Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 21,726 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
/-
Copyright (c) 2021 Joseph Myers. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Myers
-/
import linear_algebra.basic
/-!
# Rays in modules
This file defines rays in modules.
## Main definitions
* `same_ray`: two vectors belong to the same ray if they are proportional with a nonnegative
coefficient.
* `module.ray` is a type for the equivalence class of nonzero vectors in a module with some
common positive multiple.
-/
noncomputable theory
open_locale big_operators
section ordered_comm_semiring
variables (R : Type*) [ordered_comm_semiring R]
variables {M : Type*} [add_comm_monoid M] [module R M]
variables {N : Type*} [add_comm_monoid N] [module R N]
variables (ι : Type*) [decidable_eq ι]
/-- Two vectors are in the same ray if either one of them is zero or some positive multiples of them
are equal (in the typical case over a field, this means one of them is a nonnegative multiple of
the other). -/
def same_ray (v₁ v₂ : M) : Prop :=
v₁ = 0 ∨ v₂ = 0 ∨ ∃ (r₁ r₂ : R), 0 < r₁ ∧ 0 < r₂ ∧ r₁ • v₁ = r₂ • v₂
variables {R}
namespace same_ray
variables {x y z : M}
@[simp] lemma zero_left (y : M) : same_ray R 0 y := or.inl rfl
@[simp] lemma zero_right (x : M) : same_ray R x 0 := or.inr $ or.inl rfl
@[nontriviality] lemma of_subsingleton [subsingleton M] (x y : M) : same_ray R x y :=
by { rw [subsingleton.elim x 0], exact zero_left _ }
@[nontriviality] lemma of_subsingleton' [subsingleton R] (x y : M) : same_ray R x y :=
by { haveI := module.subsingleton R M, exact of_subsingleton x y }
/-- `same_ray` is reflexive. -/
@[refl] lemma refl (x : M) : same_ray R x x :=
begin
nontriviality R,
exact or.inr (or.inr $ ⟨1, 1, zero_lt_one, zero_lt_one, rfl⟩)
end
protected lemma rfl : same_ray R x x := refl _
/-- `same_ray` is symmetric. -/
@[symm] lemma symm (h : same_ray R x y) : same_ray R y x :=
(or.left_comm.1 h).imp_right $ or.imp_right $ λ ⟨r₁, r₂, h₁, h₂, h⟩, ⟨r₂, r₁, h₂, h₁, h.symm⟩
/-- If `x` and `y` are nonzero vectors on the same ray, then there exist positive numbers `r₁ r₂`
such that `r₁ • x = r₂ • y`. -/
lemma exists_pos (h : same_ray R x y) (hx : x ≠ 0) (hy : y ≠ 0) :
∃ r₁ r₂ : R, 0 < r₁ ∧ 0 < r₂ ∧ r₁ • x = r₂ • y :=
(h.resolve_left hx).resolve_left hy
lemma _root_.same_ray_comm : same_ray R x y ↔ same_ray R y x :=
⟨same_ray.symm, same_ray.symm⟩
/-- `same_ray` is transitive unless the vector in the middle is zero and both other vectors are
nonzero. -/
lemma trans (hxy : same_ray R x y) (hyz : same_ray R y z) (hy : y = 0 → x = 0 ∨ z = 0) :
same_ray R x z :=
begin
rcases eq_or_ne x 0 with rfl|hx, { exact zero_left z },
rcases eq_or_ne z 0 with rfl|hz, { exact zero_right x },
rcases eq_or_ne y 0 with rfl|hy, { exact (hy rfl).elim (λ h, (hx h).elim) (λ h, (hz h).elim) },
rcases hxy.exists_pos hx hy with ⟨r₁, r₂, hr₁, hr₂, h₁⟩,
rcases hyz.exists_pos hy hz with ⟨r₃, r₄, hr₃, hr₄, h₂⟩,
