Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 55,059 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 |
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import data.bool.set
import data.nat.basic
import order.bounds
/-!
# Theory of complete lattices
## Main definitions
* `Sup` and `Inf` are the supremum and the infimum of a set;
* `supr (f : ι → α)` and `infi (f : ι → α)` are indexed supremum and infimum of a function,
defined as `Sup` and `Inf` of the range of this function;
* `class complete_lattice`: a bounded lattice such that `Sup s` is always the least upper boundary
of `s` and `Inf s` is always the greatest lower boundary of `s`;
* `class complete_linear_order`: a linear ordered complete lattice.
## Naming conventions
In lemma names,
* `Sup` is called `Sup`
* `Inf` is called `Inf`
* `⨆ i, s i` is called `supr`
* `⨅ i, s i` is called `infi`
* `⨆ i j, s i j` is called `supr₂`. This is a `supr` inside a `supr`.
* `⨅ i j, s i j` is called `infi₂`. This is an `infi` inside an `infi`.
* `⨆ i ∈ s, t i` is called `bsupr` for "bounded `supr`". This is the special case of `supr₂`
where `j : i ∈ s`.
* `⨅ i ∈ s, t i` is called `binfi` for "bounded `infi`". This is the special case of `infi₂`
where `j : i ∈ s`.
## Notation
* `⨆ i, f i` : `supr f`, the supremum of the range of `f`;
* `⨅ i, f i` : `infi f`, the infimum of the range of `f`.
-/
set_option old_structure_cmd true
open set function
variables {α β β₂ γ : Type*} {ι ι' : Sort*} {κ : ι → Sort*} {κ' : ι' → Sort*}
/-- class for the `Sup` operator -/
class has_Sup (α : Type*) := (Sup : set α → α)
/-- class for the `Inf` operator -/
class has_Inf (α : Type*) := (Inf : set α → α)
export has_Sup (Sup) has_Inf (Inf)
/-- Supremum of a set -/
add_decl_doc has_Sup.Sup
/-- Infimum of a set -/
add_decl_doc has_Inf.Inf
/-- Indexed supremum -/
def supr [has_Sup α] {ι} (s : ι → α) : α := Sup (range s)
/-- Indexed infimum -/
def infi [has_Inf α] {ι} (s : ι → α) : α := Inf (range s)
@[priority 50] instance has_Inf_to_nonempty (α) [has_Inf α] : nonempty α := ⟨Inf ∅⟩
@[priority 50] instance has_Sup_to_nonempty (α) [has_Sup α] : nonempty α := ⟨Sup ∅⟩
notation `⨆` binders `, ` r:(scoped f, supr f) := r
notation `⨅` binders `, ` r:(scoped f, infi f) := r
instance (α) [has_Inf α] : has_Sup αᵒᵈ := ⟨(Inf : set α → α)⟩
instance (α) [has_Sup α] : has_Inf αᵒᵈ := ⟨(Sup : set α → α)⟩
/--
Note that we rarely use `complete_semilattice_Sup`
(in fact, any such object is always a `complete_lattice`, so it's usually best to start there).
Nevertheless it is sometimes a useful intermediate step in constructions.
-/
@[ancestor partial_order has_Sup]
class complete_semilattice_Sup (α : Type*) extends partial_order α, has_Sup α :=
(le_Sup : ∀ s, ∀ a ∈ s, a ≤ Sup s)
(Sup_le : ∀ s a, (∀ b ∈ s, b ≤ a) → Sup s ≤ a)
section
variables [complete_semilattice_Sup α] {s t : set α} {a b : α}
@[ematch] theorem le_Sup : a ∈ s → a ≤ Sup s := complete_semilattice_Sup.le_Sup s a
theorem Sup_le : (∀ b ∈ s, b ≤ a) → Sup s ≤ a := complete_semilattice_Sup.Sup_le s a
lemma is_lub_Sup (s : set α) : is_lub s (Sup s) := ⟨λ x, le_Sup, λ x, Sup_le⟩
lemma is_lub.Sup_eq (h : is_lub s a) : Sup s = a := (is_lub_Sup s).unique h
theorem le_Sup_of_le (hb : b ∈ s) (h : a ≤ b) : a ≤ Sup s :=
le_trans h (le_Sup hb)
theorem Sup_le_Sup (h : s ⊆ t) : Sup s ≤ Sup t :=
(is_lub_Sup s).mono (is_lub_Sup t) h
@[simp] theorem Sup_le_iff : Sup s ≤ a ↔ ∀ b ∈ s, b ≤ a :=
is_lub_le_iff (is_lub_Sup s)
lemma le_Sup_iff : a ≤ Sup s ↔ ∀ b ∈ upper_bounds s, a ≤ b :=
⟨λ h b hb, le_trans h (Sup_le hb), λ hb, hb _ (λ x, le_Sup)⟩
lemma le_supr_iff {s : ι → α} : a ≤ supr s ↔ ∀ b, (∀ i, s i ≤ b) → a ≤ b :=
by simp [supr, le_Sup_iff, upper_bounds]
theorem Sup_le_Sup_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, x ≤ y) : Sup s ≤ Sup t :=
le_Sup_iff.2 $ λ b hb, Sup_le $ λ a ha, let ⟨c, hct, hac⟩ := h a ha in hac.trans (hb hct)
-- We will generalize this to conditionally complete lattices in `cSup_singleton`.
theorem Sup_singleton {a : α} : Sup {a} = a :=
is_lub_singleton.Sup_eq
end
/--
Note that we rarely use `complete_semilattice_Inf`
(in fact, any such object is always a `complete_lattice`, so it's usually best to start there).
Nevertheless it is sometimes a useful intermediate step in constructions.
