Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 63,303 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 |
/-
Copyright (c) 2021 Kexing Ying. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kexing Ying
-/
import measure_theory.measure.complex
import measure_theory.measure.sub
import measure_theory.decomposition.jordan
import measure_theory.measure.with_density_vector_measure
import measure_theory.function.ae_eq_of_integral
/-!
# Lebesgue decomposition
This file proves the Lebesgue decomposition theorem. The Lebesgue decomposition theorem states that,
given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable
function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`.
The Lebesgue decomposition provides the Radon-Nikodym theorem readily.
## Main definitions
* `measure_theory.measure.have_lebesgue_decomposition` : A pair of measures `μ` and `ν` is said
to `have_lebesgue_decomposition` if there exist a measure `ξ` and a measurable function `f`,
such that `ξ` is mutually singular with respect to `ν` and `μ = ξ + ν.with_density f`
* `measure_theory.measure.singular_part` : If a pair of measures `have_lebesgue_decomposition`,
then `singular_part` chooses the measure from `have_lebesgue_decomposition`, otherwise it
returns the zero measure.
* `measure_theory.measure.rn_deriv`: If a pair of measures
`have_lebesgue_decomposition`, then `rn_deriv` chooses the measurable function from
`have_lebesgue_decomposition`, otherwise it returns the zero function.
* `measure_theory.signed_measure.have_lebesgue_decomposition` : A signed measure `s` and a
measure `μ` is said to `have_lebesgue_decomposition` if both the positive part and negative
part of `s` `have_lebesgue_decomposition` with respect to `μ`.
* `measure_theory.signed_measure.singular_part` : The singular part between a signed measure `s`
and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ`
minus the singular part of the negative part of `s` with respect to `μ`.
* `measure_theory.signed_measure.rn_deriv` : The Radon-Nikodym derivative of a signed
measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of
`s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with
respect to `μ`.
## Main results
* `measure_theory.measure.have_lebesgue_decomposition_of_sigma_finite` :
the Lebesgue decomposition theorem.
* `measure_theory.measure.eq_singular_part` : Given measures `μ` and `ν`, if `s` is a measure
mutually singular to `ν` and `f` is a measurable function such that `μ = s + fν`, then
`s = μ.singular_part ν`.
* `measure_theory.measure.eq_rn_deriv` : Given measures `μ` and `ν`, if `s` is a
measure mutually singular to `ν` and `f` is a measurable function such that `μ = s + fν`,
then `f = μ.rn_deriv ν`.
* `measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq` :
the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure.
# Tags
Lebesgue decomposition theorem
-/
noncomputable theory
open_locale classical measure_theory nnreal ennreal
open set
variables {α β : Type*} {m : measurable_space α} {μ ν : measure_theory.measure α}
include m
namespace measure_theory
namespace measure
/-- A pair of measures `μ` and `ν` is said to `have_lebesgue_decomposition` if there exists a
measure `ξ` and a measurable function `f`, such that `ξ` is mutually singular with respect to
`ν` and `μ = ξ + ν.with_density f`. -/
class have_lebesgue_decomposition (μ ν : measure α) : Prop :=
(lebesgue_decomposition :
∃ (p : measure α × (α → ℝ≥0∞)), measurable p.2 ∧ p.1 ⊥ₘ ν ∧ μ = p.1 + ν.with_density p.2)
/-- If a pair of measures `have_lebesgue_decomposition`, then `singular_part` chooses the
measure from `have_lebesgue_decomposition`, otherwise it returns the zero measure. For sigma-finite
measures, `μ = μ.singular_part ν + ν.with_density (μ.rn_deriv ν)`. -/
@[irreducible]
def singular_part (μ ν : measure α) : measure α :=
if h : have_lebesgue_decomposition μ ν then (classical.some h.lebesgue_decomposition).1 else 0
/-- If a pair of measures `have_lebesgue_decomposition`, then `rn_deriv` chooses the
measurable function from `have_lebesgue_decomposition`, otherwise it returns the zero function.
For sigma-finite measures, `μ = μ.singular_part ν + ν.with_density (μ.rn_deriv ν)`.-/
@[irreducible]
def rn_deriv (μ ν : measure α) : α → ℝ≥0∞ :=
if h : have_lebesgue_decomposition μ ν then (classical.some h.lebesgue_decomposition).2 else 0
lemma have_lebesgue_decomposition_spec (μ ν : measure α)
[h : have_lebesgue_decomposition μ ν] :
measurable (μ.rn_deriv ν) ∧ (μ.singular_part ν) ⊥ₘ ν ∧
μ = (μ.singular_part ν) + ν.with_density (μ.rn_deriv ν) :=
begin
rw [singular_part, rn_deriv, dif_pos h, dif_pos h],
exact classical.some_spec h.lebesgue_decomposition,
end
lemma have_lebesgue_decomposition_add (μ ν : measure α)
[have_lebesgue_decomposition μ ν] :
μ = (μ.singular_part ν) + ν.with_density (μ.rn_deriv ν) :=
(have_lebesgue_decomposition_spec μ ν).2.2
instance have_lebesgue_decomposition_smul
(μ ν : measure α) [have_lebesgue_decomposition μ ν] (r : ℝ≥0) :
(r • μ).have_lebesgue_decomposition ν :=
{ lebesgue_decomposition :=
begin
obtain ⟨hmeas, hsing, hadd⟩ := have_lebesgue_decomposition_spec μ ν,
refine ⟨⟨r • μ.singular_part ν, r • μ.rn_deriv ν⟩, _, hsing.smul _, _⟩,
{ change measurable ((r : ℝ≥0∞) • _), -- cannot remove this line
exact hmeas.const_smul _ },
{ change _ = (r : ℝ≥0∞) • _ + ν.with_density ((r : ℝ≥0∞) • _),
rw [with_density_smul _ hmeas, ← smul_add, ← hadd],
refl }
end }
@[measurability]
lemma measurable_rn_deriv (μ ν : measure α) :
measurable $ μ.rn_deriv ν :=
begin
by_cases h : have_lebesgue_decomposition μ ν,
{ exactI (have_lebesgue_decomposition_spec μ ν).1 },
{ rw [rn_deriv, dif_neg h],
exact measurable_zero }
end
lemma mutually_singular_singular_part (μ ν : measure α) :
μ.singular_part ν ⊥ₘ ν :=
begin
by_cases h : have_lebesgue_decomposition μ ν,
{ exactI (have_lebesgue_decomposition_spec μ ν).2.1 },
{ rw [singular_part, dif_neg h],
exact mutually_singular.zero_left }
end
lemma singular_part_le (μ ν : measure α) : μ.singular_part ν ≤ μ :=
begin
by_cases hl : have_lebesgue_decomposition μ ν,
{ casesI (have_lebesgue_decomposition_spec μ ν).2 with _ h,
conv_rhs { rw h },
exact measure.le_add_right le_rfl },
{ rw [singular_part, dif_neg hl],
exact measure.zero_le μ }
end
lemma with_density_rn_deriv_le (μ ν : measure α) :
ν.with_density (μ.rn_deriv ν) ≤ μ :=
begin
by_cases hl : have_lebesgue_decomposition μ ν,
{ casesI (have_lebesgue_decomposition_spec μ ν).2 with _ h,
conv_rhs { rw h },
exact measure.le_add_left le_rfl },
{ rw [rn_deriv, dif_neg hl, with_density_zero],
exact measure.zero_le μ }
end
instance [is_finite_measure μ] : is_finite_measure (μ.singular_part ν) :=
is_finite_measure_of_le μ $ singular_part_le μ ν
instance [sigma_finite μ] : sigma_finite (μ.singular_part ν) :=
sigma_finite_of_le μ $ singular_part_le μ ν
instance [topological_space α] [is_locally_finite_measure μ] :
is_locally_finite_measure (μ.singular_part ν) :=
is_locally_finite_measure_of_le $ singular_part_le μ ν
instance [is_finite_measure μ] : is_finite_measure (ν.with_density $ μ.rn_deriv ν) :=
is_finite_measure_of_le μ $ with_density_rn_deriv_le μ ν
instance [sigma_finite μ] : sigma_finite (ν.with_density $ μ.rn_deriv ν) :=
sigma_finite_of_le μ $ with_density_rn_deriv_le μ ν
instance [topological_space α] [is_locally_finite_measure μ] :
is_locally_finite_measure (ν.with_density $ μ.rn_deriv ν) :=
is_locally_finite_measure_of_le $ with_density_rn_deriv_le μ ν
lemma lintegral_rn_deriv_lt_top_of_measure_ne_top
{μ : measure α} (ν : measure α) {s : set α} (hs : μ s ≠ ∞) :
∫⁻ x in s, μ.rn_deriv ν x ∂ν < ∞ :=
begin
by_cases hl : have_lebesgue_decomposition μ ν,
{ haveI := hl,
obtain ⟨-, -, hadd⟩ := have_lebesgue_decomposition_spec μ ν,
suffices : ∫⁻ x in to_measurable μ s, μ.rn_deriv ν x ∂ν < ∞,
from lt_of_le_of_lt (lintegral_mono_set (subset_to_measurable _ _)) this,
rw [← with_density_apply _ (measurable_set_to_measurable _ _)],
refine lt_of_le_of_lt
(le_add_left le_rfl : _ ≤ μ.singular_part ν (to_measurable μ s) +
ν.with_density (μ.rn_deriv ν) (to_measurable μ s)) _,
rw [← measure.add_apply, ← hadd, measure_to_measurable],
exact hs.lt_top },
{ erw [measure.rn_deriv, dif_neg hl, lintegral_zero],
exact with_top.zero_lt_top },
end
lemma lintegral_rn_deriv_lt_top
(μ ν : measure α) [is_finite_measure μ] :
∫⁻ x, μ.rn_deriv ν x ∂ν < ∞ :=
begin
rw [← set_lintegral_univ],
exact lintegral_rn_deriv_lt_top_of_measure_ne_top _ (measure_lt_top _ _).ne,
end
/-- The Radon-Nikodym derivative of a sigma-finite measure `μ` with respect to another
measure `ν` is `ν`-almost everywhere finite. -/
theorem rn_deriv_lt_top (μ ν : measure α) [sigma_finite μ] :
∀ᵐ x ∂ν, μ.rn_deriv ν x < ∞ :=
begin
suffices : ∀ n, ∀ᵐ x ∂ν, x ∈ spanning_sets μ n → μ.rn_deriv ν x < ∞,
{ filter_upwards [ae_all_iff.2 this] with _ hx using hx _ (mem_spanning_sets_index _ _), },
assume n,
rw ← ae_restrict_iff' (measurable_spanning_sets _ _),
apply ae_lt_top (measurable_rn_deriv _ _),
refine (lintegral_rn_deriv_lt_top_of_measure_ne_top _ _).ne,
exact (measure_spanning_sets_lt_top _ _).ne
end
/-- Given measures `μ` and `ν`, if `s` is a measure mutually singular to `ν` and `f` is a
measurable function such that `μ = s + fν`, then `s = μ.singular_part μ`.