refine or.inr (or.inr $ ⟨r₃ * r₁, r₂ * r₄, mul_pos hr₃ hr₁, mul_pos hr₂ hr₄, _⟩),
rw [mul_smul, mul_smul, h₁, ← h₂, smul_comm]
end
/-- A vector is in the same ray as a nonnegative multiple of itself. -/
lemma _root_.same_ray_nonneg_smul_right (v : M) {r : R} (h : 0 ≤ r) : same_ray R v (r • v) :=
or.inr $ h.eq_or_lt.imp (λ h, h ▸ zero_smul R v) $
λ h, ⟨r, 1, h, by { nontriviality R, exact zero_lt_one }, (one_smul _ _).symm⟩
/-- A vector is in the same ray as a positive multiple of itself. -/
lemma _root_.same_ray_pos_smul_right (v : M) {r : R} (h : 0 < r) : same_ray R v (r • v) :=
same_ray_nonneg_smul_right v h.le
/-- A vector is in the same ray as a nonnegative multiple of one it is in the same ray as. -/
lemma nonneg_smul_right {r : R} (h : same_ray R x y) (hr : 0 ≤ r) : same_ray R x (r • y) :=
h.trans (same_ray_nonneg_smul_right y hr) $ λ hy, or.inr $ by rw [hy, smul_zero]
/-- A vector is in the same ray as a positive multiple of one it is in the same ray as. -/
lemma pos_smul_right {r : R} (h : same_ray R x y) (hr : 0 < r) : same_ray R x (r • y) :=
h.nonneg_smul_right hr.le
/-- A nonnegative multiple of a vector is in the same ray as that vector. -/
lemma _root_.same_ray_nonneg_smul_left (v : M) {r : R} (h : 0 ≤ r) : same_ray R (r • v) v :=
(same_ray_nonneg_smul_right v h).symm
/-- A positive multiple of a vector is in the same ray as that vector. -/
lemma _root_.same_ray_pos_smul_left (v : M) {r : R} (h : 0 < r) : same_ray R (r • v) v :=
same_ray_nonneg_smul_left v h.le
/-- A nonnegative multiple of a vector is in the same ray as one it is in the same ray as. -/
lemma nonneg_smul_left {r : R} (h : same_ray R x y) (hr : 0 ≤ r) : same_ray R (r • x) y :=
(h.symm.nonneg_smul_right hr).symm
/-- A positive multiple of a vector is in the same ray as one it is in the same ray as. -/
lemma pos_smul_left {r : R} (h : same_ray R x y) (hr : 0 < r) : same_ray R (r • x) y :=
h.nonneg_smul_left hr.le
/-- If two vectors are on the same ray then they remain so after applying a linear map. -/
lemma map (f : M →ₗ[R] N) (h : same_ray R x y) : same_ray R (f x) (f y) :=
h.imp (λ hx, by rw [hx, map_zero]) $ or.imp (λ hy, by rw [hy, map_zero]) $
λ ⟨r₁, r₂, hr₁, hr₂, h⟩, ⟨r₁, r₂, hr₁, hr₂, by rw [←f.map_smul, ←f.map_smul, h]⟩
/-- The images of two vectors under a linear equivalence are on the same ray if and only if the
original vectors are on the same ray. -/
@[simp] lemma _root_.same_ray_map_iff (e : M ≃ₗ[R] N) : same_ray R (e x) (e y) ↔ same_ray R x y :=
⟨λ h, by simpa using same_ray.map e.symm.to_linear_map h, same_ray.map e.to_linear_map⟩
/-- If two vectors are on the same ray then both scaled by the same action are also on the same
ray. -/
lemma smul {S : Type*} [monoid S] [distrib_mul_action S M] [smul_comm_class R S M]
(h : same_ray R x y) (s : S) : same_ray R (s • x) (s • y) :=
h.map (s • (linear_map.id : M →ₗ[R] M))
/-- If `x` and `y` are on the same ray as `z`, then so is `x + y`. -/
