Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 17,076 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Kevin Buzzard, Yury Kudryashov
-/
import group_theory.quotient_group
import linear_algebra.span

/-!
# Quotients by submodules

* If `p` is a submodule of `M`, `M ⧸ p` is the quotient of `M` with respect to `p`:
  that is, elements of `M` are identified if their difference is in `p`. This is itself a module.

-/

-- For most of this file we work over a noncommutative ring
section ring

namespace submodule

variables {R M : Type*} {r : R} {x y : M} [ring R] [add_comm_group M] [module R M]
variables (p p' : submodule R M)

open linear_map quotient_add_group

/-- The equivalence relation associated to a submodule `p`, defined by `x ≈ y` iff `-x + y ∈ p`.

Note this is equivalent to `y - x ∈ p`, but defined this way to be be defeq to the `add_subgroup`
version, where commutativity can't be assumed. -/
def quotient_rel : setoid M :=
quotient_add_group.left_rel p.to_add_subgroup

lemma quotient_rel_r_def {x y : M} : @setoid.r _ (p.quotient_rel) x y ↔ x - y ∈ p :=
iff.trans (by { rw [left_rel_apply, sub_eq_add_neg, neg_add, neg_neg], refl }) neg_mem_iff

/-- The quotient of a module `M` by a submodule `p ⊆ M`. -/
instance has_quotient : has_quotient M (submodule R M) := ⟨λ p, quotient (quotient_rel p)⟩

namespace quotient

/-- Map associating to an element of `M` the corresponding element of `M/p`,
when `p` is a submodule of `M`. -/
def mk {p : submodule R M} : M → M ⧸ p := quotient.mk'

@[simp] theorem mk_eq_mk {p : submodule R M} (x : M) :
  (@_root_.quotient.mk _ (quotient_rel p) x) = mk x := rfl
@[simp] theorem mk'_eq_mk {p : submodule R M} (x : M) : (quotient.mk' x : M ⧸ p) = mk x := rfl
@[simp] theorem quot_mk_eq_mk {p : submodule R M} (x : M) : (quot.mk _ x : M ⧸ p) = mk x := rfl

protected theorem eq' {x y : M} : (mk x : M ⧸ p) = mk y ↔ -x + y ∈ p := quotient_add_group.eq

protected theorem eq {x y : M} : (mk x : M ⧸ p) = mk y ↔ x - y ∈ p :=
(p^.quotient.eq').trans (left_rel_apply.symm.trans p.quotient_rel_r_def)

instance : has_zero (M ⧸ p) := ⟨mk 0⟩
instance : inhabited (M ⧸ p) := ⟨0⟩

@[simp] theorem mk_zero : mk 0 = (0 : M ⧸ p) := rfl

@[simp] theorem mk_eq_zero : (mk x : M ⧸ p) = 0 ↔ x ∈ p :=
by simpa using (quotient.eq p : mk x = 0 ↔ _)

instance add_comm_group : add_comm_group (M ⧸ p) :=
quotient_add_group.add_comm_group p.to_add_subgroup

@[simp] theorem mk_add : (mk (x + y) : M ⧸ p) = mk x + mk y := rfl

@[simp] theorem mk_neg : (mk (-x) : M ⧸ p) = -mk x := rfl

@[simp] theorem mk_sub : (mk (x - y) : M ⧸ p) = mk x - mk y := rfl

section has_smul

variables {S : Type*} [has_smul S R] [has_smul S M] [is_scalar_tower S R M] (P : submodule R M)

instance has_smul' : has_smul S (M ⧸ P) :=
⟨λ a, quotient.map' ((•) a) $ λ x y h, left_rel_apply.mpr $
  by simpa [smul_sub] using P.smul_mem (a • 1 : R) (left_rel_apply.mp h)⟩

/-- Shortcut to help the elaborator in the common case. -/
instance has_smul : has_smul R (M ⧸ P) :=
quotient.has_smul' P