-/
@[ancestor partial_order has_Inf]
class complete_semilattice_Inf (α : Type*) extends partial_order α, has_Inf α :=
(Inf_le : ∀ s, ∀ a ∈ s, Inf s ≤ a)
(le_Inf : ∀ s a, (∀ b ∈ s, a ≤ b) → a ≤ Inf s)
section
variables [complete_semilattice_Inf α] {s t : set α} {a b : α}
@[ematch] theorem Inf_le : a ∈ s → Inf s ≤ a := complete_semilattice_Inf.Inf_le s a
theorem le_Inf : (∀ b ∈ s, a ≤ b) → a ≤ Inf s := complete_semilattice_Inf.le_Inf s a
lemma is_glb_Inf (s : set α) : is_glb s (Inf s) := ⟨λ a, Inf_le, λ a, le_Inf⟩
lemma is_glb.Inf_eq (h : is_glb s a) : Inf s = a := (is_glb_Inf s).unique h
theorem Inf_le_of_le (hb : b ∈ s) (h : b ≤ a) : Inf s ≤ a :=
le_trans (Inf_le hb) h
theorem Inf_le_Inf (h : s ⊆ t) : Inf t ≤ Inf s :=
(is_glb_Inf s).mono (is_glb_Inf t) h
@[simp] theorem le_Inf_iff : a ≤ Inf s ↔ ∀ b ∈ s, a ≤ b :=
le_is_glb_iff (is_glb_Inf s)
lemma Inf_le_iff : Inf s ≤ a ↔ ∀ b ∈ lower_bounds s, b ≤ a :=
⟨λ h b hb, le_trans (le_Inf hb) h, λ hb, hb _ (λ x, Inf_le)⟩
lemma infi_le_iff {s : ι → α} : infi s ≤ a ↔ ∀ b, (∀ i, b ≤ s i) → b ≤ a :=
by simp [infi, Inf_le_iff, lower_bounds]
theorem Inf_le_Inf_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y ≤ x) : Inf t ≤ Inf s :=
le_of_forall_le begin
simp only [le_Inf_iff],
introv h₀ h₁,
rcases h _ h₁ with ⟨y, hy, hy'⟩,
solve_by_elim [le_trans _ hy']
end
-- We will generalize this to conditionally complete lattices in `cInf_singleton`.
theorem Inf_singleton {a : α} : Inf {a} = a :=
is_glb_singleton.Inf_eq
end
/-- A complete lattice is a bounded lattice which has suprema and infima for every subset. -/
@[protect_proj, ancestor lattice complete_semilattice_Sup complete_semilattice_Inf has_top has_bot]
class complete_lattice (α : Type*) extends
lattice α, complete_semilattice_Sup α, complete_semilattice_Inf α, has_top α, has_bot α :=
(le_top : ∀ x : α, x ≤ ⊤)
(bot_le : ∀ x : α, ⊥ ≤ x)
@[priority 100] -- see Note [lower instance priority]
instance complete_lattice.to_bounded_order [h : complete_lattice α] : bounded_order α :=
{ ..h }
/-- Create a `complete_lattice` from a `partial_order` and `Inf` function
that returns the greatest lower bound of a set. Usually this constructor provides
poor definitional equalities. If other fields are known explicitly, they should be
provided; for example, if `inf` is known explicitly, construct the `complete_lattice`
instance as
```
instance : complete_lattice my_T :=
{ inf := better_inf,
le_inf := ...,
inf_le_right := ...,
inf_le_left := ...
-- don't care to fix sup, Sup, bot, top
..complete_lattice_of_Inf my_T _ }
```
-/
def complete_lattice_of_Inf (α : Type*) [H1 : partial_order α]
[H2 : has_Inf α] (is_glb_Inf : ∀ s : set α, is_glb s (Inf s)) :
complete_lattice α :=
{ bot := Inf univ,
bot_le := λ x, (is_glb_Inf univ).1 trivial,
top := Inf ∅,
le_top := λ a, (is_glb_Inf ∅).2 $ by simp,
sup := λ a b, Inf {x | a ≤ x ∧ b ≤ x},
inf := λ a b, Inf {a, b},
le_inf := λ a b c hab hac, by { apply (is_glb_Inf _).2, simp [*] },
inf_le_right := λ a b, (is_glb_Inf _).1 $ mem_insert_of_mem _ $ mem_singleton _,
inf_le_left := λ a b, (is_glb_Inf _).1 $ mem_insert _ _,
sup_le := λ a b c hac hbc, (is_glb_Inf _).1 $ by simp [*],
le_sup_left := λ a b, (is_glb_Inf _).2 $ λ x, and.left,
le_sup_right := λ a b, (is_glb_Inf _).2 $ λ x, and.right,
le_Inf := λ s a ha, (is_glb_Inf s).2 ha,
Inf_le := λ s a ha, (is_glb_Inf s).1 ha,
Sup := λ s, Inf (upper_bounds s),
le_Sup := λ s a ha, (is_glb_Inf (upper_bounds s)).2 $ λ b hb, hb ha,
Sup_le := λ s a ha, (is_glb_Inf (upper_bounds s)).1 ha,
.. H1, .. H2 }
/--
Any `complete_semilattice_Inf` is in fact a `complete_lattice`.
Note that this construction has bad definitional properties:
see the doc-string on `complete_lattice_of_Inf`.
-/
def complete_lattice_of_complete_semilattice_Inf (α : Type*) [complete_semilattice_Inf α] :
complete_lattice α :=
complete_lattice_of_Inf α (λ s, is_glb_Inf s)
/-- Create a `complete_lattice` from a `partial_order` and `Sup` function
that returns the least upper bound of a set. Usually this constructor provides
poor definitional equalities. If other fields are known explicitly, they should be
provided; for example, if `inf` is known explicitly, construct the `complete_lattice`
instance as
```
instance : complete_lattice my_T :=
{ inf := better_inf,
le_inf := ...,
inf_le_right := ...,
inf_le_left := ...