lemma add_left (hx : same_ray R x z) (hy : same_ray R y z) : same_ray R (x + y) z :=
begin
rcases eq_or_ne x 0 with rfl|hx₀, { rwa zero_add },
rcases eq_or_ne y 0 with rfl|hy₀, { rwa add_zero },
rcases eq_or_ne z 0 with rfl|hz₀, { apply zero_right },
rcases hx.exists_pos hx₀ hz₀ with ⟨rx, rz₁, hrx, hrz₁, Hx⟩,
rcases hy.exists_pos hy₀ hz₀ with ⟨ry, rz₂, hry, hrz₂, Hy⟩,
refine or.inr (or.inr ⟨rx * ry, ry * rz₁ + rx * rz₂, mul_pos hrx hry, _, _⟩),
{ apply_rules [add_pos, mul_pos] },
{ simp only [mul_smul, smul_add, add_smul, ← Hx, ← Hy],
rw smul_comm }
end
/-- If `y` and `z` are on the same ray as `x`, then so is `y + z`. -/
lemma add_right (hy : same_ray R x y) (hz : same_ray R x z) : same_ray R x (y + z) :=
(hy.symm.add_left hz.symm).symm
end same_ray
/-- Nonzero vectors, as used to define rays. This type depends on an unused argument `R` so that
`ray_vector.setoid` can be an instance. -/
@[nolint unused_arguments has_inhabited_instance]
def ray_vector (R M : Type*) [has_zero M] := {v : M // v ≠ 0}
instance ray_vector.has_coe {R M : Type*} [has_zero M] :
has_coe (ray_vector R M) M := coe_subtype
instance {R M : Type*} [has_zero M] [nontrivial M] : nonempty (ray_vector R M) :=
let ⟨x, hx⟩ := exists_ne (0 : M) in ⟨⟨x, hx⟩⟩
variables (R M)
/-- The setoid of the `same_ray` relation for the subtype of nonzero vectors. -/
instance : setoid (ray_vector R M) :=
{ r := λ x y, same_ray R (x : M) y,
iseqv := ⟨λ x, same_ray.refl _, λ x y h, h.symm,
λ x y z hxy hyz, hxy.trans hyz $ λ hy, (y.2 hy).elim⟩ }
/-- A ray (equivalence class of nonzero vectors with common positive multiples) in a module. -/
@[nolint has_inhabited_instance]
def module.ray := quotient (ray_vector.setoid R M)
variables {R M}
/-- Equivalence of nonzero vectors, in terms of same_ray. -/
lemma equiv_iff_same_ray {v₁ v₂ : ray_vector R M} :
v₁ ≈ v₂ ↔ same_ray R (v₁ : M) v₂ :=
iff.rfl
variables (R)
/-- The ray given by a nonzero vector. -/
protected def ray_of_ne_zero (v : M) (h : v ≠ 0) : module.ray R M := ⟦⟨v, h⟩⟧
/-- An induction principle for `module.ray`, used as `induction x using module.ray.ind`. -/
lemma module.ray.ind {C : module.ray R M → Prop}
(h : ∀ v (hv : v ≠ 0), C (ray_of_ne_zero R v hv)) (x : module.ray R M) : C x :=
quotient.ind (subtype.rec $ by exact h) x
variable {R}
instance [nontrivial M] : nonempty (module.ray R M) :=
nonempty.map quotient.mk infer_instance
/-- The rays given by two nonzero vectors are equal if and only if those vectors
satisfy `same_ray`. -/
lemma ray_eq_iff {v₁ v₂ : M} (hv₁ : v₁ ≠ 0) (hv₂ : v₂ ≠ 0) :
ray_of_ne_zero R _ hv₁ = ray_of_ne_zero R _ hv₂ ↔ same_ray R v₁ v₂ :=
quotient.eq
/-- The ray given by a positive multiple of a nonzero vector. -/
@[simp] lemma ray_pos_smul {v : M} (h : v ≠ 0) {r : R} (hr : 0 < r)
(hrv : r • v ≠ 0) : ray_of_ne_zero R (r • v) hrv = ray_of_ne_zero R v h :=
(ray_eq_iff _ _).2 $ same_ray_pos_smul_left v hr