@[simp] theorem mk_smul (r : S) (x : M) : (mk (r • x) : M ⧸ p) = r • mk x := rfl

instance smul_comm_class (T : Type*) [has_smul T R] [has_smul T M] [is_scalar_tower T R M]
  [smul_comm_class S T M] : smul_comm_class S T (M ⧸ P) :=
{ smul_comm := λ x y, quotient.ind' $ by exact λ z, congr_arg mk (smul_comm _ _ _) }

instance is_scalar_tower (T : Type*) [has_smul T R] [has_smul T M] [is_scalar_tower T R M]
  [has_smul S T] [is_scalar_tower S T M] : is_scalar_tower S T (M ⧸ P) :=
{ smul_assoc := λ x y, quotient.ind' $ by exact λ z, congr_arg mk (smul_assoc _ _ _) }

instance is_central_scalar [has_smul Sᵐᵒᵖ R] [has_smul Sᵐᵒᵖ M] [is_scalar_tower Sᵐᵒᵖ R M]
  [is_central_scalar S M] : is_central_scalar S (M ⧸ P) :=
{ op_smul_eq_smul := λ x, quotient.ind' $ by exact λ z, congr_arg mk $ op_smul_eq_smul _ _ }

end has_smul

section module

variables {S : Type*}

instance mul_action' [monoid S] [has_smul S R] [mul_action S M] [is_scalar_tower S R M]
  (P : submodule R M) : mul_action S (M ⧸ P) :=
function.surjective.mul_action mk (surjective_quot_mk _) P^.quotient.mk_smul

instance mul_action (P : submodule R M) : mul_action R (M ⧸ P) :=
quotient.mul_action' P

instance distrib_mul_action' [monoid S] [has_smul S R] [distrib_mul_action S M]
  [is_scalar_tower S R M]
  (P : submodule R M) : distrib_mul_action S (M ⧸ P) :=
function.surjective.distrib_mul_action
  ⟨mk, rfl, λ _ _, rfl⟩ (surjective_quot_mk _) P^.quotient.mk_smul

instance distrib_mul_action (P : submodule R M) : distrib_mul_action R (M ⧸ P) :=
quotient.distrib_mul_action' P

instance module' [semiring S] [has_smul S R] [module S M] [is_scalar_tower S R M]
  (P : submodule R M) : module S (M ⧸ P) :=
function.surjective.module _
  ⟨mk, rfl, λ _ _, rfl⟩ (surjective_quot_mk _) P^.quotient.mk_smul

instance module (P : submodule R M) : module R (M ⧸ P) :=
quotient.module' P

variables (S)

/-- The quotient of `P` as an `S`-submodule is the same as the quotient of `P` as an `R`-submodule,
where `P : submodule R M`.
-/
def restrict_scalars_equiv [ring S] [has_smul S R] [module S M] [is_scalar_tower S R M]
  (P : submodule R M) :
  (M ⧸ P.restrict_scalars S) ≃ₗ[S] M ⧸ P :=
{ map_add' := λ x y, quotient.induction_on₂' x y (λ x' y', rfl),
  map_smul' := λ c x, quotient.induction_on' x (λ x', rfl),
  ..quotient.congr_right $ λ _ _, iff.rfl }

@[simp] lemma restrict_scalars_equiv_mk
  [ring S] [has_smul S R] [module S M] [is_scalar_tower S R M] (P : submodule R M)
  (x : M) : restrict_scalars_equiv S P (mk x) = mk x :=
rfl