-- don't care to fix sup, Inf, bot, top
..complete_lattice_of_Sup my_T _ }
```
-/
def complete_lattice_of_Sup (α : Type*) [H1 : partial_order α]
[H2 : has_Sup α] (is_lub_Sup : ∀ s : set α, is_lub s (Sup s)) :
complete_lattice α :=
{ top := Sup univ,
le_top := λ x, (is_lub_Sup univ).1 trivial,
bot := Sup ∅,
bot_le := λ x, (is_lub_Sup ∅).2 $ by simp,
sup := λ a b, Sup {a, b},
sup_le := λ a b c hac hbc, (is_lub_Sup _).2 (by simp [*]),
le_sup_left := λ a b, (is_lub_Sup _).1 $ mem_insert _ _,
le_sup_right := λ a b, (is_lub_Sup _).1 $ mem_insert_of_mem _ $ mem_singleton _,
inf := λ a b, Sup {x | x ≤ a ∧ x ≤ b},
le_inf := λ a b c hab hac, (is_lub_Sup _).1 $ by simp [*],
inf_le_left := λ a b, (is_lub_Sup _).2 (λ x, and.left),
inf_le_right := λ a b, (is_lub_Sup _).2 (λ x, and.right),
Inf := λ s, Sup (lower_bounds s),
Sup_le := λ s a ha, (is_lub_Sup s).2 ha,
le_Sup := λ s a ha, (is_lub_Sup s).1 ha,
Inf_le := λ s a ha, (is_lub_Sup (lower_bounds s)).2 (λ b hb, hb ha),
le_Inf := λ s a ha, (is_lub_Sup (lower_bounds s)).1 ha,
.. H1, .. H2 }
/--
Any `complete_semilattice_Sup` is in fact a `complete_lattice`.
Note that this construction has bad definitional properties:
see the doc-string on `complete_lattice_of_Sup`.
-/
def complete_lattice_of_complete_semilattice_Sup (α : Type*) [complete_semilattice_Sup α] :
complete_lattice α :=
complete_lattice_of_Sup α (λ s, is_lub_Sup s)
/-- A complete linear order is a linear order whose lattice structure is complete. -/
class complete_linear_order (α : Type*) extends complete_lattice α,
linear_order α renaming max → sup min → inf
namespace order_dual
variable (α)
instance [complete_lattice α] : complete_lattice αᵒᵈ :=
{ le_Sup := @complete_lattice.Inf_le α _,
Sup_le := @complete_lattice.le_Inf α _,
Inf_le := @complete_lattice.le_Sup α _,
le_Inf := @complete_lattice.Sup_le α _,
.. order_dual.lattice α, ..order_dual.has_Sup α, ..order_dual.has_Inf α,
.. order_dual.bounded_order α }
instance [complete_linear_order α] : complete_linear_order αᵒᵈ :=
{ .. order_dual.complete_lattice α, .. order_dual.linear_order α }
end order_dual
section
variables [complete_lattice α] {s t : set α} {a b : α}
theorem Inf_le_Sup (hs : s.nonempty) : Inf s ≤ Sup s :=
is_glb_le_is_lub (is_glb_Inf s) (is_lub_Sup s) hs
theorem Sup_union {s t : set α} : Sup (s ∪ t) = Sup s ⊔ Sup t :=
((is_lub_Sup s).union (is_lub_Sup t)).Sup_eq
theorem Inf_union {s t : set α} : Inf (s ∪ t) = Inf s ⊓ Inf t :=
((is_glb_Inf s).union (is_glb_Inf t)).Inf_eq
theorem Sup_inter_le {s t : set α} : Sup (s ∩ t) ≤ Sup s ⊓ Sup t :=
Sup_le $ λ b hb, le_inf (le_Sup hb.1) (le_Sup hb.2)
theorem le_Inf_inter {s t : set α} : Inf s ⊔ Inf t ≤ Inf (s ∩ t) := @Sup_inter_le αᵒᵈ _ _ _
@[simp] theorem Sup_empty : Sup ∅ = (⊥ : α) :=
(@is_lub_empty α _ _).Sup_eq
@[simp] theorem Inf_empty : Inf ∅ = (⊤ : α) :=
(@is_glb_empty α _ _).Inf_eq
@[simp] theorem Sup_univ : Sup univ = (⊤ : α) :=
(@is_lub_univ α _ _).Sup_eq
@[simp] theorem Inf_univ : Inf univ = (⊥ : α) :=
(@is_glb_univ α _ _).Inf_eq
-- TODO(Jeremy): get this automatically
@[simp] theorem Sup_insert {a : α} {s : set α} : Sup (insert a s) = a ⊔ Sup s :=
((is_lub_Sup s).insert a).Sup_eq
@[simp] theorem Inf_insert {a : α} {s : set α} : Inf (insert a s) = a ⊓ Inf s :=
((is_glb_Inf s).insert a).Inf_eq
theorem Sup_le_Sup_of_subset_insert_bot (h : s ⊆ insert ⊥ t) : Sup s ≤ Sup t :=
le_trans (Sup_le_Sup h) (le_of_eq (trans Sup_insert bot_sup_eq))
theorem Inf_le_Inf_of_subset_insert_top (h : s ⊆ insert ⊤ t) : Inf t ≤ Inf s :=
le_trans (le_of_eq (trans top_inf_eq.symm Inf_insert.symm)) (Inf_le_Inf h)
@[simp] theorem Sup_diff_singleton_bot (s : set α) : Sup (s \ {⊥}) = Sup s :=
(Sup_le_Sup (diff_subset _ _)).antisymm $ Sup_le_Sup_of_subset_insert_bot $
subset_insert_diff_singleton _ _
@[simp] theorem Inf_diff_singleton_top (s : set α) : Inf (s \ {⊤}) = Inf s :=
@Sup_diff_singleton_bot αᵒᵈ _ s
theorem Sup_pair {a b : α} : Sup {a, b} = a ⊔ b :=
(@is_lub_pair α _ a b).Sup_eq
theorem Inf_pair {a b : α} : Inf {a, b} = a ⊓ b :=
(@is_glb_pair α _ a b).Inf_eq
@[simp] lemma Sup_eq_bot : Sup s = ⊥ ↔ ∀ a ∈ s, a = ⊥ :=
⟨λ h a ha, bot_unique $ h ▸ le_Sup ha,
λ h, bot_unique $ Sup_le $ λ a ha, le_bot_iff.2 $ h a ha⟩
@[simp] lemma Inf_eq_top : Inf s = ⊤ ↔ ∀ a ∈ s, a = ⊤ := @Sup_eq_bot αᵒᵈ _ _
lemma eq_singleton_bot_of_Sup_eq_bot_of_nonempty {s : set α}
(h_sup : Sup s = ⊥) (hne : s.nonempty) : s = {⊥} :=
by { rw set.eq_singleton_iff_nonempty_unique_mem, rw Sup_eq_bot at h_sup, exact ⟨hne, h_sup⟩, }
lemma eq_singleton_top_of_Inf_eq_top_of_nonempty : Inf s = ⊤ → s.nonempty → s = {⊤} :=
@eq_singleton_bot_of_Sup_eq_bot_of_nonempty αᵒᵈ _ _
/--Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that `b`
is larger than all elements of `s`, and that this is not the case of any `w < b`.