This theorem provides the uniqueness of the `singular_part` in the Lebesgue decomposition theorem,
while `measure_theory.measure.eq_rn_deriv` provides the uniqueness of the
`rn_deriv`. -/
theorem eq_singular_part {s : measure α} {f : α → ℝ≥0∞} (hf : measurable f)
(hs : s ⊥ₘ ν) (hadd : μ = s + ν.with_density f) :
s = μ.singular_part ν :=
begin
haveI : have_lebesgue_decomposition μ ν := ⟨⟨⟨s, f⟩, hf, hs, hadd⟩⟩,
obtain ⟨hmeas, hsing, hadd'⟩ := have_lebesgue_decomposition_spec μ ν,
obtain ⟨⟨S, hS₁, hS₂, hS₃⟩, ⟨T, hT₁, hT₂, hT₃⟩⟩ := ⟨hs, hsing⟩,
rw hadd' at hadd,
have hνinter : ν (S ∩ T)ᶜ = 0,
{ rw compl_inter,
refine nonpos_iff_eq_zero.1 (le_trans (measure_union_le _ _) _),
rw [hT₃, hS₃, add_zero],
exact le_rfl },
have heq : s.restrict (S ∩ T)ᶜ = (μ.singular_part ν).restrict (S ∩ T)ᶜ,
{ ext1 A hA,
have hf : ν.with_density f (A ∩ (S ∩ T)ᶜ) = 0,
{ refine with_density_absolutely_continuous ν _ _,
rw ← nonpos_iff_eq_zero,
exact hνinter ▸ measure_mono (inter_subset_right _ _) },
have hrn : ν.with_density (μ.rn_deriv ν) (A ∩ (S ∩ T)ᶜ) = 0,
{ refine with_density_absolutely_continuous ν _ _,
rw ← nonpos_iff_eq_zero,
exact hνinter ▸ measure_mono (inter_subset_right _ _) },
rw [restrict_apply hA, restrict_apply hA, ← add_zero (s (A ∩ (S ∩ T)ᶜ)), ← hf,
← add_apply, ← hadd, add_apply, hrn, add_zero] },
have heq' : ∀ A : set α, measurable_set A → s A = s.restrict (S ∩ T)ᶜ A,
{ intros A hA,
have hsinter : s (A ∩ (S ∩ T)) = 0,
{ rw ← nonpos_iff_eq_zero,
exact hS₂ ▸ measure_mono ((inter_subset_right _ _).trans (inter_subset_left _ _)) },
rw [restrict_apply hA, ← diff_eq, ae_disjoint.measure_diff_left hsinter] },
ext1 A hA,
have hμinter : μ.singular_part ν (A ∩ (S ∩ T)) = 0,
{ rw ← nonpos_iff_eq_zero,
exact hT₂ ▸ measure_mono ((inter_subset_right _ _).trans (inter_subset_right _ _)) },
rw [heq' A hA, heq, restrict_apply hA, ← diff_eq, ae_disjoint.measure_diff_left hμinter]
end
lemma singular_part_zero (ν : measure α) : (0 : measure α).singular_part ν = 0 :=
begin
refine (eq_singular_part measurable_zero mutually_singular.zero_left _).symm,
rw [zero_add, with_density_zero],
end
lemma singular_part_smul (μ ν : measure α) (r : ℝ≥0) :
(r • μ).singular_part ν = r • (μ.singular_part ν) :=
begin
by_cases hr : r = 0,
{ rw [hr, zero_smul, zero_smul, singular_part_zero] },
by_cases hl : have_lebesgue_decomposition μ ν,
{ haveI := hl,
refine (eq_singular_part ((measurable_rn_deriv μ ν).const_smul (r : ℝ≥0∞))
(mutually_singular.smul r (have_lebesgue_decomposition_spec _ _).2.1) _).symm,
rw [with_density_smul _ (measurable_rn_deriv _ _), ← smul_add,
← have_lebesgue_decomposition_add μ ν, ennreal.smul_def] },
{ rw [singular_part, singular_part, dif_neg hl, dif_neg, smul_zero],
refine λ hl', hl _,
rw ← inv_smul_smul₀ hr μ,
exact @measure.have_lebesgue_decomposition_smul _ _ _ _ hl' _ }
end
lemma singular_part_add (μ₁ μ₂ ν : measure α)
[have_lebesgue_decomposition μ₁ ν] [have_lebesgue_decomposition μ₂ ν] :
(μ₁ + μ₂).singular_part ν = μ₁.singular_part ν + μ₂.singular_part ν :=
begin
refine (eq_singular_part
((measurable_rn_deriv μ₁ ν).add (measurable_rn_deriv μ₂ ν))
((have_lebesgue_decomposition_spec _ _).2.1.add_left (have_lebesgue_decomposition_spec _ _).2.1)
_).symm,
erw with_density_add_left (measurable_rn_deriv μ₁ ν),
conv_rhs { rw [add_assoc, add_comm (μ₂.singular_part ν), ← add_assoc, ← add_assoc] },
rw [← have_lebesgue_decomposition_add μ₁ ν, add_assoc,
add_comm (ν.with_density (μ₂.rn_deriv ν)),
← have_lebesgue_decomposition_add μ₂ ν]
end
lemma singular_part_with_density (ν : measure α) {f : α → ℝ≥0∞} (hf : measurable f) :
(ν.with_density f).singular_part ν = 0 :=
begin
have : ν.with_density f = 0 + ν.with_density f, by rw zero_add,
exact (eq_singular_part hf mutually_singular.zero_left this).symm,
end
/-- Given measures `μ` and `ν`, if `s` is a measure mutually singular to `ν` and `f` is a
measurable function such that `μ = s + fν`, then `f = μ.rn_deriv ν`.
This theorem provides the uniqueness of the `rn_deriv` in the Lebesgue decomposition
theorem, while `measure_theory.measure.eq_singular_part` provides the uniqueness of the
`singular_part`. Here, the uniqueness is given in terms of the measures, while the uniqueness in
terms of the functions is given in `eq_rn_deriv`. -/
theorem eq_with_density_rn_deriv {s : measure α} {f : α → ℝ≥0∞} (hf : measurable f)
(hs : s ⊥ₘ ν) (hadd : μ = s + ν.with_density f) :
ν.with_density f = ν.with_density (μ.rn_deriv ν) :=
begin
haveI : have_lebesgue_decomposition μ ν := ⟨⟨⟨s, f⟩, hf, hs, hadd⟩⟩,
obtain ⟨hmeas, hsing, hadd'⟩ := have_lebesgue_decomposition_spec μ ν,
obtain ⟨⟨S, hS₁, hS₂, hS₃⟩, ⟨T, hT₁, hT₂, hT₃⟩⟩ := ⟨hs, hsing⟩,
rw hadd' at hadd,
have hνinter : ν (S ∩ T)ᶜ = 0,
{ rw compl_inter,
refine nonpos_iff_eq_zero.1 (le_trans (measure_union_le _ _) _),
rw [hT₃, hS₃, add_zero],
exact le_rfl },
have heq : (ν.with_density f).restrict (S ∩ T) =
(ν.with_density (μ.rn_deriv ν)).restrict (S ∩ T),
{ ext1 A hA,
have hs : s (A ∩ (S ∩ T)) = 0,
{ rw ← nonpos_iff_eq_zero,
exact hS₂ ▸ measure_mono ((inter_subset_right _ _).trans (inter_subset_left _ _)) },
have hsing : μ.singular_part ν (A ∩ (S ∩ T)) = 0,
{ rw ← nonpos_iff_eq_zero,
exact hT₂ ▸ measure_mono
((inter_subset_right _ _).trans (inter_subset_right _ _)) },
rw [restrict_apply hA, restrict_apply hA, ← add_zero (ν.with_density f (A ∩ (S ∩ T))),
← hs, ← add_apply, add_comm, ← hadd, add_apply, hsing, zero_add] },
have heq' : ∀ A : set α, measurable_set A →
ν.with_density f A = (ν.with_density f).restrict (S ∩ T) A,
{ intros A hA,
have hνfinter : ν.with_density f (A ∩ (S ∩ T)ᶜ) = 0,
{ rw ← nonpos_iff_eq_zero,
exact with_density_absolutely_continuous ν f hνinter ▸
measure_mono (inter_subset_right _ _) },
rw [restrict_apply hA, ← add_zero (ν.with_density f (A ∩ (S ∩ T))), ← hνfinter,
← diff_eq, measure_inter_add_diff _ (hS₁.inter hT₁)] },
ext1 A hA,
have hνrn : ν.with_density (μ.rn_deriv ν) (A ∩ (S ∩ T)ᶜ) = 0,
{ rw ← nonpos_iff_eq_zero,
exact with_density_absolutely_continuous ν (μ.rn_deriv ν) hνinter ▸
measure_mono (inter_subset_right _ _) },
rw [heq' A hA, heq, ← add_zero ((ν.with_density (μ.rn_deriv ν)).restrict (S ∩ T) A),
← hνrn, restrict_apply hA, ← diff_eq, measure_inter_add_diff _ (hS₁.inter hT₁)]
end
/-- Given measures `μ` and `ν`, if `s` is a measure mutually singular to `ν` and `f` is a
measurable function such that `μ = s + fν`, then `f = μ.rn_deriv ν`.