@[simp] lemma restrict_scalars_equiv_symm_mk
  [ring S] [has_smul S R] [module S M] [is_scalar_tower S R M] (P : submodule R M)
  (x : M) : (restrict_scalars_equiv S P).symm (mk x) = mk x :=
rfl


end module

lemma mk_surjective : function.surjective (@mk _ _ _ _ _ p) :=
by { rintros ⟨x⟩, exact ⟨x, rfl⟩ }

lemma nontrivial_of_lt_top (h : p < ⊤) : nontrivial (M ⧸ p) :=
begin
  obtain ⟨x, _, not_mem_s⟩ := set_like.exists_of_lt h,
  refine ⟨⟨mk x, 0, _⟩⟩,
  simpa using not_mem_s
end

end quotient

section

variables {M₂ : Type*} [add_comm_group M₂] [module R M₂]

lemma quot_hom_ext ⦃f g : M ⧸ p →ₗ[R] M₂⦄ (h : ∀ x, f (quotient.mk x) = g (quotient.mk x)) :
  f = g :=
linear_map.ext $ λ x, quotient.induction_on' x h

/-- The map from a module `M` to the quotient of `M` by a submodule `p` as a linear map. -/
def mkq : M →ₗ[R] M ⧸ p :=
{ to_fun := quotient.mk, map_add' := by simp, map_smul' := by simp }

@[simp] theorem mkq_apply (x : M) : p.mkq x = quotient.mk x := rfl

lemma mkq_surjective (A : submodule R M) : function.surjective A.mkq :=
by rintro ⟨x⟩; exact ⟨x, rfl⟩

end

variables {R₂ M₂ : Type*} [ring R₂] [add_comm_group M₂] [module R₂ M₂] {τ₁₂ : R →+* R₂}

/-- Two `linear_map`s from a quotient module are equal if their compositions with
`submodule.mkq` are equal.

See note [partially-applied ext lemmas]. -/
@[ext]
lemma linear_map_qext ⦃f g : M ⧸ p →ₛₗ[τ₁₂] M₂⦄ (h : f.comp p.mkq = g.comp p.mkq) : f = g :=
linear_map.ext $ λ x, quotient.induction_on' x $ (linear_map.congr_fun h : _)

/-- The map from the quotient of `M` by a submodule `p` to `M₂` induced by a linear map `f : M → M₂`
vanishing on `p`, as a linear map. -/
def liftq (f : M →ₛₗ[τ₁₂] M₂) (h : p ≤ f.ker) : M ⧸ p →ₛₗ[τ₁₂] M₂ :=
{ map_smul' := by rintro a ⟨x⟩; exact f.map_smulₛₗ a x,
  ..quotient_add_group.lift p.to_add_subgroup f.to_add_monoid_hom h }

@[simp] theorem liftq_apply (f : M →ₛₗ[τ₁₂] M₂) {h} (x : M) :
  p.liftq f h (quotient.mk x) = f x := rfl

@[simp] theorem liftq_mkq (f : M →ₛₗ[τ₁₂] M₂) (h) : (p.liftq f h).comp p.mkq = f :=
by ext; refl

/--Special case of `liftq` when `p` is the span of `x`. In this case, the condition on `f` simply
becomes vanishing at `x`.-/
def liftq_span_singleton (x : M) (f : M →ₛₗ[τ₁₂] M₂) (h : f x = 0) : (M ⧸ R ∙ x) →ₛₗ[τ₁₂] M₂ :=
(R ∙ x).liftq f $ by rw [span_singleton_le_iff_mem, linear_map.mem_ker, h]

@[simp] lemma liftq_span_singleton_apply (x : M) (f : M →ₛₗ[τ₁₂] M₂) (h : f x = 0) (y : M) :
liftq_span_singleton x f h (quotient.mk y) = f y := rfl

@[simp] theorem range_mkq : p.mkq.range = ⊤ :=
eq_top_iff'.2 $ by rintro ⟨x⟩; exact ⟨x, rfl⟩

@[simp] theorem ker_mkq : p.mkq.ker = p :=
by ext; simp

lemma le_comap_mkq (p' : submodule R (M ⧸ p)) : p ≤ comap p.mkq p' :=
by simpa using (comap_mono bot_le : p.mkq.ker ≤ comap p.mkq p')