See `cSup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
lattices. -/
theorem Sup_eq_of_forall_le_of_forall_lt_exists_gt (h₁ : ∀ a ∈ s, a ≤ b)
(h₂ : ∀ w, w < b → ∃ a ∈ s, w < a) : Sup s = b :=
(Sup_le h₁).eq_of_not_lt $ λ h, let ⟨a, ha, ha'⟩ := h₂ _ h in ((le_Sup ha).trans_lt ha').false
/--Introduction rule to prove that `b` is the infimum of `s`: it suffices to check that `b`
is smaller than all elements of `s`, and that this is not the case of any `w > b`.
See `cInf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete
lattices. -/
theorem Inf_eq_of_forall_ge_of_forall_gt_exists_lt :
(∀ a ∈ s, b ≤ a) → (∀ w, b < w → ∃ a ∈ s, a < w) → Inf s = b :=
@Sup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _
end
section complete_linear_order
variables [complete_linear_order α] {s t : set α} {a b : α}
lemma lt_Sup_iff : b < Sup s ↔ ∃ a ∈ s, b < a := lt_is_lub_iff $ is_lub_Sup s
lemma Inf_lt_iff : Inf s < b ↔ ∃ a ∈ s, a < b := is_glb_lt_iff $ is_glb_Inf s
lemma Sup_eq_top : Sup s = ⊤ ↔ ∀ b < ⊤, ∃ a ∈ s, b < a :=
⟨λ h b hb, lt_Sup_iff.1 $ hb.trans_eq h.symm,
λ h, top_unique $ le_of_not_gt $ λ h', let ⟨a, ha, h⟩ := h _ h' in (h.trans_le $ le_Sup ha).false⟩
lemma Inf_eq_bot : Inf s = ⊥ ↔ ∀ b > ⊥, ∃ a ∈ s, a < b := @Sup_eq_top αᵒᵈ _ _
lemma lt_supr_iff {f : ι → α} : a < supr f ↔ ∃ i, a < f i := lt_Sup_iff.trans exists_range_iff
lemma infi_lt_iff {f : ι → α} : infi f < a ↔ ∃ i, f i < a := Inf_lt_iff.trans exists_range_iff
end complete_linear_order
/-
### supr & infi
-/
section has_Sup
variables [has_Sup α] {f g : ι → α}
lemma Sup_range : Sup (range f) = supr f := rfl
lemma Sup_eq_supr' (s : set α) : Sup s = ⨆ a : s, a := by rw [supr, subtype.range_coe]
lemma supr_congr (h : ∀ i, f i = g i) : (⨆ i, f i) = ⨆ i, g i := congr_arg _ $ funext h
lemma function.surjective.supr_comp {f : ι → ι'} (hf : surjective f) (g : ι' → α) :
(⨆ x, g (f x)) = ⨆ y, g y :=
by simp only [supr, hf.range_comp]
protected lemma function.surjective.supr_congr {g : ι' → α} (h : ι → ι') (h1 : surjective h)
(h2 : ∀ x, g (h x) = f x) : (⨆ x, f x) = ⨆ y, g y :=
by { convert h1.supr_comp g, exact (funext h2).symm }
@[congr] lemma supr_congr_Prop {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p ↔ q)
(f : ∀ x, f₁ (pq.mpr x) = f₂ x) : supr f₁ = supr f₂ :=
by { obtain rfl := propext pq, congr' with x, apply f }
lemma supr_range' (g : β → α) (f : ι → β) : (⨆ b : range f, g b) = ⨆ i, g (f i) :=
by rw [supr, supr, ← image_eq_range, ← range_comp]
lemma Sup_image' {s : set β} {f : β → α} : Sup (f '' s) = ⨆ a : s, f a :=
by rw [supr, image_eq_range]
end has_Sup
section has_Inf
variables [has_Inf α] {f g : ι → α}
lemma Inf_range : Inf (range f) = infi f := rfl
lemma Inf_eq_infi' (s : set α) : Inf s = ⨅ a : s, a := @Sup_eq_supr' αᵒᵈ _ _
lemma infi_congr (h : ∀ i, f i = g i) : (⨅ i, f i) = ⨅ i, g i := congr_arg _ $ funext h
lemma function.surjective.infi_comp {f : ι → ι'} (hf : surjective f) (g : ι' → α) :
(⨅ x, g (f x)) = ⨅ y, g y :=
@function.surjective.supr_comp αᵒᵈ _ _ _ f hf g
lemma function.surjective.infi_congr {g : ι' → α} (h : ι → ι') (h1 : surjective h)
(h2 : ∀ x, g (h x) = f x) : (⨅ x, f x) = ⨅ y, g y :=
@function.surjective.supr_congr αᵒᵈ _ _ _ _ _ h h1 h2
@[congr]lemma infi_congr_Prop {p q : Prop} {f₁ : p → α} {f₂ : q → α}
(pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : infi f₁ = infi f₂ :=
@supr_congr_Prop αᵒᵈ _ p q f₁ f₂ pq f
lemma infi_range' (g : β → α) (f : ι → β) : (⨅ b : range f, g b) = ⨅ i, g (f i) :=
@supr_range' αᵒᵈ _ _ _ _ _
lemma Inf_image' {s : set β} {f : β → α} : Inf (f '' s) = ⨅ a : s, f a := @Sup_image' αᵒᵈ _ _ _ _
end has_Inf
section
variables [complete_lattice α] {f g s t : ι → α} {a b : α}
-- TODO: this declaration gives error when starting smt state
--@[ematch]
lemma le_supr (f : ι → α) (i : ι) : f i ≤ supr f := le_Sup ⟨i, rfl⟩
lemma infi_le (f : ι → α) (i : ι) : infi f ≤ f i := Inf_le ⟨i, rfl⟩
@[ematch] lemma le_supr' (f : ι → α) (i : ι) : (: f i ≤ supr f :) := le_Sup ⟨i, rfl⟩
@[ematch] lemma infi_le' (f : ι → α) (i : ι) : (: infi f ≤ f i :) := Inf_le ⟨i, rfl⟩
/- TODO: this version would be more powerful, but, alas, the pattern matcher
doesn't accept it.