/-- An equivalence between modules implies an equivalence between ray vectors. -/
def ray_vector.map_linear_equiv (e : M ≃ₗ[R] N) : ray_vector R M ≃ ray_vector R N :=
equiv.subtype_equiv e.to_equiv $ λ _, e.map_ne_zero_iff.symm
/-- An equivalence between modules implies an equivalence between rays. -/
def module.ray.map (e : M ≃ₗ[R] N) : module.ray R M ≃ module.ray R N :=
quotient.congr (ray_vector.map_linear_equiv e) $ λ ⟨a, ha⟩ ⟨b, hb⟩, (same_ray_map_iff _).symm
@[simp] lemma module.ray.map_apply (e : M ≃ₗ[R] N) (v : M) (hv : v ≠ 0) :
module.ray.map e (ray_of_ne_zero _ v hv) = ray_of_ne_zero _ (e v) (e.map_ne_zero_iff.2 hv) := rfl
@[simp] lemma module.ray.map_refl : (module.ray.map $ linear_equiv.refl R M) = equiv.refl _ :=
equiv.ext $ module.ray.ind R $ λ _ _, rfl
@[simp] lemma module.ray.map_symm (e : M ≃ₗ[R] N) :
(module.ray.map e).symm = module.ray.map e.symm := rfl
section action
variables {G : Type*} [group G] [distrib_mul_action G M]
/-- Any invertible action preserves the non-zeroness of ray vectors. This is primarily of interest
when `G = Rˣ` -/
instance {R : Type*} : mul_action G (ray_vector R M) :=
{ smul := λ r, (subtype.map ((•) r) $ λ a, (smul_ne_zero_iff_ne _).2),
mul_smul := λ a b m, subtype.ext $ mul_smul a b _,
one_smul := λ m, subtype.ext $ one_smul _ _ }
variables [smul_comm_class R G M]
/-- Any invertible action preserves the non-zeroness of rays. This is primarily of interest when
`G = Rˣ` -/
instance : mul_action G (module.ray R M) :=
{ smul := λ r, quotient.map ((•) r) (λ a b h, h.smul _),
mul_smul := λ a b, quotient.ind $ by exact(λ m, congr_arg quotient.mk $ mul_smul a b _),
one_smul := quotient.ind $ by exact (λ m, congr_arg quotient.mk $ one_smul _ _), }
/-- The action via `linear_equiv.apply_distrib_mul_action` corresponds to `module.ray.map`. -/
@[simp] lemma module.ray.linear_equiv_smul_eq_map (e : M ≃ₗ[R] M) (v : module.ray R M) :
e • v = module.ray.map e v := rfl
@[simp] lemma smul_ray_of_ne_zero (g : G) (v : M) (hv) :
g • ray_of_ne_zero R v hv = ray_of_ne_zero R (g • v) ((smul_ne_zero_iff_ne _).2 hv) := rfl
end action
namespace module.ray
/-- Scaling by a positive unit is a no-op. -/
lemma units_smul_of_pos (u : Rˣ) (hu : 0 < (u : R)) (v : module.ray R M) :
u • v = v :=
begin
induction v using module.ray.ind,
rw [smul_ray_of_ne_zero, ray_eq_iff],
exact same_ray_pos_smul_left _ hu
end
/-- An arbitrary `ray_vector` giving a ray. -/
def some_ray_vector (x : module.ray R M) : ray_vector R M := quotient.out x
/-- The ray of `some_ray_vector`. -/
@[simp] lemma some_ray_vector_ray (x : module.ray R M) :
(⟦x.some_ray_vector⟧ : module.ray R M) = x :=
quotient.out_eq _
/-- An arbitrary nonzero vector giving a ray. -/
def some_vector (x : module.ray R M) : M := x.some_ray_vector
/-- `some_vector` is nonzero. -/
@[simp] lemma some_vector_ne_zero (x : module.ray R M) : x.some_vector ≠ 0 :=
x.some_ray_vector.property
/-- The ray of `some_vector`. -/
@[simp] lemma some_vector_ray (x : module.ray R M) :