@[simp] theorem mkq_map_self : map p.mkq p = ⊥ :=
by rw [eq_bot_iff, map_le_iff_le_comap, comap_bot, ker_mkq]; exact le_rfl

@[simp] theorem comap_map_mkq : comap p.mkq (map p.mkq p') = p ⊔ p' :=
by simp [comap_map_eq, sup_comm]

@[simp] theorem map_mkq_eq_top : map p.mkq p' = ⊤ ↔ p ⊔ p' = ⊤ :=
by simp only [map_eq_top_iff p.range_mkq, sup_comm, ker_mkq]

variables (q : submodule R₂ M₂)

/-- The map from the quotient of `M` by submodule `p` to the quotient of `M₂` by submodule `q` along
`f : M → M₂` is linear. -/
def mapq (f : M →ₛₗ[τ₁₂] M₂) (h : p ≤ comap f q) :
  (M ⧸ p) →ₛₗ[τ₁₂] (M₂ ⧸ q) :=
p.liftq (q.mkq.comp f) $ by simpa [ker_comp] using h

@[simp] theorem mapq_apply (f : M →ₛₗ[τ₁₂] M₂) {h} (x : M) :
  mapq p q f h (quotient.mk x) = quotient.mk (f x) := rfl

theorem mapq_mkq (f : M →ₛₗ[τ₁₂] M₂) {h} : (mapq p q f h).comp p.mkq = q.mkq.comp f :=
by ext x; refl

@[simp] lemma mapq_zero (h : p ≤ q.comap (0 : M →ₛₗ[τ₁₂] M₂) := by simp) :
  p.mapq q (0 : M →ₛₗ[τ₁₂] M₂) h = 0 :=
by { ext, simp, }

/-- Given submodules `p ⊆ M`, `p₂ ⊆ M₂`, `p₃ ⊆ M₃` and maps `f : M → M₂`, `g : M₂ → M₃` inducing
`mapq f : M ⧸ p → M₂ ⧸ p₂` and `mapq g : M₂ ⧸ p₂ → M₃ ⧸ p₃` then
`mapq (g ∘ f) = (mapq g) ∘ (mapq f)`. -/
lemma mapq_comp {R₃ M₃ : Type*} [ring R₃] [add_comm_group M₃] [module R₃ M₃]
  (p₂ : submodule R₂ M₂) (p₃ : submodule R₃ M₃)
  {τ₂₃ : R₂ →+* R₃} {τ₁₃ : R →+* R₃} [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃]
  (f : M →ₛₗ[τ₁₂] M₂) (g : M₂ →ₛₗ[τ₂₃] M₃) (hf : p ≤ p₂.comap f) (hg : p₂ ≤ p₃.comap g)
  (h := (hf.trans (comap_mono hg))) :
  p.mapq p₃ (g.comp f) h = (p₂.mapq p₃ g hg).comp (p.mapq p₂ f hf) :=
by { ext, simp, }

@[simp] lemma mapq_id (h : p ≤ p.comap linear_map.id := by simp) :
  p.mapq p linear_map.id h = linear_map.id :=
by { ext, simp, }

lemma mapq_pow {f : M →ₗ[R] M} (h : p ≤ p.comap f) (k : ℕ)
  (h' : p ≤ p.comap (f^k) := p.le_comap_pow_of_le_comap h k) :
  p.mapq p (f^k) h' = (p.mapq p f h)^k :=
begin
  induction k with k ih,
  { simp [linear_map.one_eq_id], },
  { simp only [linear_map.iterate_succ, ← ih],
    apply p.mapq_comp, },
end

theorem comap_liftq (f : M →ₛₗ[τ₁₂] M₂) (h) :
  q.comap (p.liftq f h) = (q.comap f).map (mkq p) :=
le_antisymm
  (by rintro ⟨x⟩ hx; exact ⟨_, hx, rfl⟩)
  (by rw [map_le_iff_le_comap, ← comap_comp, liftq_mkq]; exact le_rfl)