@[ematch] lemma le_supr' (f : ι → α) (i : ι) : (: f i :) ≤ (: supr f :) :=
le_Sup ⟨i, rfl⟩
-/
lemma is_lub_supr : is_lub (range f) (⨆ j, f j) := is_lub_Sup _
lemma is_glb_infi : is_glb (range f) (⨅ j, f j) := is_glb_Inf _
lemma is_lub.supr_eq (h : is_lub (range f) a) : (⨆ j, f j) = a := h.Sup_eq
lemma is_glb.infi_eq (h : is_glb (range f) a) : (⨅ j, f j) = a := h.Inf_eq
lemma le_supr_of_le (i : ι) (h : a ≤ f i) : a ≤ supr f := h.trans $ le_supr _ i
lemma infi_le_of_le (i : ι) (h : f i ≤ a) : infi f ≤ a := (infi_le _ i).trans h
lemma le_supr₂ {f : Π i, κ i → α} (i : ι) (j : κ i) : f i j ≤ ⨆ i j, f i j :=
le_supr_of_le i $ le_supr (f i) j
lemma infi₂_le {f : Π i, κ i → α} (i : ι) (j : κ i) : (⨅ i j, f i j) ≤ f i j :=
infi_le_of_le i $ infi_le (f i) j
lemma le_supr₂_of_le {f : Π i, κ i → α} (i : ι) (j : κ i) (h : a ≤ f i j) : a ≤ ⨆ i j, f i j :=
h.trans $ le_supr₂ i j
lemma infi₂_le_of_le {f : Π i, κ i → α} (i : ι) (j : κ i) (h : f i j ≤ a) : (⨅ i j, f i j) ≤ a :=
(infi₂_le i j).trans h
lemma supr_le (h : ∀ i, f i ≤ a) : supr f ≤ a := Sup_le $ λ b ⟨i, eq⟩, eq ▸ h i
lemma le_infi (h : ∀ i, a ≤ f i) : a ≤ infi f := le_Inf $ λ b ⟨i, eq⟩, eq ▸ h i
lemma supr₂_le {f : Π i, κ i → α} (h : ∀ i j, f i j ≤ a) : (⨆ i j, f i j) ≤ a :=
supr_le $ λ i, supr_le $ h i
lemma le_infi₂ {f : Π i, κ i → α} (h : ∀ i j, a ≤ f i j) : a ≤ ⨅ i j, f i j :=
le_infi $ λ i, le_infi $ h i
lemma supr₂_le_supr (κ : ι → Sort*) (f : ι → α) : (⨆ i (j : κ i), f i) ≤ ⨆ i, f i :=
supr₂_le $ λ i j, le_supr f i
lemma infi_le_infi₂ (κ : ι → Sort*) (f : ι → α) : (⨅ i, f i) ≤ ⨅ i (j : κ i), f i :=
le_infi₂ $ λ i j, infi_le f i
lemma supr_mono (h : ∀ i, f i ≤ g i) : supr f ≤ supr g := supr_le $ λ i, le_supr_of_le i $ h i
lemma infi_mono (h : ∀ i, f i ≤ g i) : infi f ≤ infi g := le_infi $ λ i, infi_le_of_le i $ h i
lemma supr₂_mono {f g : Π i, κ i → α} (h : ∀ i j, f i j ≤ g i j) : (⨆ i j, f i j) ≤ ⨆ i j, g i j :=
supr_mono $ λ i, supr_mono $ h i
lemma infi₂_mono {f g : Π i, κ i → α} (h : ∀ i j, f i j ≤ g i j) : (⨅ i j, f i j) ≤ ⨅ i j, g i j :=
infi_mono $ λ i, infi_mono $ h i
lemma supr_mono' {g : ι' → α} (h : ∀ i, ∃ i', f i ≤ g i') : supr f ≤ supr g :=
supr_le $ λ i, exists.elim (h i) le_supr_of_le
lemma infi_mono' {g : ι' → α} (h : ∀ i', ∃ i, f i ≤ g i') : infi f ≤ infi g :=
le_infi $ λ i', exists.elim (h i') infi_le_of_le
lemma supr₂_mono' {f : Π i, κ i → α} {g : Π i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i j ≤ g i' j') :
(⨆ i j, f i j) ≤ ⨆ i j, g i j :=
supr₂_le $ λ i j, let ⟨i', j', h⟩ := h i j in le_supr₂_of_le i' j' h
lemma infi₂_mono' {f : Π i, κ i → α} {g : Π i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i' j' ≤ g i j) :
(⨅ i j, f i j) ≤ ⨅ i j, g i j :=
le_infi₂ $ λ i j, let ⟨i', j', h⟩ := h i j in infi₂_le_of_le i' j' h
lemma supr_const_mono (h : ι → ι') : (⨆ i : ι, a) ≤ ⨆ j : ι', a := supr_le $ le_supr _ ∘ h
lemma infi_const_mono (h : ι' → ι) : (⨅ i : ι, a) ≤ ⨅ j : ι', a := le_infi $ infi_le _ ∘ h
lemma supr_infi_le_infi_supr (f : ι → ι' → α) : (⨆ i, ⨅ j, f i j) ≤ (⨅ j, ⨆ i, f i j) :=
supr_le $ λ i, infi_mono $ λ j, le_supr _ i
lemma bsupr_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
(⨆ i (h : p i), f i) ≤ ⨆ i (h : q i), f i :=
supr_mono $ λ i, supr_const_mono (hpq i)
lemma binfi_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
(⨅ i (h : q i), f i) ≤ ⨅ i (h : p i), f i :=
infi_mono $ λ i, infi_const_mono (hpq i)
@[simp] lemma supr_le_iff : supr f ≤ a ↔ ∀ i, f i ≤ a :=
(is_lub_le_iff is_lub_supr).trans forall_range_iff
@[simp] lemma le_infi_iff : a ≤ infi f ↔ ∀ i, a ≤ f i :=
(le_is_glb_iff is_glb_infi).trans forall_range_iff
@[simp] lemma supr₂_le_iff {f : Π i, κ i → α} : (⨆ i j, f i j) ≤ a ↔ ∀ i j, f i j ≤ a :=