ray_of_ne_zero R _ x.some_vector_ne_zero = x :=
(congr_arg _ (subtype.coe_eta _ _) : _).trans x.out_eq
end module.ray
end ordered_comm_semiring
section ordered_comm_ring
variables {R : Type*} [ordered_comm_ring R]
variables {M N : Type*} [add_comm_group M] [add_comm_group N] [module R M] [module R N] {x y : M}
/-- `same_ray.neg` as an `iff`. -/
@[simp] lemma same_ray_neg_iff : same_ray R (-x) (-y) ↔ same_ray R x y :=
by simp only [same_ray, neg_eq_zero, smul_neg, neg_inj]
alias same_ray_neg_iff ↔ same_ray.of_neg same_ray.neg
lemma same_ray_neg_swap : same_ray R (-x) y ↔ same_ray R x (-y) :=
by rw [← same_ray_neg_iff, neg_neg]
lemma eq_zero_of_same_ray_neg_smul_right [no_zero_smul_divisors R M] {r : R} (hr : r < 0)
(h : same_ray R x (r • x)) :
x = 0 :=
begin
rcases h with rfl|h₀|⟨r₁, r₂, hr₁, hr₂, h⟩,
{ refl },
{ simpa [hr.ne] using h₀ },
{ rw [← sub_eq_zero, smul_smul, ← sub_smul, smul_eq_zero] at h,
refine h.resolve_left (ne_of_gt $ sub_pos.2 _),
exact (mul_neg_of_pos_of_neg hr₂ hr).trans hr₁ }
end
/-- If a vector is in the same ray as its negation, that vector is zero. -/
lemma eq_zero_of_same_ray_self_neg [no_zero_smul_divisors R M] (h : same_ray R x (-x)) :
x = 0 :=
begin
nontriviality M, haveI : nontrivial R := module.nontrivial R M,
refine eq_zero_of_same_ray_neg_smul_right (neg_lt_zero.2 (@one_pos R _ _)) _,
rwa [neg_one_smul]
end
namespace ray_vector
/-- Negating a nonzero vector. -/
instance {R : Type*} : has_neg (ray_vector R M) := ⟨λ v, ⟨-v, neg_ne_zero.2 v.prop⟩⟩
/-- Negating a nonzero vector commutes with coercion to the underlying module. -/
@[simp, norm_cast] lemma coe_neg {R : Type*} (v : ray_vector R M) : ↑(-v) = -(v : M) := rfl
/-- Negating a nonzero vector twice produces the original vector. -/
instance {R : Type*} : has_involutive_neg (ray_vector R M) :=
{ neg := has_neg.neg,
neg_neg := λ v, by rw [subtype.ext_iff, coe_neg, coe_neg, neg_neg] }
/-- If two nonzero vectors are equivalent, so are their negations. -/
@[simp] lemma equiv_neg_iff {v₁ v₂ : ray_vector R M} : -v₁ ≈ -v₂ ↔ v₁ ≈ v₂ :=
same_ray_neg_iff
end ray_vector
variables (R)
/-- Negating a ray. -/
instance : has_neg (module.ray R M) :=
⟨quotient.map (λ v, -v) (λ v₁ v₂, ray_vector.equiv_neg_iff.2)⟩
/-- The ray given by the negation of a nonzero vector. -/
@[simp] lemma neg_ray_of_ne_zero (v : M) (h : v ≠ 0) :
-(ray_of_ne_zero R _ h) = ray_of_ne_zero R (-v) (neg_ne_zero.2 h) :=
rfl
namespace module.ray
variables {R}
/-- Negating a ray twice produces the original ray. -/
instance : has_involutive_neg (module.ray R M) :=
{ neg := has_neg.neg,
neg_neg := λ x, quotient.ind (λ a, congr_arg quotient.mk $ neg_neg _) x }
variables {R M}
/-- A ray does not equal its own negation. -/
lemma ne_neg_self [no_zero_smul_divisors R M] (x : module.ray R M) : x ≠ -x :=
begin
induction x using module.ray.ind with x hx,
rw [neg_ray_of_ne_zero, ne.def, ray_eq_iff],
exact mt eq_zero_of_same_ray_self_neg hx