This theorem provides the uniqueness of the `rn_deriv` in the Lebesgue decomposition
theorem, while `measure_theory.measure.eq_singular_part` provides the uniqueness of the
`singular_part`. Here, the uniqueness is given in terms of the functions, while the uniqueness in
terms of the functions is given in `eq_with_density_rn_deriv`. -/
theorem eq_rn_deriv [sigma_finite ν] {s : measure α} {f : α → ℝ≥0∞} (hf : measurable f)
(hs : s ⊥ₘ ν) (hadd : μ = s + ν.with_density f) :
f =ᵐ[ν] μ.rn_deriv ν :=
begin
refine ae_eq_of_forall_set_lintegral_eq_of_sigma_finite hf (measurable_rn_deriv μ ν) _,
assume a ha h'a,
calc ∫⁻ (x : α) in a, f x ∂ν = ν.with_density f a : (with_density_apply f ha).symm
... = ν.with_density (μ.rn_deriv ν) a : by rw eq_with_density_rn_deriv hf hs hadd
... = ∫⁻ (x : α) in a, μ.rn_deriv ν x ∂ν : with_density_apply _ ha
end
/-- The Radon-Nikodym derivative of `f ν` with respect to `ν` is `f`. -/
theorem rn_deriv_with_density (ν : measure α) [sigma_finite ν] {f : α → ℝ≥0∞} (hf : measurable f) :
(ν.with_density f).rn_deriv ν =ᵐ[ν] f :=
begin
have : ν.with_density f = 0 + ν.with_density f, by rw zero_add,
exact (eq_rn_deriv hf mutually_singular.zero_left this).symm,
end
/-- The Radon-Nikodym derivative of the restriction of a measure to a measurable set is the
indicator function of this set. -/
theorem rn_deriv_restrict (ν : measure α) [sigma_finite ν] {s : set α} (hs : measurable_set s) :
(ν.restrict s).rn_deriv ν =ᵐ[ν] s.indicator 1 :=
begin
rw ← with_density_indicator_one hs,
exact rn_deriv_with_density _ (measurable_one.indicator hs)
end
open vector_measure signed_measure
/-- If two finite measures `μ` and `ν` are not mutually singular, there exists some `ε > 0` and
a measurable set `E`, such that `ν(E) > 0` and `E` is positive with respect to `μ - εν`.
This lemma is useful for the Lebesgue decomposition theorem. -/
lemma exists_positive_of_not_mutually_singular
(μ ν : measure α) [is_finite_measure μ] [is_finite_measure ν] (h : ¬ μ ⊥ₘ ν) :
∃ ε : ℝ≥0, 0 < ε ∧ ∃ E : set α, measurable_set E ∧ 0 < ν E ∧
0 ≤[E] μ.to_signed_measure - (ε • ν).to_signed_measure :=
begin
-- for all `n : ℕ`, obtain the Hahn decomposition for `μ - (1 / n) ν`
have : ∀ n : ℕ, ∃ i : set α, measurable_set i ∧
0 ≤[i] (μ.to_signed_measure - ((1 / (n + 1) : ℝ≥0) • ν).to_signed_measure) ∧
(μ.to_signed_measure - ((1 / (n + 1) : ℝ≥0) • ν).to_signed_measure) ≤[iᶜ] 0,
{ intro, exact exists_compl_positive_negative _ },
choose f hf₁ hf₂ hf₃ using this,
-- set `A` to be the intersection of all the negative parts of obtained Hahn decompositions
-- and we show that `μ A = 0`
set A := ⋂ n, (f n)ᶜ with hA₁,
have hAmeas : measurable_set A,
{ exact measurable_set.Inter (λ n, (hf₁ n).compl) },
have hA₂ : ∀ n : ℕ, (μ.to_signed_measure - ((1 / (n + 1) : ℝ≥0) • ν).to_signed_measure) ≤[A] 0,
{ intro n, exact restrict_le_restrict_subset _ _ (hf₁ n).compl (hf₃ n) (Inter_subset _ _) },
have hA₃ : ∀ n : ℕ, μ A ≤ (1 / (n + 1) : ℝ≥0) * ν A,
{ intro n,
have := nonpos_of_restrict_le_zero _ (hA₂ n),
rwa [to_signed_measure_sub_apply hAmeas, sub_nonpos, ennreal.to_real_le_to_real] at this,
exacts [ne_of_lt (measure_lt_top _ _), ne_of_lt (measure_lt_top _ _)] },
have hμ : μ A = 0,
{ lift μ A to ℝ≥0 using ne_of_lt (measure_lt_top _ _) with μA,
lift ν A to ℝ≥0 using ne_of_lt (measure_lt_top _ _) with νA,
rw ennreal.coe_eq_zero,
by_cases hb : 0 < νA,
{ suffices : ∀ b, 0 < b → μA ≤ b,
{ by_contra,
have h' := this (μA / 2) (nnreal.half_pos (zero_lt_iff.2 h)),
rw ← @not_not (μA ≤ μA / 2) at h',
exact h' (not_le.2 (nnreal.half_lt_self h)) },
intros c hc,
have : ∃ n : ℕ, 1 / (n + 1 : ℝ) < c * νA⁻¹, refine exists_nat_one_div_lt _,
{ refine mul_pos hc _,
rw _root_.inv_pos, exact hb },
rcases this with ⟨n, hn⟩,
have hb₁ : (0 : ℝ) < νA⁻¹, { rw _root_.inv_pos, exact hb },
have h' : 1 / (↑n + 1) * νA < c,
{ rw [← nnreal.coe_lt_coe, ← mul_lt_mul_right hb₁, nnreal.coe_mul, mul_assoc,
← nnreal.coe_inv, ← nnreal.coe_mul, _root_.mul_inv_cancel, ← nnreal.coe_mul,
mul_one, nnreal.coe_inv],
{ exact hn },
{ exact ne.symm (ne_of_lt hb) } },
refine le_trans _ (le_of_lt h'),
rw [← ennreal.coe_le_coe, ennreal.coe_mul],
exact hA₃ n },
{ rw [not_lt, le_zero_iff] at hb,
specialize hA₃ 0,
simp [hb, le_zero_iff] at hA₃,
assumption } },
-- since `μ` and `ν` are not mutually singular, `μ A = 0` implies `ν Aᶜ > 0`
rw mutually_singular at h, push_neg at h,
have := h _ hAmeas hμ,
simp_rw [hA₁, compl_Inter, compl_compl] at this,
-- as `Aᶜ = ⋃ n, f n`, `ν Aᶜ > 0` implies there exists some `n` such that `ν (f n) > 0`
obtain ⟨n, hn⟩ := exists_measure_pos_of_not_measure_Union_null this,
-- thus, choosing `f n` as the set `E` suffices
exact ⟨1 / (n + 1), by simp, f n, hf₁ n, hn, hf₂ n⟩,
end
namespace lebesgue_decomposition
/-- Given two measures `μ` and `ν`, `measurable_le μ ν` is the set of measurable
functions `f`, such that, for all measurable sets `A`, `∫⁻ x in A, f x ∂μ ≤ ν A`.