theorem map_liftq [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) (h) (q : submodule R (M ⧸ p)) :
  q.map (p.liftq f h) = (q.comap p.mkq).map f :=
le_antisymm
  (by rintro _ ⟨⟨x⟩, hxq, rfl⟩; exact ⟨x, hxq, rfl⟩)
  (by rintro _ ⟨x, hxq, rfl⟩; exact ⟨quotient.mk x, hxq, rfl⟩)

theorem ker_liftq (f : M →ₛₗ[τ₁₂] M₂) (h) :
  ker (p.liftq f h) = (ker f).map (mkq p) := comap_liftq _ _ _ _

theorem range_liftq [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) (h) :
  range (p.liftq f h) = range f :=
by simpa only [range_eq_map] using map_liftq _ _ _ _

theorem ker_liftq_eq_bot (f : M →ₛₗ[τ₁₂] M₂) (h) (h' : ker f ≤ p) : ker (p.liftq f h) = ⊥ :=
by rw [ker_liftq, le_antisymm h h', mkq_map_self]

/-- The correspondence theorem for modules: there is an order isomorphism between submodules of the
quotient of `M` by `p`, and submodules of `M` larger than `p`. -/
def comap_mkq.rel_iso :
  submodule R (M ⧸ p) ≃o {p' : submodule R M // p ≤ p'} :=
{ to_fun    := λ p', ⟨comap p.mkq p', le_comap_mkq p _⟩,
  inv_fun   := λ q, map p.mkq q,
  left_inv  := λ p', map_comap_eq_self $ by simp,
  right_inv := λ ⟨q, hq⟩, subtype.ext_val $ by simpa [comap_map_mkq p],
  map_rel_iff'      := λ p₁ p₂, comap_le_comap_iff $ range_mkq _ }

/-- The ordering on submodules of the quotient of `M` by `p` embeds into the ordering on submodules
of `M`. -/
def comap_mkq.order_embedding :
  submodule R (M ⧸ p) ↪o submodule R M :=
(rel_iso.to_rel_embedding $ comap_mkq.rel_iso p).trans (subtype.rel_embedding _ _)

@[simp] lemma comap_mkq_embedding_eq (p' : submodule R (M ⧸ p)) :
  comap_mkq.order_embedding p p' = comap p.mkq p' := rfl

lemma span_preimage_eq [ring_hom_surjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {s : set M₂} (h₀ : s.nonempty)
  (h₁ : srange f) :
  span R (f ⁻¹' s) = (span R₂ s).comap f :=
begin
  suffices : (span R₂ s).comap f ≤ span R (f ⁻¹' s),
  { exact le_antisymm (span_preimage_le f s) this, },
  have hk : ker f ≤ span R (f ⁻¹' s),
  { let y := classical.some h₀, have hy : y ∈ s, { exact classical.some_spec h₀, },
    rw ker_le_iff, use [y, h₁ hy], rw ← set.singleton_subset_iff at hy,
    exact set.subset.trans subset_span (span_mono (set.preimage_mono hy)), },
  rw ← left_eq_sup at hk, rw f.range_coe at h₁,
  rw [hk, ←linear_map.map_le_map_iff, map_span, map_comap_eq, set.image_preimage_eq_of_subset h₁],
  exact inf_le_right,
end

end submodule

open submodule

namespace linear_map

section ring

variables {R M R₂ M₂ R₃ M₃ : Type*}
variables [ring R] [ring R₂] [ring R₃]
variables [add_comm_monoid M] [add_comm_group M₂] [add_comm_monoid M₃]
variables [module R M] [module R₂ M₂] [module R₃ M₃]
variables {τ₁₂ : R →+* R₂} {τ₂₃ : R₂ →+* R₃} {τ₁₃ : R →+* R₃}
variables [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃] [ring_hom_surjective τ₁₂]

lemma range_mkq_comp (f : M →ₛₗ[τ₁₂] M₂) : f.range.mkq.comp f = 0 :=
linear_map.ext $ λ x, by simp

lemma ker_le_range_iff {f : M →ₛₗ[τ₁₂] M₂} {g : M₂ →ₛₗ[τ₂₃] M₃} :
  g.ker ≤ f.range ↔ f.range.mkq.comp g.ker.subtype = 0 :=
by rw [←range_le_ker_iff, submodule.ker_mkq, submodule.range_subtype]