by simp_rw supr_le_iff
@[simp] lemma le_infi₂_iff {f : Π i, κ i → α} : a ≤ (⨅ i j, f i j) ↔ ∀ i j, a ≤ f i j :=
by simp_rw le_infi_iff
lemma supr_lt_iff : supr f < a ↔ ∃ b, b < a ∧ ∀ i, f i ≤ b :=
⟨λ h, ⟨supr f, h, le_supr f⟩, λ ⟨b, h, hb⟩, (supr_le hb).trans_lt h⟩
lemma lt_infi_iff : a < infi f ↔ ∃ b, a < b ∧ ∀ i, b ≤ f i :=
⟨λ h, ⟨infi f, h, infi_le f⟩, λ ⟨b, h, hb⟩, h.trans_le $ le_infi hb⟩
lemma Sup_eq_supr {s : set α} : Sup s = ⨆ a ∈ s, a :=
le_antisymm (Sup_le le_supr₂) (supr₂_le $ λ b, le_Sup)
lemma Inf_eq_infi {s : set α} : Inf s = ⨅ a ∈ s, a := @Sup_eq_supr αᵒᵈ _ _
lemma monotone.le_map_supr [complete_lattice β] {f : α → β} (hf : monotone f) :
(⨆ i, f (s i)) ≤ f (supr s) :=
supr_le $ λ i, hf $ le_supr _ _
lemma antitone.le_map_infi [complete_lattice β] {f : α → β} (hf : antitone f) :
(⨆ i, f (s i)) ≤ f (infi s) :=
hf.dual_left.le_map_supr
lemma monotone.le_map_supr₂ [complete_lattice β] {f : α → β} (hf : monotone f) (s : Π i, κ i → α) :
(⨆ i j, f (s i j)) ≤ f (⨆ i j, s i j) :=
supr₂_le $ λ i j, hf $ le_supr₂ _ _
lemma antitone.le_map_infi₂ [complete_lattice β] {f : α → β} (hf : antitone f) (s : Π i, κ i → α) :
(⨆ i j, f (s i j)) ≤ f (⨅ i j, s i j) :=
hf.dual_left.le_map_supr₂ _
lemma monotone.le_map_Sup [complete_lattice β] {s : set α} {f : α → β} (hf : monotone f) :
(⨆ a ∈ s, f a) ≤ f (Sup s) :=
by rw [Sup_eq_supr]; exact hf.le_map_supr₂ _
lemma antitone.le_map_Inf [complete_lattice β] {s : set α} {f : α → β} (hf : antitone f) :
(⨆ a ∈ s, f a) ≤ f (Inf s) :=
hf.dual_left.le_map_Sup
lemma order_iso.map_supr [complete_lattice β] (f : α ≃o β) (x : ι → α) :
f (⨆ i, x i) = ⨆ i, f (x i) :=
eq_of_forall_ge_iff $ f.surjective.forall.2 $ λ x,
by simp only [f.le_iff_le, supr_le_iff]
lemma order_iso.map_infi [complete_lattice β] (f : α ≃o β) (x : ι → α) :
f (⨅ i, x i) = ⨅ i, f (x i) :=
order_iso.map_supr f.dual _
lemma order_iso.map_Sup [complete_lattice β] (f : α ≃o β) (s : set α) :
f (Sup s) = ⨆ a ∈ s, f a :=
by simp only [Sup_eq_supr, order_iso.map_supr]
lemma order_iso.map_Inf [complete_lattice β] (f : α ≃o β) (s : set α) :
f (Inf s) = ⨅ a ∈ s, f a :=
order_iso.map_Sup f.dual _
lemma supr_comp_le {ι' : Sort*} (f : ι' → α) (g : ι → ι') : (⨆ x, f (g x)) ≤ ⨆ y, f y :=
supr_mono' $ λ x, ⟨_, le_rfl⟩
lemma le_infi_comp {ι' : Sort*} (f : ι' → α) (g : ι → ι') : (⨅ y, f y) ≤ ⨅ x, f (g x) :=
infi_mono' $ λ x, ⟨_, le_rfl⟩
lemma monotone.supr_comp_eq [preorder β] {f : β → α} (hf : monotone f)
{s : ι → β} (hs : ∀ x, ∃ i, x ≤ s i) : (⨆ x, f (s x)) = ⨆ y, f y :=
le_antisymm (supr_comp_le _ _) (supr_mono' $ λ x, (hs x).imp $ λ i hi, hf hi)
lemma monotone.infi_comp_eq [preorder β] {f : β → α} (hf : monotone f)
{s : ι → β} (hs : ∀ x, ∃ i, s i ≤ x) : (⨅ x, f (s x)) = ⨅ y, f y :=
le_antisymm (infi_mono' $ λ x, (hs x).imp $ λ i hi, hf hi) (le_infi_comp _ _)
lemma antitone.map_supr_le [complete_lattice β] {f : α → β} (hf : antitone f) :
f (supr s) ≤ ⨅ i, f (s i) :=
le_infi $ λ i, hf $ le_supr _ _
lemma monotone.map_infi_le [complete_lattice β] {f : α → β} (hf : monotone f) :
f (infi s) ≤ (⨅ i, f (s i)) :=
hf.dual_left.map_supr_le
lemma antitone.map_supr₂_le [complete_lattice β] {f : α → β} (hf : antitone f) (s : Π i, κ i → α) :
f (⨆ i j, s i j) ≤ ⨅ i j, f (s i j) :=
hf.dual.le_map_infi₂ _
lemma monotone.map_infi₂_le [complete_lattice β] {f : α → β} (hf : monotone f) (s : Π i, κ i → α) :
f (⨅ i j, s i j) ≤ ⨅ i j, f (s i j) :=
hf.dual.le_map_supr₂ _
lemma antitone.map_Sup_le [complete_lattice β] {s : set α} {f : α → β} (hf : antitone f) :
f (Sup s) ≤ ⨅ a ∈ s, f a :=
by { rw Sup_eq_supr, exact hf.map_supr₂_le _ }
lemma monotone.map_Inf_le [complete_lattice β] {s : set α} {f : α → β} (hf : monotone f) :
f (Inf s) ≤ ⨅ a ∈ s, f a :=
hf.dual_left.map_Sup_le