This is useful for the Lebesgue decomposition theorem. -/
def measurable_le (μ ν : measure α) : set (α → ℝ≥0∞) :=
{ f | measurable f ∧ ∀ (A : set α) (hA : measurable_set A), ∫⁻ x in A, f x ∂μ ≤ ν A }
lemma zero_mem_measurable_le : (0 : α → ℝ≥0∞) ∈ measurable_le μ ν :=
⟨measurable_zero, λ A hA, by simp⟩
lemma sup_mem_measurable_le {f g : α → ℝ≥0∞}
(hf : f ∈ measurable_le μ ν) (hg : g ∈ measurable_le μ ν) :
(λ a, f a ⊔ g a) ∈ measurable_le μ ν :=
begin
simp_rw ennreal.sup_eq_max,
refine ⟨measurable.max hf.1 hg.1, λ A hA, _⟩,
have h₁ := hA.inter (measurable_set_le hf.1 hg.1),
have h₂ := hA.inter (measurable_set_lt hg.1 hf.1),
rw [set_lintegral_max hf.1 hg.1],
refine (add_le_add (hg.2 _ h₁) (hf.2 _ h₂)).trans_eq _,
{ simp only [← not_le, ← compl_set_of, ← diff_eq],
exact measure_inter_add_diff _ (measurable_set_le hf.1 hg.1) }
end
lemma supr_succ_eq_sup {α} (f : ℕ → α → ℝ≥0∞) (m : ℕ) (a : α) :
(⨆ (k : ℕ) (hk : k ≤ m + 1), f k a) = f m.succ a ⊔ ⨆ (k : ℕ) (hk : k ≤ m), f k a :=
begin
ext x,
simp only [option.mem_def, ennreal.some_eq_coe],
split; intro h; rw ← h, symmetry,
all_goals
{ set c := (⨆ (k : ℕ) (hk : k ≤ m + 1), f k a) with hc,
set d := (f m.succ a ⊔ ⨆ (k : ℕ) (hk : k ≤ m), f k a) with hd,
rw [@le_antisymm_iff ℝ≥0∞, hc, hd], -- Specifying the type is weirdly necessary
refine ⟨_, _⟩,
{ refine supr₂_le (λ n hn, _),
rcases nat.of_le_succ hn with (h | h),
{ exact le_sup_of_le_right (le_supr₂ n h) },
{ exact h ▸ le_sup_left } },
{ refine sup_le _ (bsupr_mono $ λ n hn, hn.trans m.le_succ),
convert @le_supr₂ _ _ (λ i, i ≤ m + 1) _ _ m.succ le_rfl,
refl } }
end
lemma supr_mem_measurable_le
(f : ℕ → α → ℝ≥0∞) (hf : ∀ n, f n ∈ measurable_le μ ν) (n : ℕ) :
(λ x, ⨆ k (hk : k ≤ n), f k x) ∈ measurable_le μ ν :=
begin
induction n with m hm,
{ refine ⟨_, _⟩,
{ simp [(hf 0).1] },
{ intros A hA, simp [(hf 0).2 A hA] } },
{ have : (λ (a : α), ⨆ (k : ℕ) (hk : k ≤ m + 1), f k a) =
(λ a, f m.succ a ⊔ ⨆ (k : ℕ) (hk : k ≤ m), f k a),
{ exact funext (λ _, supr_succ_eq_sup _ _ _) },
refine ⟨measurable_supr (λ n, measurable.supr_Prop _ (hf n).1), λ A hA, _⟩,
rw this, exact (sup_mem_measurable_le (hf m.succ) hm).2 A hA }
end
lemma supr_mem_measurable_le'
(f : ℕ → α → ℝ≥0∞) (hf : ∀ n, f n ∈ measurable_le μ ν) (n : ℕ) :
(⨆ k (hk : k ≤ n), f k) ∈ measurable_le μ ν :=
begin
convert supr_mem_measurable_le f hf n,
ext, simp
end
section supr_lemmas --TODO: these statements should be moved elsewhere
omit m
lemma supr_monotone {α : Type*} (f : ℕ → α → ℝ≥0∞) :
monotone (λ n x, ⨆ k (hk : k ≤ n), f k x) :=
λ n m hnm x, bsupr_mono $ λ i, ge_trans hnm
lemma supr_monotone' {α : Type*} (f : ℕ → α → ℝ≥0∞) (x : α) :
monotone (λ n, ⨆ k (hk : k ≤ n), f k x) :=
λ n m hnm, supr_monotone f hnm x
lemma supr_le_le {α : Type*} (f : ℕ → α → ℝ≥0∞) (n k : ℕ) (hk : k ≤ n) :
f k ≤ λ x, ⨆ k (hk : k ≤ n), f k x :=
λ x, le_supr₂ k hk
end supr_lemmas
/-- `measurable_le_eval μ ν` is the set of `∫⁻ x, f x ∂μ` for all `f ∈ measurable_le μ ν`. -/
def measurable_le_eval (μ ν : measure α) : set ℝ≥0∞ :=
(λ f : α → ℝ≥0∞, ∫⁻ x, f x ∂μ) '' measurable_le μ ν
end lebesgue_decomposition
open lebesgue_decomposition
/-- Any pair of finite measures `μ` and `ν`, `have_lebesgue_decomposition`. That is to say,
there exist a measure `ξ` and a measurable function `f`, such that `ξ` is mutually singular
with respect to `ν` and `μ = ξ + ν.with_density f`.
This is not an instance since this is also shown for the more general σ-finite measures with
`measure_theory.measure.have_lebesgue_decomposition_of_sigma_finite`. -/
theorem have_lebesgue_decomposition_of_finite_measure [is_finite_measure μ] [is_finite_measure ν] :
have_lebesgue_decomposition μ ν :=
⟨begin
have h := @exists_seq_tendsto_Sup _ _ _ _ _ (measurable_le_eval ν μ)
⟨0, 0, zero_mem_measurable_le, by simp⟩ (order_top.bdd_above _),
choose g hmono hg₂ f hf₁ hf₂ using h,
-- we set `ξ` to be the supremum of an increasing sequence of functions obtained from above
set ξ := ⨆ n k (hk : k ≤ n), f k with hξ,
-- we see that `ξ` has the largest integral among all functions in `measurable_le`
have hξ₁ : Sup (measurable_le_eval ν μ) = ∫⁻ a, ξ a ∂ν,
{ have := @lintegral_tendsto_of_tendsto_of_monotone _ _ ν
(λ n, ⨆ k (hk : k ≤ n), f k) (⨆ n k (hk : k ≤ n), f k) _ _ _,
{ refine tendsto_nhds_unique _ this,
refine tendsto_of_tendsto_of_tendsto_of_le_of_le hg₂ tendsto_const_nhds _ _,
{ intro n, rw ← hf₂ n,
apply lintegral_mono,
simp only [supr_apply, supr_le_le f n n le_rfl] },
{ intro n,
exact le_Sup ⟨⨆ (k : ℕ) (hk : k ≤ n), f k, supr_mem_measurable_le' _ hf₁ _, rfl⟩ } },
{ intro n,
refine measurable.ae_measurable _,
convert (supr_mem_measurable_le _ hf₁ n).1,
ext, simp },
{ refine filter.eventually_of_forall (λ a, _),
simp [supr_monotone' f _] },
{ refine filter.eventually_of_forall (λ a, _),
simp [tendsto_at_top_supr (supr_monotone' f a)] } },
have hξm : measurable ξ,
{ convert measurable_supr (λ n, (supr_mem_measurable_le _ hf₁ n).1),
ext, simp [hξ] },
-- `ξ` is the `f` in the theorem statement and we set `μ₁` to be `μ - ν.with_density ξ`
-- since we need `μ₁ + ν.with_density ξ = μ`
set μ₁ := μ - ν.with_density ξ with hμ₁,
have hle : ν.with_density ξ ≤ μ,
{ intros B hB,
rw [hξ, with_density_apply _ hB],
simp_rw [supr_apply],
rw lintegral_supr (λ i, (supr_mem_measurable_le _ hf₁ i).1) (supr_monotone _),
exact supr_le (λ i, (supr_mem_measurable_le _ hf₁ i).2 B hB) },
haveI : is_finite_measure (ν.with_density ξ),
{ refine is_finite_measure_with_density _,
have hle' := hle univ measurable_set.univ,
rw [with_density_apply _ measurable_set.univ, measure.restrict_univ] at hle',
exact ne_top_of_le_ne_top (measure_ne_top _ _) hle' },
refine ⟨⟨μ₁, ξ⟩, hξm, _, _⟩,
{ by_contra,
-- if they are not mutually singular, then from `exists_positive_of_not_mutually_singular`,
-- there exists some `ε > 0` and a measurable set `E`, such that `μ(E) > 0` and `E` is
-- positive with respect to `ν - εμ`
obtain ⟨ε, hε₁, E, hE₁, hE₂, hE₃⟩ := exists_positive_of_not_mutually_singular μ₁ ν h,
simp_rw hμ₁ at hE₃,
have hξle : ∀ A, measurable_set A → ∫⁻ a in A, ξ a ∂ν ≤ μ A,
{ intros A hA, rw hξ,
simp_rw [supr_apply],
rw lintegral_supr (λ n, (supr_mem_measurable_le _ hf₁ n).1) (supr_monotone _),
exact supr_le (λ n, (supr_mem_measurable_le _ hf₁ n).2 A hA) },
-- since `E` is positive, we have `∫⁻ a in A ∩ E, ε + ξ a ∂ν ≤ μ (A ∩ E)` for all `A`
have hε₂ : ∀ A : set α, measurable_set A → ∫⁻ a in A ∩ E, ε + ξ a ∂ν ≤ μ (A ∩ E),
{ intros A hA,
have := subset_le_of_restrict_le_restrict _ _ hE₁ hE₃ (inter_subset_right A E),
rwa [zero_apply, to_signed_measure_sub_apply (hA.inter hE₁),