/-- An epimorphism is surjective. -/
lemma range_eq_top_of_cancel {f : M →ₛₗ[τ₁₂] M₂}
  (h : ∀ (u v : M₂ →ₗ[R₂] M₂ ⧸ f.range), u.comp f = v.comp f → u = v) : f.range = ⊤ :=
begin
  have h₁ : (0 : M₂ →ₗ[R₂] M₂ ⧸ f.range).comp f = 0 := zero_comp _,
  rw [←submodule.ker_mkq f.range, ←h 0 f.range.mkq (eq.trans h₁ (range_mkq_comp _).symm)],
  exact ker_zero
end

end ring

end linear_map

open linear_map

namespace submodule

variables {R M : Type*} {r : R} {x y : M} [ring R] [add_comm_group M] [module R M]
variables (p p' : submodule R M)

/-- If `p = ⊥`, then `M / p ≃ₗ[R] M`. -/
def quot_equiv_of_eq_bot (hp : p = ⊥) : (M ⧸ p) ≃ₗ[R] M :=
linear_equiv.of_linear (p.liftq id $ hp.symm ▸ bot_le) p.mkq (liftq_mkq _ _ _) $
  p.quot_hom_ext $ λ x, rfl

@[simp] lemma quot_equiv_of_eq_bot_apply_mk (hp : p = ⊥) (x : M) :
  p.quot_equiv_of_eq_bot hp (quotient.mk x) = x := rfl

@[simp] lemma quot_equiv_of_eq_bot_symm_apply (hp : p = ⊥) (x : M) :
  (p.quot_equiv_of_eq_bot hp).symm x = quotient.mk x := rfl

@[simp] lemma coe_quot_equiv_of_eq_bot_symm (hp : p = ⊥) :
  ((p.quot_equiv_of_eq_bot hp).symm : M →ₗ[R] M ⧸ p) = p.mkq := rfl

/-- Quotienting by equal submodules gives linearly equivalent quotients. -/
def quot_equiv_of_eq (h : p = p') : (M ⧸ p) ≃ₗ[R] M ⧸ p' :=
{ map_add' := by { rintros ⟨x⟩ ⟨y⟩, refl }, map_smul' := by { rintros x ⟨y⟩, refl },
  ..@quotient.congr _ _ (quotient_rel p) (quotient_rel p') (equiv.refl _) $
    λ a b, by { subst h, refl } }

@[simp]
lemma quot_equiv_of_eq_mk (h : p = p') (x : M) :
  submodule.quot_equiv_of_eq p p' h (submodule.quotient.mk x) = submodule.quotient.mk x :=
rfl

end submodule

end ring

section comm_ring

variables {R M M₂ : Type*} {r : R} {x y : M} [comm_ring R]
  [add_comm_group M] [module R M] [add_comm_group M₂] [module R M₂]
  (p : submodule R M) (q : submodule R M₂)

namespace submodule

/-- Given modules `M`, `M₂` over a commutative ring, together with submodules `p ⊆ M`, `q ⊆ M₂`,
the natural map $\{f ∈ Hom(M, M₂) | f(p) ⊆ q \} \to Hom(M/p, M₂/q)$ is linear. -/
def mapq_linear : compatible_maps p q →ₗ[R] (M ⧸ p) →ₗ[R] (M₂ ⧸ q) :=
{ to_fun    := λ f, mapq _ _ f.val f.property,
  map_add'  := λ x y, by { ext, refl, },
  map_smul' := λ c f, by { ext, refl, } }

end submodule

end comm_ring