ⟨_, hx, rfl⟩)
(by rw [map_le_iff_le_comap, ← comap_comp, liftq_mkq]; exact le_rfl)
theorem map_liftq [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) (h) (q : submodule R (M ⧸ p)) :
q.map (p.liftq f h) = (q.comap p.mkq).map f :=
le_antisymm
(by rintro _ ⟨⟨x⟩, hxq, rfl⟩; exact ⟨x, hxq, rfl⟩)
(by rintro _ ⟨x, hxq, rfl⟩; exact ⟨quotient.mk x, hxq, rfl⟩)
theorem ker_liftq (f : M →ₛₗ[τ₁₂] M₂) (h) :
ker (p.liftq f h) = (ker f).map (mkq p) := comap_liftq _ _ _ _
theorem range_liftq [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) (h) :
range (p.liftq f h) = range f :=
by simpa only [range_eq_map] using map_liftq _ _ _ _
theorem ker_liftq_eq_bot (f : M →ₛₗ[τ₁₂] M₂) (h) (h' : ker f ≤ p) : ker (p.liftq f h) = ⊥ :=
by rw [ker_liftq, le_antisymm h h', mkq_map_self]
/-- The correspondence theorem for modules: there is an order isomorphism between submodules of the
quotient of `M` by `p`, and submodules of `M` larger than `p`. -/
def comap_mkq.rel_iso :
submodule R (M ⧸ p) ≃o {p' : submodule R M // p ≤ p'} :=
{ to_fun := λ p', ⟨comap p.mkq p', le_comap_mkq p _⟩,
inv_fun := λ q, map p.mkq q,
left_inv := λ p', map_comap_eq_self $ by simp,
right_inv := λ ⟨q, hq⟩, subtype.ext_val $ by simpa [comap_map_mkq p],
map_rel_iff' := λ p₁ p₂, comap_le_comap_iff $ range_mkq _ }
/-- The ordering on submodules of the quotient of `M` by `p` embeds into the ordering on submodules
of `M`. -/
def comap_mkq.order_embedding :
submodule R (M ⧸ p) ↪o submodule R M :=
(rel_iso.to_rel_embedding $ comap_mkq.rel_iso p).trans (subtype.rel_embedding _ _)
@[simp] lemma comap_mkq_embedding_eq (p' : submodule R (M ⧸ p)) :
comap_mkq.order_embedding p p' = comap p.mkq p' := rfl
lemma span_preimage_eq [ring_hom_surjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {s : set M₂} (h₀ : s.nonempty)
(h₁ : s ⊆ range f) :
span R (f ⁻¹' s) = (span R₂ s).comap f :=
begin
suffices : (span R₂ s).comap f ≤ span R (f ⁻¹' s),
{ exact le_antisymm (span_preimage_le f s) this, },
have hk : ker f ≤ span R (f ⁻¹' s),
{ let y := classical.some h₀, have hy : y ∈ s, { exact classical.some_spec h₀, },
rw ker_le_iff, use [y, h₁ hy], rw ← set.singleton_subset_iff at hy,
exact set.subset.trans subset_span (span_mono (set.preimage_mono hy)), },
rw ← left_eq_sup at hk, rw f.range_coe at h₁,
rw [hk, ←linear_map.map_le_map_iff, map_span, map_comap_eq, set.image_preimage_eq_of_subset h₁],
exact inf_le_right,
end
end submodule
open submodule
namespace linear_map
section ring
variables {R M R₂ M₂ R₃ M₃ : Type*}
variables [ring R] [ring R₂] [ring R₃]
variables [add_comm_monoid M] [add_comm_group M₂] [add_comm_monoid M₃]
variables [module R M] [module R₂ M₂] [module R₃ M₃]