measure.sub_apply (hA.inter hE₁) hle,
ennreal.to_real_sub_of_le _ (ne_of_lt (measure_lt_top _ _)), sub_nonneg,
le_sub_iff_add_le, ← ennreal.to_real_add, ennreal.to_real_le_to_real,
measure.coe_smul, pi.smul_apply, with_density_apply _ (hA.inter hE₁),
show ε • ν (A ∩ E) = (ε : ℝ≥0∞) * ν (A ∩ E), by refl,
← set_lintegral_const, ← lintegral_add_left measurable_const] at this,
{ rw [ne.def, ennreal.add_eq_top, not_or_distrib],
exact ⟨ne_of_lt (measure_lt_top _ _), ne_of_lt (measure_lt_top _ _)⟩ },
{ exact ne_of_lt (measure_lt_top _ _) },
{ exact ne_of_lt (measure_lt_top _ _) },
{ exact ne_of_lt (measure_lt_top _ _) },
{ rw with_density_apply _ (hA.inter hE₁),
exact hξle (A ∩ E) (hA.inter hE₁) },
{ apply_instance } },
-- from this, we can show `ξ + ε * E.indicator` is a function in `measurable_le` with
-- integral greater than `ξ`
have hξε : ξ + E.indicator (λ _, ε) ∈ measurable_le ν μ,
{ refine ⟨measurable.add hξm (measurable.indicator measurable_const hE₁), λ A hA, _⟩,
have : ∫⁻ a in A, (ξ + E.indicator (λ _, ε)) a ∂ν =
∫⁻ a in A ∩ E, ε + ξ a ∂ν + ∫⁻ a in A \ E, ξ a ∂ν,
{ simp only [lintegral_add_left measurable_const, lintegral_add_left hξm,
set_lintegral_const, add_assoc, lintegral_inter_add_diff _ _ hE₁, pi.add_apply,
lintegral_indicator _ hE₁, restrict_apply hE₁],
rw [inter_comm, add_comm] },
rw [this, ← measure_inter_add_diff A hE₁],
exact add_le_add (hε₂ A hA) (hξle (A \ E) (hA.diff hE₁)) },
have : ∫⁻ a, ξ a + E.indicator (λ _, ε) a ∂ν ≤ Sup (measurable_le_eval ν μ) :=
le_Sup ⟨ξ + E.indicator (λ _, ε), hξε, rfl⟩,
-- but this contradicts the maximality of `∫⁻ x, ξ x ∂ν`
refine not_lt.2 this _,
rw [hξ₁, lintegral_add_left hξm, lintegral_indicator _ hE₁, set_lintegral_const],
refine ennreal.lt_add_right _ (ennreal.mul_pos_iff.2 ⟨ennreal.coe_pos.2 hε₁, hE₂⟩).ne',
have := measure_ne_top (ν.with_density ξ) univ,
rwa [with_density_apply _ measurable_set.univ, measure.restrict_univ] at this },
-- since `ν.with_density ξ ≤ μ`, it is clear that `μ = μ₁ + ν.with_density ξ`
{ rw hμ₁, ext1 A hA,
rw [measure.coe_add, pi.add_apply, measure.sub_apply hA hle,
add_comm, add_tsub_cancel_of_le (hle A hA)] },
end⟩
local attribute [instance] have_lebesgue_decomposition_of_finite_measure
instance {S : μ.finite_spanning_sets_in {s : set α | measurable_set s}} (n : ℕ) :
is_finite_measure (μ.restrict $ S.set n) :=
⟨by { rw [restrict_apply measurable_set.univ, univ_inter], exact S.finite _ }⟩
/-- **The Lebesgue decomposition theorem**: Any pair of σ-finite measures `μ` and `ν`
`have_lebesgue_decomposition`. That is to say, there exist a measure `ξ` and a measurable function
`f`, such that `ξ` is mutually singular with respect to `ν` and `μ = ξ + ν.with_density f` -/
@[priority 100] -- see Note [lower instance priority]
instance have_lebesgue_decomposition_of_sigma_finite
(μ ν : measure α) [sigma_finite μ] [sigma_finite ν] :
have_lebesgue_decomposition μ ν :=
⟨begin
-- Since `μ` and `ν` are both σ-finite, there exists a sequence of pairwise disjoint spanning
-- sets which are finite with respect to both `μ` and `ν`
obtain ⟨S, T, h₁, h₂⟩ := exists_eq_disjoint_finite_spanning_sets_in μ ν,
have h₃ : pairwise (disjoint on T.set) := h₁ ▸ h₂,
-- We define `μn` and `νn` as sequences of measures such that `μn n = μ ∩ S n` and
-- `νn n = ν ∩ S n` where `S` is the aforementioned finite spanning set sequence.
-- Since `S` is spanning, it is clear that `sum μn = μ` and `sum νn = ν`
set μn : ℕ → measure α := λ n, μ.restrict (S.set n) with hμn,
have hμ : μ = sum μn,
{ rw [hμn, ← restrict_Union h₂ S.set_mem, S.spanning, restrict_univ] },
set νn : ℕ → measure α := λ n, ν.restrict (T.set n) with hνn,
have hν : ν = sum νn,
{ rw [hνn, ← restrict_Union h₃ T.set_mem, T.spanning, restrict_univ] },
-- As `S` is finite with respect to both `μ` and `ν`, it is clear that `μn n` and `νn n` are
-- finite measures for all `n : ℕ`. Thus, we may apply the finite Lebesgue decomposition theorem
-- to `μn n` and `νn n`. We define `ξ` as the sum of the singular part of the Lebesgue
-- decompositions of `μn n` and `νn n`, and `f` as the sum of the Radon-Nikodym derviatives of
-- `μn n` and `νn n` restricted on `S n`
set ξ := sum (λ n, singular_part (μn n) (νn n)) with hξ,
set f := ∑' n, (S.set n).indicator (rn_deriv (μn n) (νn n)) with hf,
-- I claim `ξ` and `f` form a Lebesgue decomposition of `μ` and `ν`
refine ⟨⟨ξ, f⟩, _, _, _⟩,
{ exact measurable.ennreal_tsum' (λ n, measurable.indicator
(measurable_rn_deriv (μn n) (νn n)) (S.set_mem n)) },
-- We show that `ξ` is mutually singular with respect to `ν`
{ choose A hA₁ hA₂ hA₃ using λ n, mutually_singular_singular_part (μn n) (νn n),
simp only [hξ],
-- We use the set `B := ⋃ j, (S.set j) ∩ A j` where `A n` is the set provided as
-- `singular_part (μn n) (νn n) ⊥ₘ νn n`
refine ⟨⋃ j, (S.set j) ∩ A j,
measurable_set.Union (λ n, (S.set_mem n).inter (hA₁ n)), _, _⟩,
-- `ξ B = 0` since `ξ B = ∑ i j, singular_part (μn j) (νn j) (S.set i ∩ A i)`
-- `= ∑ i, singular_part (μn i) (νn i) (S.set i ∩ A i)`
-- `≤ ∑ i, singular_part (μn i) (νn i) (A i) = 0`
-- where the second equality follows as `singular_part (μn j) (νn j) (S.set i ∩ A i)` vanishes
-- for all `i ≠ j`
{ rw [measure_Union],
{ have : ∀ i, (sum (λ n, (μn n).singular_part (νn n))) (S.set i ∩ A i) =
(μn i).singular_part (νn i) (S.set i ∩ A i),
{ intro i, rw [sum_apply _ ((S.set_mem i).inter (hA₁ i)), tsum_eq_single i],
{ intros j hij,
rw [hμn, ← nonpos_iff_eq_zero],
refine le_trans ((singular_part_le _ _) _ ((S.set_mem i).inter (hA₁ i))) (le_of_eq _),
rw [restrict_apply ((S.set_mem i).inter (hA₁ i)), inter_comm, ← inter_assoc],
have : disjoint (S.set j) (S.set i) := h₂ j i hij,
rw disjoint_iff_inter_eq_empty at this,
rw [this, empty_inter, measure_empty] },
{ apply_instance } },
simp_rw [this, tsum_eq_zero_iff ennreal.summable],
intro n, exact measure_mono_null (inter_subset_right _ _) (hA₂ n) },
{ exact h₂.mono (λ i j, disjoint.mono inf_le_left inf_le_left) },
{ exact λ n, (S.set_mem n).inter (hA₁ n) } },
-- We will now show `ν Bᶜ = 0`. This follows since `Bᶜ = ⋃ n, S.set n ∩ (A n)ᶜ` and thus,
-- `ν Bᶜ = ∑ i, ν (S.set i ∩ (A i)ᶜ) = ∑ i, (νn i) (A i)ᶜ = 0`
{ have hcompl : is_compl (⋃ n, (S.set n ∩ A n)) (⋃ n, S.set n ∩ (A n)ᶜ),
{ split,
{ rintro x ⟨hx₁, hx₂⟩, rw mem_Union at hx₁ hx₂,
obtain ⟨⟨i, hi₁, hi₂⟩, ⟨j, hj₁, hj₂⟩⟩ := ⟨hx₁, hx₂⟩,
have : i = j,
{ by_contra hij, exact h₂ i j hij ⟨hi₁, hj₁⟩ },
exact hj₂ (this ▸ hi₂) },
{ intros x hx,
simp only [mem_Union, sup_eq_union, mem_inter_eq,
mem_union_eq, mem_compl_eq, or_iff_not_imp_left],