end
lemma neg_units_smul (u : Rˣ) (v : module.ray R M) : (-u) • v = - (u • v) :=
begin
induction v using module.ray.ind,
simp only [smul_ray_of_ne_zero, units.smul_def, units.coe_neg, neg_smul, neg_ray_of_ne_zero]
end
/-- Scaling by a negative unit is negation. -/
lemma units_smul_of_neg (u : Rˣ) (hu : (u : R) < 0) (v : module.ray R M) :
u • v = -v :=
begin
rw [← neg_inj, neg_neg, ← neg_units_smul, units_smul_of_pos],
rwa [units.coe_neg, right.neg_pos_iff]
end
end module.ray
end ordered_comm_ring
section linear_ordered_comm_ring
variables {R : Type*} [linear_ordered_comm_ring R]
variables {M : Type*} [add_comm_group M] [module R M]
/-- `same_ray` follows from membership of `mul_action.orbit` for the `units.pos_subgroup`. -/
lemma same_ray_of_mem_orbit {v₁ v₂ : M} (h : v₁ ∈ mul_action.orbit (units.pos_subgroup R) v₂) :
same_ray R v₁ v₂ :=
begin
rcases h with ⟨⟨r, hr : 0 < (r : R)⟩, (rfl : r • v₂ = v₁)⟩,
exact same_ray_pos_smul_left _ hr
end
/-- Scaling by an inverse unit is the same as scaling by itself. -/
@[simp] lemma units_inv_smul (u : Rˣ) (v : module.ray R M) :
u⁻¹ • v = u • v :=
calc u⁻¹ • v = (u * u) • u⁻¹ • v :
eq.symm $ (u⁻¹ • v).units_smul_of_pos _ $ mul_self_pos.2 u.ne_zero
... = u • v : by rw [mul_smul, smul_inv_smul]
section
variables [no_zero_smul_divisors R M]
@[simp] lemma same_ray_smul_right_iff {v : M} {r : R} :
same_ray R v (r • v) ↔ 0 ≤ r ∨ v = 0 :=
⟨λ hrv, or_iff_not_imp_left.2 $ λ hr, eq_zero_of_same_ray_neg_smul_right (not_le.1 hr) hrv,
or_imp_distrib.2 ⟨same_ray_nonneg_smul_right v, λ h, h.symm ▸ same_ray.zero_left _⟩⟩
/-- A nonzero vector is in the same ray as a multiple of itself if and only if that multiple
is positive. -/
lemma same_ray_smul_right_iff_of_ne {v : M} (hv : v ≠ 0) {r : R} (hr : r ≠ 0) :
same_ray R v (r • v) ↔ 0 < r :=
by simp only [same_ray_smul_right_iff, hv, or_false, hr.symm.le_iff_lt]
@[simp] lemma same_ray_smul_left_iff {v : M} {r : R} : same_ray R (r • v) v ↔ 0 ≤ r ∨ v = 0 :=
same_ray_comm.trans same_ray_smul_right_iff
/-- A multiple of a nonzero vector is in the same ray as that vector if and only if that multiple
is positive. -/
lemma same_ray_smul_left_iff_of_ne {v : M} (hv : v ≠ 0) {r : R} (hr : r ≠ 0) :
same_ray R (r • v) v ↔ 0 < r :=
same_ray_comm.trans (same_ray_smul_right_iff_of_ne hv hr)
@[simp] lemma same_ray_neg_smul_right_iff {v : M} {r : R} :
same_ray R (-v) (r • v) ↔ r ≤ 0 ∨ v = 0 :=
by rw [← same_ray_neg_iff, neg_neg, ← neg_smul, same_ray_smul_right_iff, neg_nonneg]
lemma same_ray_neg_smul_right_iff_of_ne {v : M} {r : R} (hv : v ≠ 0) (hr : r ≠ 0) :
same_ray R (-v) (r • v) ↔ r < 0 :=
by simp only [same_ray_neg_smul_right_iff, hv, or_false, hr.le_iff_lt]
@[simp] lemma same_ray_neg_smul_left_iff {v : M} {r : R} :
same_ray R (r • v) (-v) ↔ r ≤ 0 ∨ v = 0 :=
same_ray_comm.trans same_ray_neg_smul_right_iff
lemma same_ray_neg_smul_left_iff_of_ne {v : M} {r : R} (hv : v ≠ 0) (hr : r ≠ 0) :
same_ray R (r • v) (-v) ↔ r < 0 :=