lemma supr_const_le : (⨆ i : ι, a) ≤ a := supr_le $ λ _, le_rfl
lemma le_infi_const : a ≤ ⨅ i : ι, a := le_infi $ λ _, le_rfl
/- We generalize this to conditionally complete lattices in `csupr_const` and `cinfi_const`. -/
theorem supr_const [nonempty ι] : (⨆ b : ι, a) = a := by rw [supr, range_const, Sup_singleton]
theorem infi_const [nonempty ι] : (⨅ b : ι, a) = a := @supr_const αᵒᵈ _ _ a _
@[simp] lemma supr_bot : (⨆ i : ι, ⊥ : α) = ⊥ := bot_unique supr_const_le
@[simp] lemma infi_top : (⨅ i : ι, ⊤ : α) = ⊤ := top_unique le_infi_const
@[simp] lemma supr_eq_bot : supr s = ⊥ ↔ ∀ i, s i = ⊥ := Sup_eq_bot.trans forall_range_iff
@[simp] lemma infi_eq_top : infi s = ⊤ ↔ ∀ i, s i = ⊤ := Inf_eq_top.trans forall_range_iff
@[simp] lemma supr₂_eq_bot {f : Π i, κ i → α} : (⨆ i j, f i j) = ⊥ ↔ ∀ i j, f i j = ⊥ :=
by simp_rw supr_eq_bot
@[simp] lemma infi₂_eq_top {f : Π i, κ i → α} : (⨅ i j, f i j) = ⊤ ↔ ∀ i j, f i j = ⊤ :=
by simp_rw infi_eq_top
@[simp] lemma supr_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
le_antisymm (supr_le $ λ h, le_rfl) (le_supr _ _)
@[simp] lemma infi_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
le_antisymm (infi_le _ _) (le_infi $ λ h, le_rfl)
@[simp] lemma supr_neg {p : Prop} {f : p → α} (hp : ¬ p) : (⨆ h : p, f h) = ⊥ :=
le_antisymm (supr_le $ λ h, (hp h).elim) bot_le
@[simp] lemma infi_neg {p : Prop} {f : p → α} (hp : ¬ p) : (⨅ h : p, f h) = ⊤ :=
le_antisymm le_top $ le_infi $ λ h, (hp h).elim
/--Introduction rule to prove that `b` is the supremum of `f`: it suffices to check that `b`
is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
See `csupr_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
lattices. -/
theorem supr_eq_of_forall_le_of_forall_lt_exists_gt {f : ι → α} (h₁ : ∀ i, f i ≤ b)
(h₂ : ∀ w, w < b → (∃ i, w < f i)) : (⨆ (i : ι), f i) = b :=
Sup_eq_of_forall_le_of_forall_lt_exists_gt (forall_range_iff.mpr h₁)
(λ w hw, exists_range_iff.mpr $ h₂ w hw)
/--Introduction rule to prove that `b` is the infimum of `f`: it suffices to check that `b`
is smaller than `f i` for all `i`, and that this is not the case of any `w>b`.
See `cinfi_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete
lattices. -/
theorem infi_eq_of_forall_ge_of_forall_gt_exists_lt :
(∀ i, b ≤ f i) → (∀ w, b < w → ∃ i, f i < w) → (⨅ i, f i) = b :=
@supr_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _
lemma supr_eq_dif {p : Prop} [decidable p] (a : p → α) :
(⨆ h : p, a h) = if h : p then a h else ⊥ :=
by by_cases p; simp [h]
lemma supr_eq_if {p : Prop} [decidable p] (a : α) :
(⨆ h : p, a) = if p then a else ⊥ :=
supr_eq_dif (λ _, a)
lemma infi_eq_dif {p : Prop} [decidable p] (a : p → α) :
(⨅ h : p, a h) = if h : p then a h else ⊤ :=
@supr_eq_dif αᵒᵈ _ _ _ _
lemma infi_eq_if {p : Prop} [decidable p] (a : α) :
(⨅ h : p, a) = if p then a else ⊤ :=
infi_eq_dif (λ _, a)
lemma supr_comm {f : ι → ι' → α} : (⨆ i j, f i j) = ⨆ j i, f i j :=
le_antisymm
(supr_le $ λ i, supr_mono $ λ j, le_supr _ i)
(supr_le $ λ j, supr_mono $ λ i, le_supr _ _)
lemma infi_comm {f : ι → ι' → α} : (⨅ i j, f i j) = ⨅ j i, f i j := @supr_comm αᵒᵈ _ _ _ _
lemma supr₂_comm {ι₁ ι₂ : Sort*} {κ₁ : ι₁ → Sort*} {κ₂ : ι₂ → Sort*}
(f : Π i₁, κ₁ i₁ → Π i₂, κ₂ i₂ → α) :
(⨆ i₁ j₁ i₂ j₂, f i₁ j₁ i₂ j₂) = ⨆ i₂ j₂ i₁ j₁, f i₁ j₁ i₂ j₂ :=
by simp only [@supr_comm _ (κ₁ _), @supr_comm _ ι₁]
lemma infi₂_comm {ι₁ ι₂ : Sort*} {κ₁ : ι₁ → Sort*} {κ₂ : ι₂ → Sort*}
(f : Π i₁, κ₁ i₁ → Π i₂, κ₂ i₂ → α) :
(⨅ i₁ j₁ i₂ j₂, f i₁ j₁ i₂ j₂) = ⨅ i₂ j₂ i₁ j₁, f i₁ j₁ i₂ j₂ :=
by simp only [@infi_comm _ (κ₁ _), @infi_comm _ ι₁]
/- TODO: this is strange. In the proof below, we get exactly the desired
among the equalities, but close does not get it.