intro h, push_neg at h,
rw [top_eq_univ, ← S.spanning, mem_Union] at hx,
obtain ⟨i, hi⟩ := hx,
exact ⟨i, hi, h i hi⟩ } },
rw [hcompl.compl_eq, measure_Union, tsum_eq_zero_iff ennreal.summable],
{ intro n, rw [inter_comm, ← restrict_apply (hA₁ n).compl, ← hA₃ n, hνn, h₁] },
{ exact h₂.mono (λ i j, disjoint.mono inf_le_left inf_le_left) },
{ exact λ n, (S.set_mem n).inter (hA₁ n).compl } } },
-- Finally, it remains to show `μ = ξ + ν.with_density f`. Since `μ = sum μn`, and
-- `ξ + ν.with_density f = ∑ n, singular_part (μn n) (νn n)`
-- `+ ν.with_density (rn_deriv (μn n) (νn n)) ∩ (S.set n)`,
-- it suffices to show that the individual summands are equal. This follows by the
-- Lebesgue decomposition properties on the individual `μn n` and `νn n`
{ simp only [hξ, hf, hμ],
rw [with_density_tsum _, sum_add_sum],
{ refine sum_congr (λ n, _),
conv_lhs { rw have_lebesgue_decomposition_add (μn n) (νn n) },
suffices heq : (νn n).with_density ((μn n).rn_deriv (νn n)) =
ν.with_density ((S.set n).indicator ((μn n).rn_deriv (νn n))),
{ rw heq },
rw [hν, with_density_indicator (S.set_mem n), restrict_sum _ (S.set_mem n)],
suffices hsumeq : sum (λ (i : ℕ), (νn i).restrict (S.set n)) = νn n,
{ rw hsumeq },
ext1 s hs,
rw [sum_apply _ hs, tsum_eq_single n, hνn, h₁,
restrict_restrict (T.set_mem n), inter_self],
{ intros m hm,
rw [hνn, h₁, restrict_restrict (T.set_mem n),
disjoint_iff_inter_eq_empty.1 (h₃ n m hm.symm), restrict_empty,
coe_zero, pi.zero_apply] },
{ apply_instance } },
{ exact λ n, measurable.indicator (measurable_rn_deriv _ _) (S.set_mem n) } },
end⟩
end measure
namespace signed_measure
open measure
/-- A signed measure `s` is said to `have_lebesgue_decomposition` with respect to a measure `μ`
if the positive part and the negative part of `s` both `have_lebesgue_decomposition` with
respect to `μ`. -/
class have_lebesgue_decomposition (s : signed_measure α) (μ : measure α) : Prop :=
(pos_part : s.to_jordan_decomposition.pos_part.have_lebesgue_decomposition μ)
(neg_part : s.to_jordan_decomposition.neg_part.have_lebesgue_decomposition μ)
attribute [instance] have_lebesgue_decomposition.pos_part
attribute [instance] have_lebesgue_decomposition.neg_part
lemma not_have_lebesgue_decomposition_iff (s : signed_measure α)
(μ : measure α) :
¬ s.have_lebesgue_decomposition μ ↔
¬ s.to_jordan_decomposition.pos_part.have_lebesgue_decomposition μ ∨
¬ s.to_jordan_decomposition.neg_part.have_lebesgue_decomposition μ :=
⟨λ h, not_or_of_imp (λ hp hn, h ⟨hp, hn⟩), λ h hl, (not_and_distrib.2 h) ⟨hl.1, hl.2⟩⟩
-- `infer_instance` directly does not work
@[priority 100] -- see Note [lower instance priority]
instance have_lebesgue_decomposition_of_sigma_finite
(s : signed_measure α) (μ : measure α) [sigma_finite μ] :
s.have_lebesgue_decomposition μ :=
{ pos_part := infer_instance,
neg_part := infer_instance }
instance have_lebesgue_decomposition_neg
(s : signed_measure α) (μ : measure α) [s.have_lebesgue_decomposition μ] :
(-s).have_lebesgue_decomposition μ :=
{ pos_part :=
by { rw [to_jordan_decomposition_neg, jordan_decomposition.neg_pos_part],
apply_instance },
neg_part :=
by { rw [to_jordan_decomposition_neg, jordan_decomposition.neg_neg_part],
apply_instance } }
instance have_lebesgue_decomposition_smul
(s : signed_measure α) (μ : measure α) [s.have_lebesgue_decomposition μ] (r : ℝ≥0) :
(r • s).have_lebesgue_decomposition μ :=
{ pos_part :=
by { rw [to_jordan_decomposition_smul, jordan_decomposition.smul_pos_part],
apply_instance },
neg_part :=
by { rw [to_jordan_decomposition_smul, jordan_decomposition.smul_neg_part],
apply_instance } }
instance have_lebesgue_decomposition_smul_real
(s : signed_measure α) (μ : measure α) [s.have_lebesgue_decomposition μ] (r : ℝ) :
(r • s).have_lebesgue_decomposition μ :=
begin
by_cases hr : 0 ≤ r,
{ lift r to ℝ≥0 using hr,
exact s.have_lebesgue_decomposition_smul μ _ },
{ rw not_le at hr,
refine
{ pos_part :=
by { rw [to_jordan_decomposition_smul_real,
jordan_decomposition.real_smul_pos_part_neg _ _ hr],
apply_instance },
neg_part :=
by { rw [to_jordan_decomposition_smul_real,
jordan_decomposition.real_smul_neg_part_neg _ _ hr],
apply_instance } } }
end
/-- Given a signed measure `s` and a measure `μ`, `s.singular_part μ` is the signed measure
such that `s.singular_part μ + μ.with_densityᵥ (s.rn_deriv μ) = s` and
`s.singular_part μ` is mutually singular with respect to `μ`. -/
def singular_part (s : signed_measure α) (μ : measure α) : signed_measure α :=
(s.to_jordan_decomposition.pos_part.singular_part μ).to_signed_measure -
(s.to_jordan_decomposition.neg_part.singular_part μ).to_signed_measure
section
lemma singular_part_mutually_singular (s : signed_measure α) (μ : measure α) :
s.to_jordan_decomposition.pos_part.singular_part μ ⊥ₘ
s.to_jordan_decomposition.neg_part.singular_part μ :=
begin
by_cases hl : s.have_lebesgue_decomposition μ,
{ haveI := hl,
obtain ⟨i, hi, hpos, hneg⟩ := s.to_jordan_decomposition.mutually_singular,
rw s.to_jordan_decomposition.pos_part.have_lebesgue_decomposition_add μ at hpos,
rw s.to_jordan_decomposition.neg_part.have_lebesgue_decomposition_add μ at hneg,
rw [add_apply, add_eq_zero_iff] at hpos hneg,
exact ⟨i, hi, hpos.1, hneg.1⟩ },
{ rw not_have_lebesgue_decomposition_iff at hl,
cases hl with hp hn,
{ rw [measure.singular_part, dif_neg hp],
exact mutually_singular.zero_left },
{ rw [measure.singular_part, measure.singular_part, dif_neg hn],
exact mutually_singular.zero_right } }
end
lemma singular_part_total_variation (s : signed_measure α) (μ : measure α) :
(s.singular_part μ).total_variation =
s.to_jordan_decomposition.pos_part.singular_part μ +
s.to_jordan_decomposition.neg_part.singular_part μ :=
begin
have : (s.singular_part μ).to_jordan_decomposition =
⟨s.to_jordan_decomposition.pos_part.singular_part μ,
s.to_jordan_decomposition.neg_part.singular_part μ, singular_part_mutually_singular s μ⟩,
{ refine jordan_decomposition.to_signed_measure_injective _,
rw to_signed_measure_to_jordan_decomposition,
refl },
{ rw [total_variation, this] },
end
lemma mutually_singular_singular_part (s : signed_measure α) (μ : measure α) :
singular_part s μ ⊥ᵥ μ.to_ennreal_vector_measure :=
begin
rw [mutually_singular_ennreal_iff, singular_part_total_variation],
change _ ⊥ₘ vector_measure.equiv_measure.to_fun (vector_measure.equiv_measure.inv_fun μ),
rw vector_measure.equiv_measure.right_inv μ,
exact (mutually_singular_singular_part _ _).add_left (mutually_singular_singular_part _ _)
end
end
/-- The Radon-Nikodym derivative between a signed measure and a positive measure.