same_ray_comm.trans $ same_ray_neg_smul_right_iff_of_ne hv hr
@[simp] lemma units_smul_eq_self_iff {u : Rˣ} {v : module.ray R M} :
u • v = v ↔ (0 : R) < u :=
begin
induction v using module.ray.ind with v hv,
simp only [smul_ray_of_ne_zero, ray_eq_iff, units.smul_def,
same_ray_smul_left_iff_of_ne hv u.ne_zero]
end
@[simp] lemma units_smul_eq_neg_iff {u : Rˣ} {v : module.ray R M} :
u • v = -v ↔ ↑u < (0 : R) :=
by rw [← neg_inj, neg_neg, ← module.ray.neg_units_smul, units_smul_eq_self_iff, units.coe_neg,
neg_pos]
end
end linear_ordered_comm_ring
namespace same_ray
variables {R : Type*} [linear_ordered_field R]
variables {M : Type*} [add_comm_group M] [module R M] {x y v₁ v₂ : M}
lemma exists_pos_left (h : same_ray R x y) (hx : x ≠ 0) (hy : y ≠ 0) :
∃ r : R, 0 < r ∧ r • x = y :=
let ⟨r₁, r₂, hr₁, hr₂, h⟩ := h.exists_pos hx hy in
⟨r₂⁻¹ * r₁, mul_pos (inv_pos.2 hr₂) hr₁, by rw [mul_smul, h, inv_smul_smul₀ hr₂.ne']⟩
lemma exists_pos_right (h : same_ray R x y) (hx : x ≠ 0) (hy : y ≠ 0) :
∃ r : R, 0 < r ∧ x = r • y :=
(h.symm.exists_pos_left hy hx).imp $ λ _, and.imp_right eq.symm
/-- If a vector `v₂` is on the same ray as a nonzero vector `v₁`, then it is equal to `c • v₁` for
some nonnegative `c`. -/
lemma exists_nonneg_left (h : same_ray R x y) (hx : x ≠ 0) : ∃ r : R, 0 ≤ r ∧ r • x = y :=
begin
obtain rfl | hy := eq_or_ne y 0,
{ exact ⟨0, le_rfl, zero_smul _ _⟩ },
{ exact (h.exists_pos_left hx hy).imp (λ _, and.imp_left le_of_lt) }
end
/-- If a vector `v₁` is on the same ray as a nonzero vector `v₂`, then it is equal to `c • v₂` for
some nonnegative `c`. -/
lemma exists_nonneg_right (h : same_ray R x y) (hy : y ≠ 0) : ∃ r : R, 0 ≤ r ∧ x = r • y :=
(h.symm.exists_nonneg_left hy).imp $ λ _, and.imp_right eq.symm
/-- If vectors `v₁` and `v₂` are on the same ray, then for some nonnegative `a b`, `a + b = 1`, we
have `v₁ = a • (v₁ + v₂)` and `v₂ = b • (v₁ + v₂)`. -/
lemma exists_eq_smul_add (h : same_ray R v₁ v₂) :
∃ a b : R, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ v₁ = a • (v₁ + v₂) ∧ v₂ = b • (v₁ + v₂) :=
begin
rcases h with rfl|rfl|⟨r₁, r₂, h₁, h₂, H⟩,
{ use [0, 1], simp },
{ use [1, 0], simp },
{ have h₁₂ : 0 < r₁ + r₂, from add_pos h₁ h₂,
refine ⟨r₂ / (r₁ + r₂), r₁ / (r₁ + r₂), div_nonneg h₂.le h₁₂.le, div_nonneg h₁.le h₁₂.le,
_, _, _⟩,
{ rw [← add_div, add_comm, div_self h₁₂.ne'] },
{ rw [div_eq_inv_mul, mul_smul, smul_add, ← H, ← add_smul, add_comm r₂,
inv_smul_smul₀ h₁₂.ne'] },
{ rw [div_eq_inv_mul, mul_smul, smul_add, H, ← add_smul, add_comm r₂,
inv_smul_smul₀ h₁₂.ne'] } }
end
/-- If vectors `v₁` and `v₂` are on the same ray, then they are nonnegative multiples of the same
vector. Actually, this vector can be assumed to be `v₁ + v₂`, see `same_ray.exists_eq_smul_add`. -/
lemma exists_eq_smul (h : same_ray R v₁ v₂) :
∃ (u : M) (a b : R), 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ v₁ = a • u ∧ v₂ = b • u :=
⟨v₁ + v₂, h.exists_eq_smul_add⟩
end same_ray
|