variables {τ₁₂ : R →+* R₂} {τ₂₃ : R₂ →+* R₃} {τ₁₃ : R →+* R₃}
variables [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃] [ring_hom_surjective τ₁₂]
lemma range_mkq_comp (f : M →ₛₗ[τ₁₂] M₂) : f.range.mkq.comp f = 0 :=
linear_map.ext $ λ x, by simp
lemma ker_le_range_iff {f : M →ₛₗ[τ₁₂] M₂} {g : M₂ →ₛₗ[τ₂₃] M₃} :
g.ker ≤ f.range ↔ f.range.mkq.comp g.ker.subtype = 0 :=
by rw [←range_le_ker_iff, submodule.ker_mkq, submodule.range_subtype]
/-- An epimorphism is surjective. -/
lemma range_eq_top_of_cancel {f : M →ₛₗ[τ₁₂] M₂}
(h : ∀ (u v : M₂ →ₗ[R₂] M₂ ⧸ f.range), u.comp f = v.comp f → u = v) : f.range = ⊤ :=
begin
have h₁ : (0 : M₂ →ₗ[R₂] M₂ ⧸ f.range).comp f = 0 := zero_comp _,
rw [←submodule.ker_mkq f.range, ←h 0 f.range.mkq (eq.trans h₁ (range_mkq_comp _).symm)],
exact ker_zero
end
end ring
end linear_map
open linear_map
namespace submodule
variables {R M : Type*} {r : R} {x y : M} [ring R] [add_comm_group M] [module R M]
variables (p p' : submodule R M)
/-- If `p = ⊥`, then `M / p ≃ₗ[R] M`. -/
def quot_equiv_of_eq_bot (hp : p = ⊥) : (M ⧸ p) ≃ₗ[R] M :=
linear_equiv.of_linear (p.liftq id $ hp.symm ▸ bot_le) p.mkq (liftq_mkq _ _ _) $
p.quot_hom_ext $ λ x, rfl
@[simp] lemma quot_equiv_of_eq_bot_apply_mk (hp : p = ⊥) (x : M) :
p.quot_equiv_of_eq_bot hp (quotient.mk x) = x := rfl
@[simp] lemma quot_equiv_of_eq_bot_symm_apply (hp : p = ⊥) (x : M) :
(p.quot_equiv_of_eq_bot hp).symm x = quotient.mk x := rfl
@[simp] lemma coe_quot_equiv_of_eq_bot_symm (hp : p = ⊥) :
((p.quot_equiv_of_eq_bot hp).symm : M →ₗ[R] M ⧸ p) = p.mkq := rfl
/-- Quotienting by equal submodules gives linearly equivalent quotients. -/
def quot_equiv_of_eq (h : p = p') : (M ⧸ p) ≃ₗ[R] M ⧸ p' :=
{ map_add' := by { rintros ⟨x⟩ ⟨y⟩, refl }, map_smul' := by { rintros x ⟨y⟩, refl },
..@quotient.congr _ _ (quotient_rel p) (quotient_rel p') (equiv.refl _) $
λ a b, by { subst h, refl } }
@[simp]
lemma quot_equiv_of_eq_mk (h : p = p') (x : M) :
submodule.quot_equiv_of_eq p p' h (submodule.quotient.mk x) = submodule.quotient.mk x :=
rfl
end submodule
end ring
section comm_ring
variables {R M M₂ : Type*} {r : R} {x y : M} [comm_ring R]
[add_comm_group M] [module R M] [add_comm_group M₂] [module R M₂]
(p : submodule R M) (q : submodule R M₂)
namespace submodule
/-- Given modules `M`, `M₂` over a commutative ring, together with submodules `p ⊆ M`, `q ⊆ M₂`,
the natural map $\{f ∈ Hom(M, M₂) | f(p) ⊆ q \} \to Hom(M/p, M₂/q)$ is linear. -/
def mapq_linear : compatible_maps p q →ₗ[R] (M ⧸ p) →ₗ[R] (M₂ ⧸ q) :=
{ to_fun := λ f, mapq _ _ f.val f.property,
map_add' := λ x y, by { ext, refl, },
map_smul' := λ c f, by { ext, refl, } }
end submodule
end comm_ring
|