`rn_deriv s μ` satisfies `μ.with_densityᵥ (s.rn_deriv μ) = s`
if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as
`measure_theory.signed_measure.absolutely_continuous_iff_with_density_rn_deriv_eq`
and can be found in `measure_theory.decomposition.radon_nikodym`. -/
def rn_deriv (s : signed_measure α) (μ : measure α) : α → ℝ := λ x,
(s.to_jordan_decomposition.pos_part.rn_deriv μ x).to_real -
(s.to_jordan_decomposition.neg_part.rn_deriv μ x).to_real
variables {s t : signed_measure α}
@[measurability]
lemma measurable_rn_deriv (s : signed_measure α) (μ : measure α) :
measurable (rn_deriv s μ) :=
begin
rw [rn_deriv],
measurability,
end
lemma integrable_rn_deriv (s : signed_measure α) (μ : measure α) :
integrable (rn_deriv s μ) μ :=
begin
refine integrable.sub _ _;
{ split,
{ apply measurable.ae_strongly_measurable, measurability },
exact has_finite_integral_to_real_of_lintegral_ne_top
(lintegral_rn_deriv_lt_top _ μ).ne }
end
variables (s μ)
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**:
Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a
measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ`
and `s = t + μ.with_densityᵥ f`. In this case `t = s.singular_part μ` and
`f = s.rn_deriv μ`. -/
theorem singular_part_add_with_density_rn_deriv_eq
[s.have_lebesgue_decomposition μ] :
s.singular_part μ + μ.with_densityᵥ (s.rn_deriv μ) = s :=
begin
conv_rhs { rw [← to_signed_measure_to_jordan_decomposition s,
jordan_decomposition.to_signed_measure] },
rw [singular_part, rn_deriv, with_densityᵥ_sub'
(integrable_to_real_of_lintegral_ne_top _ _) (integrable_to_real_of_lintegral_ne_top _ _),
with_densityᵥ_to_real, with_densityᵥ_to_real, sub_eq_add_neg, sub_eq_add_neg,
add_comm (s.to_jordan_decomposition.pos_part.singular_part μ).to_signed_measure, ← add_assoc,
add_assoc (-(s.to_jordan_decomposition.neg_part.singular_part μ).to_signed_measure),
← to_signed_measure_add, add_comm, ← add_assoc, ← neg_add, ← to_signed_measure_add,
add_comm, ← sub_eq_add_neg],
convert rfl, -- `convert rfl` much faster than `congr`
{ exact (s.to_jordan_decomposition.pos_part.have_lebesgue_decomposition_add μ) },
{ rw add_comm,
exact (s.to_jordan_decomposition.neg_part.have_lebesgue_decomposition_add μ) },
all_goals { exact (lintegral_rn_deriv_lt_top _ _).ne <|> measurability }
end
variables {s μ}
lemma jordan_decomposition_add_with_density_mutually_singular
{f : α → ℝ} (hf : measurable f) (htμ : t ⊥ᵥ μ.to_ennreal_vector_measure) :
t.to_jordan_decomposition.pos_part + μ.with_density (λ (x : α), ennreal.of_real (f x)) ⊥ₘ
t.to_jordan_decomposition.neg_part + μ.with_density (λ (x : α), ennreal.of_real (-f x)) :=
begin
rw [mutually_singular_ennreal_iff, total_variation_mutually_singular_iff] at htμ,
change _ ⊥ₘ vector_measure.equiv_measure.to_fun (vector_measure.equiv_measure.inv_fun μ) ∧
_ ⊥ₘ vector_measure.equiv_measure.to_fun (vector_measure.equiv_measure.inv_fun μ) at htμ,
rw [vector_measure.equiv_measure.right_inv] at htμ,
exact ((jordan_decomposition.mutually_singular _).add_right
(htμ.1.mono_ac (refl _) (with_density_absolutely_continuous _ _))).add_left
((htμ.2.symm.mono_ac (with_density_absolutely_continuous _ _) (refl _)).add_right
(with_density_of_real_mutually_singular hf))
end
lemma to_jordan_decomposition_eq_of_eq_add_with_density
{f : α → ℝ} (hf : measurable f) (hfi : integrable f μ)
(htμ : t ⊥ᵥ μ.to_ennreal_vector_measure) (hadd : s = t + μ.with_densityᵥ f) :
s.to_jordan_decomposition = @jordan_decomposition.mk α _
(t.to_jordan_decomposition.pos_part + μ.with_density (λ x, ennreal.of_real (f x)))
(t.to_jordan_decomposition.neg_part + μ.with_density (λ x, ennreal.of_real (- f x)))
(by { haveI := is_finite_measure_with_density_of_real hfi.2, apply_instance })
(by { haveI := is_finite_measure_with_density_of_real hfi.neg.2, apply_instance })
(jordan_decomposition_add_with_density_mutually_singular hf htμ) :=
begin
haveI := is_finite_measure_with_density_of_real hfi.2,
haveI := is_finite_measure_with_density_of_real hfi.neg.2,
refine to_jordan_decomposition_eq _,
simp_rw [jordan_decomposition.to_signed_measure, hadd],
ext i hi,
rw [vector_measure.sub_apply, to_signed_measure_apply_measurable hi,
to_signed_measure_apply_measurable hi, add_apply, add_apply,
ennreal.to_real_add, ennreal.to_real_add, add_sub_add_comm,
← to_signed_measure_apply_measurable hi, ← to_signed_measure_apply_measurable hi,
← vector_measure.sub_apply, ← jordan_decomposition.to_signed_measure,
to_signed_measure_to_jordan_decomposition, vector_measure.add_apply,
← to_signed_measure_apply_measurable hi, ← to_signed_measure_apply_measurable hi,
with_densityᵥ_eq_with_density_pos_part_sub_with_density_neg_part hfi,
vector_measure.sub_apply];
exact (measure_lt_top _ _).ne
end
private lemma have_lebesgue_decomposition_mk' (μ : measure α)
{f : α → ℝ} (hf : measurable f) (hfi : integrable f μ)
(htμ : t ⊥ᵥ μ.to_ennreal_vector_measure) (hadd : s = t + μ.with_densityᵥ f) :
s.have_lebesgue_decomposition μ :=
begin
have htμ' := htμ,
rw mutually_singular_ennreal_iff at htμ,
change _ ⊥ₘ vector_measure.equiv_measure.to_fun (vector_measure.equiv_measure.inv_fun μ) at htμ,
rw [vector_measure.equiv_measure.right_inv, total_variation_mutually_singular_iff] at htμ,
refine
{ pos_part :=
by { use ⟨t.to_jordan_decomposition.pos_part, λ x, ennreal.of_real (f x)⟩,
refine ⟨hf.ennreal_of_real, htμ.1, _⟩,
rw to_jordan_decomposition_eq_of_eq_add_with_density hf hfi htμ' hadd },
neg_part :=
by { use ⟨t.to_jordan_decomposition.neg_part, λ x, ennreal.of_real (-f x)⟩,
refine ⟨hf.neg.ennreal_of_real, htμ.2, _⟩,
rw to_jordan_decomposition_eq_of_eq_add_with_density hf hfi htμ' hadd } }
end
lemma have_lebesgue_decomposition_mk (μ : measure α) {f : α → ℝ} (hf : measurable f)
(htμ : t ⊥ᵥ μ.to_ennreal_vector_measure) (hadd : s = t + μ.with_densityᵥ f) :
s.have_lebesgue_decomposition μ :=
begin
by_cases hfi : integrable f μ,
{ exact have_lebesgue_decomposition_mk' μ hf hfi htμ hadd },
{ rw [with_densityᵥ, dif_neg hfi, add_zero] at hadd,
refine have_lebesgue_decomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _,
rwa [with_densityᵥ_zero, add_zero] }
end
private theorem eq_singular_part'
(t : signed_measure α) {f : α → ℝ} (hf : measurable f) (hfi : integrable f μ)
(htμ : t ⊥ᵥ μ.to_ennreal_vector_measure) (hadd : s = t + μ.with_densityᵥ f) :
t = s.singular_part μ :=
begin
have htμ' := htμ,
rw [mutually_singular_ennreal_iff, total_variation_mutually_singular_iff] at htμ,
change _ ⊥ₘ vector_measure.equiv_measure.to_fun (vector_measure.equiv_measure.inv_fun μ) ∧
_ ⊥ₘ vector_measure.equiv_measure.to_fun (vector_measure.equiv_measure.inv_fun μ) at htμ,
rw [vector_measure.equiv_measure.right_inv] at htμ,
{ rw [singular_part, ← t.to_signed_measure_to_jordan_decomposition,
jordan_decomposition.to_signed_measure],
congr,
{ have hfpos : measurable (λ x, ennreal.of_real (f x)), { measurability },
refine eq_singular_part hfpos htμ.1 _,
rw to_jordan_decomposition_eq_of_eq_add_with_density hf hfi htμ' hadd },
{ have hfneg : measurable (λ x, ennreal.of_real (-f x)), { measurability },
refine eq_singular_part hfneg htμ.2 _,
rw to_jordan_decomposition_eq_of_eq_add_with_density hf hfi htμ' hadd } },
end
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is
mutually singular with respect to `μ` and `s = t + μ.with_densityᵥ f`, we have
`t = singular_part s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between
`s` and `μ`. -/
theorem eq_singular_part (t : signed_measure α) (f : α → ℝ)
(htμ : t ⊥ᵥ μ.to_ennreal_vector_measure) (hadd : s = t + μ.with_densityᵥ f) :
t = s.singular_part μ :=
begin
by_cases hfi : integrable f μ,
{ refine eq_singular_part' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _,
convert hadd using 2,
exact with_densityᵥ_eq.congr_ae hfi.1.ae_eq_mk.symm },
{ rw [with_densityᵥ, dif_neg hfi, add_zero] at hadd,
refine eq_singular_part' t measurable_zero (integrable_zero _ _ μ) htμ _,
rwa [with_densityᵥ_zero, add_zero] }
end
lemma singular_part_zero (μ : measure α) : (0 : signed_measure α).singular_part μ = 0 :=
begin
refine (eq_singular_part 0 0
vector_measure.mutually_singular.zero_left _).symm,
rw [zero_add, with_densityᵥ_zero],
end
lemma singular_part_neg (s : signed_measure α) (μ : measure α) :
(-s).singular_part μ = - s.singular_part μ :=
begin
have h₁ : ((-s).to_jordan_decomposition.pos_part.singular_part μ).to_signed_measure =
(s.to_jordan_decomposition.neg_part.singular_part μ).to_signed_measure,
{ refine to_signed_measure_congr _,
rw [to_jordan_decomposition_neg, jordan_decomposition.neg_pos_part] },
have h₂ : ((-s).to_jordan_decomposition.neg_part.singular_part μ).to_signed_measure =
(s.to_jordan_decomposition.pos_part.singular_part μ).to_signed_measure,
{ refine to_signed_measure_congr _,
rw [to_jordan_decomposition_neg, jordan_decomposition.neg_neg_part] },
rw [singular_part, singular_part, neg_sub, h₁, h₂],
end
lemma singular_part_smul_nnreal (s : signed_measure α) (μ : measure α) (r : ℝ≥0) :
(r • s).singular_part μ = r • s.singular_part μ :=
begin
rw [singular_part, singular_part, smul_sub, ← to_signed_measure_smul, ← to_signed_measure_smul],
conv_lhs { congr, congr,
rw [to_jordan_decomposition_smul, jordan_decomposition.smul_pos_part,
singular_part_smul], skip, congr,
rw [to_jordan_decomposition_smul, jordan_decomposition.smul_neg_part,
singular_part_smul] }
end
lemma singular_part_smul (s : signed_measure α) (μ : measure α) (r : ℝ) :
(r • s).singular_part μ = r • s.singular_part μ :=
begin
by_cases hr : 0 ≤ r,
{ lift r to ℝ≥0 using hr,
exact singular_part_smul_nnreal s μ r },
{ rw [singular_part, singular_part],
conv_lhs { congr, congr,
rw [to_jordan_decomposition_smul_real,
jordan_decomposition.real_smul_pos_part_neg _ _ (not_le.1 hr), singular_part_smul],
skip, congr,
rw [to_jordan_decomposition_smul_real,
jordan_decomposition.real_smul_neg_part_neg _ _ (not_le.1 hr), singular_part_smul] },
rw [to_signed_measure_smul, to_signed_measure_smul, ← neg_sub, ← smul_sub],
change -(((-r).to_nnreal : ℝ) • _) = _,
rw [← neg_smul, real.coe_to_nnreal _ (le_of_lt (neg_pos.mpr (not_le.1 hr))), neg_neg] }
end
lemma singular_part_add (s t : signed_measure α) (μ : measure α)
[s.have_lebesgue_decomposition μ] [t.have_lebesgue_decomposition μ] :
(s + t).singular_part μ = s.singular_part μ + t.singular_part μ :=
begin
refine (eq_singular_part _ (s.rn_deriv μ + t.rn_deriv μ)
((mutually_singular_singular_part s μ).add_left (mutually_singular_singular_part t μ)) _).symm,
erw [with_densityᵥ_add (integrable_rn_deriv s μ) (integrable_rn_deriv t μ)],
rw [add_assoc, add_comm (t.singular_part μ), add_assoc, add_comm _ (t.singular_part μ),
singular_part_add_with_density_rn_deriv_eq, ← add_assoc,
singular_part_add_with_density_rn_deriv_eq],
end
lemma singular_part_sub (s t : signed_measure α) (μ : measure α)
[s.have_lebesgue_decomposition μ] [t.have_lebesgue_decomposition μ] :
(s - t).singular_part μ = s.singular_part μ - t.singular_part μ :=
by { rw [sub_eq_add_neg, sub_eq_add_neg, singular_part_add, singular_part_neg] }
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is
mutually singular with respect to `μ` and `s = t + μ.with_densityᵥ f`, we have
`f = rn_deriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/
theorem eq_rn_deriv (t : signed_measure α) (f : α → ℝ) (hfi : integrable f μ)
(htμ : t ⊥ᵥ μ.to_ennreal_vector_measure) (hadd : s = t + μ.with_densityᵥ f) :
f =ᵐ[μ] s.rn_deriv μ :=
begin
set f' := hfi.1.mk f,
have hadd' : s = t + μ.with_densityᵥ f',
{ convert hadd using 2,
exact with_densityᵥ_eq.congr_ae hfi.1.ae_eq_mk.symm },
haveI := have_lebesgue_decomposition_mk μ hfi.1.measurable_mk htμ hadd',
refine (integrable.ae_eq_of_with_densityᵥ_eq (integrable_rn_deriv _ _) hfi _).symm,
rw [← add_right_inj t, ← hadd, eq_singular_part _ f htμ hadd,
singular_part_add_with_density_rn_deriv_eq],
end
lemma rn_deriv_neg (s : signed_measure α) (μ : measure α) [s.have_lebesgue_decomposition μ] :
(-s).rn_deriv μ =ᵐ[μ] - s.rn_deriv μ :=
begin
refine integrable.ae_eq_of_with_densityᵥ_eq
(integrable_rn_deriv _ _) (integrable_rn_deriv _ _).neg _,
rw [with_densityᵥ_neg, ← add_right_inj ((-s).singular_part μ),
singular_part_add_with_density_rn_deriv_eq, singular_part_neg, ← neg_add,
singular_part_add_with_density_rn_deriv_eq]
end
lemma rn_deriv_smul (s : signed_measure α) (μ : measure α) [s.have_lebesgue_decomposition μ]
(r : ℝ) :
(r • s).rn_deriv μ =ᵐ[μ] r • s.rn_deriv μ :=
begin
refine integrable.ae_eq_of_with_densityᵥ_eq
(integrable_rn_deriv _ _) ((integrable_rn_deriv _ _).smul r) _,
change _ = μ.with_densityᵥ ((r : ℝ) • s.rn_deriv μ),
rw [with_densityᵥ_smul (rn_deriv s μ) (r : ℝ),
← add_right_inj ((r • s).singular_part μ),
singular_part_add_with_density_rn_deriv_eq, singular_part_smul],
change _ = _ + r • _,
rw [← smul_add, singular_part_add_with_density_rn_deriv_eq],
end
lemma rn_deriv_add (s t : signed_measure α) (μ : measure α)
[s.have_lebesgue_decomposition μ] [t.have_lebesgue_decomposition μ]
[(s + t).have_lebesgue_decomposition μ] :
(s + t).rn_deriv μ =ᵐ[μ] s.rn_deriv μ + t.rn_deriv μ :=
begin
refine integrable.ae_eq_of_with_densityᵥ_eq
(integrable_rn_deriv _ _)
((integrable_rn_deriv _ _).add (integrable_rn_deriv _ _)) _,
rw [← add_right_inj ((s + t).singular_part μ),
singular_part_add_with_density_rn_deriv_eq,
with_densityᵥ_add (integrable_rn_deriv _ _) (integrable_rn_deriv _ _),
singular_part_add, add_assoc, add_comm (t.singular_part μ), add_assoc,
add_comm _ (t.singular_part μ), singular_part_add_with_density_rn_deriv_eq,
← add_assoc, singular_part_add_with_density_rn_deriv_eq],
end
lemma rn_deriv_sub (s t : signed_measure α) (μ : measure α)
[s.have_lebesgue_decomposition μ] [t.have_lebesgue_decomposition μ]
[hst : (s - t).have_lebesgue_decomposition μ] :
(s - t).rn_deriv μ =ᵐ[μ] s.rn_deriv μ - t.rn_deriv μ :=
begin
rw sub_eq_add_neg at hst,
rw [sub_eq_add_neg, sub_eq_add_neg],
exactI ae_eq_trans (rn_deriv_add _ _ _)
(filter.eventually_eq.add (ae_eq_refl _) (rn_deriv_neg _ _)),
end
end signed_measure
namespace complex_measure
/-- A complex measure is said to `have_lebesgue_decomposition` with respect to a positive measure
if both its real and imaginary part `have_lebesgue_decomposition` with respect to that measure. -/
class have_lebesgue_decomposition (c : complex_measure α) (μ : measure α) : Prop :=
(re_part : c.re.have_lebesgue_decomposition μ)
(im_part : c.im.have_lebesgue_decomposition μ)
attribute [instance] have_lebesgue_decomposition.re_part
attribute [instance] have_lebesgue_decomposition.im_part
/-- The singular part between a complex measure `c` and a positive measure `μ` is the complex
measure satisfying `c.singular_part μ + μ.with_densityᵥ (c.rn_deriv μ) = c`. This property is given
by `measure_theory.complex_measure.singular_part_add_with_density_rn_deriv_eq`. -/
def singular_part (c : complex_measure α) (μ : measure α) : complex_measure α :=
(c.re.singular_part μ).to_complex_measure (c.im.singular_part μ)
/-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/
def rn_deriv (c : complex_measure α) (μ : measure α) : α → ℂ :=
λ x, ⟨c.re.rn_deriv μ x, c.im.rn_deriv μ x⟩
variable {c : complex_measure α}
lemma integrable_rn_deriv (c : complex_measure α) (μ : measure α) :
integrable (c.rn_deriv μ) μ :=
begin
rw [← mem_ℒp_one_iff_integrable, ← mem_ℒp_re_im_iff],
exact ⟨mem_ℒp_one_iff_integrable.2 (signed_measure.integrable_rn_deriv _ _),
mem_ℒp_one_iff_integrable.2 (signed_measure.integrable_rn_deriv _ _)⟩
end
theorem singular_part_add_with_density_rn_deriv_eq [c.have_lebesgue_decomposition μ] :
c.singular_part μ + μ.with_densityᵥ (c.rn_deriv μ) = c :=
begin
conv_rhs { rw [← c.to_complex_measure_to_signed_measure] },
ext i hi : 1,
rw [vector_measure.add_apply, signed_measure.to_complex_measure_apply],
ext,
{ rw [complex.add_re, with_densityᵥ_apply (c.integrable_rn_deriv μ) hi,
←is_R_or_C.re_eq_complex_re, ←integral_re (c.integrable_rn_deriv μ).integrable_on,
is_R_or_C.re_eq_complex_re, ← with_densityᵥ_apply _ hi],
{ change (c.re.singular_part μ + μ.with_densityᵥ (c.re.rn_deriv μ)) i = _,
rw c.re.singular_part_add_with_density_rn_deriv_eq μ },
{ exact (signed_measure.integrable_rn_deriv _ _) } },
{ rw [complex.add_im, with_densityᵥ_apply (c.integrable_rn_deriv μ) hi,
←is_R_or_C.im_eq_complex_im, ←integral_im (c.integrable_rn_deriv μ).integrable_on,
is_R_or_C.im_eq_complex_im, ← with_densityᵥ_apply _ hi],
{ change (c.im.singular_part μ + μ.with_densityᵥ (c.im.rn_deriv μ)) i = _,
rw c.im.singular_part_add_with_density_rn_deriv_eq μ },
{ exact (signed_measure.integrable_rn_deriv _ _) } },
end
end complex_measure
end measure_theory
|