begin
apply @le_antisymm,
simp, intros,
begin [smt]
ematch, ematch, ematch, trace_state, have := le_refl (f i_1 i),
trace_state, close
end
end
-/
@[simp] theorem supr_supr_eq_left {b : β} {f : Π x : β, x = b → α} :
(⨆ x, ⨆ h : x = b, f x h) = f b rfl :=
(@le_supr₂ _ _ _ _ f b rfl).antisymm' (supr_le $ λ c, supr_le $ by { rintro rfl, refl })
@[simp] theorem infi_infi_eq_left {b : β} {f : Π x : β, x = b → α} :
(⨅ x, ⨅ h : x = b, f x h) = f b rfl :=
@supr_supr_eq_left αᵒᵈ _ _ _ _
@[simp] theorem supr_supr_eq_right {b : β} {f : Π x : β, b = x → α} :
(⨆ x, ⨆ h : b = x, f x h) = f b rfl :=
(le_supr₂ b rfl).antisymm' (supr₂_le $ λ c, by { rintro rfl, refl })
@[simp] theorem infi_infi_eq_right {b : β} {f : Π x : β, b = x → α} :
(⨅ x, ⨅ h : b = x, f x h) = f b rfl :=
@supr_supr_eq_right αᵒᵈ _ _ _ _
attribute [ematch] le_refl
theorem supr_subtype {p : ι → Prop} {f : subtype p → α} : supr f = (⨆ i (h : p i), f ⟨i, h⟩) :=
le_antisymm (supr_le $ λ ⟨i, h⟩, le_supr₂ i h) (supr₂_le $ λ i h, le_supr _ _)
theorem infi_subtype : ∀ {p : ι → Prop} {f : subtype p → α}, infi f = (⨅ i (h : p i), f ⟨i, h⟩) :=
@supr_subtype αᵒᵈ _ _
lemma supr_subtype' {p : ι → Prop} {f : Π i, p i → α} :
(⨆ i h, f i h) = ⨆ x : subtype p, f x x.property :=
(@supr_subtype _ _ _ p (λ x, f x.val x.property)).symm
lemma infi_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
(⨅ i (h : p i), f i h) = (⨅ x : subtype p, f x x.property) :=
(@infi_subtype _ _ _ p (λ x, f x.val x.property)).symm
lemma supr_subtype'' {ι} (s : set ι) (f : ι → α) : (⨆ i : s, f i) = ⨆ (t : ι) (H : t ∈ s), f t :=
supr_subtype
lemma infi_subtype'' {ι} (s : set ι) (f : ι → α) : (⨅ i : s, f i) = ⨅ (t : ι) (H : t ∈ s), f t :=
infi_subtype
theorem supr_sup_eq : (⨆ x, f x ⊔ g x) = (⨆ x, f x) ⊔ (⨆ x, g x) :=
le_antisymm
(supr_le $ λ i, sup_le_sup (le_supr _ _) $ le_supr _ _)
(sup_le (supr_mono $ λ i, le_sup_left) $ supr_mono $ λ i, le_sup_right)
theorem infi_inf_eq : (⨅ x, f x ⊓ g x) = (⨅ x, f x) ⊓ (⨅ x, g x) := @supr_sup_eq αᵒᵈ _ _ _ _
/- TODO: here is another example where more flexible pattern matching
might help.
begin
apply @le_antisymm,
safe, pose h := f a ⊓ g a, begin [smt] ematch, ematch end
end
-/
lemma supr_sup [nonempty ι] {f : ι → α} {a : α} : (⨆ x, f x) ⊔ a = ⨆ x, f x ⊔ a :=
by rw [supr_sup_eq, supr_const]
lemma infi_inf [nonempty ι] {f : ι → α} {a : α} : (⨅ x, f x) ⊓ a = ⨅ x, f x ⊓ a :=
by rw [infi_inf_eq, infi_const]
lemma sup_supr [nonempty ι] {f : ι → α} {a : α} : a ⊔ (⨆ x, f x) = ⨆ x, a ⊔ f x :=
by rw [supr_sup_eq, supr_const]
lemma inf_infi [nonempty ι] {f : ι → α} {a : α} : a ⊓ (⨅ x, f x) = ⨅ x, a ⊓ f x :=
by rw [infi_inf_eq, infi_const]
lemma binfi_inf {p : ι → Prop} {f : Π i (hi : p i), α} {a : α} (h : ∃ i, p i) :
(⨅ i (h : p i), f i h) ⊓ a = ⨅ i (h : p i), f i h ⊓ a :=
by haveI : nonempty {i // p i} := (let ⟨i, hi⟩ := h in ⟨⟨i, hi⟩⟩);
rw [infi_subtype', infi_subtype', infi_inf]
lemma inf_binfi {p : ι → Prop} {f : Π i (hi : p i), α} {a : α} (h : ∃ i, p i) :
a ⊓ (⨅ i (h : p i), f i h) = ⨅ i (h : p i), a ⊓ f i h :=
by simpa only [inf_comm] using binfi_inf h
/-! ### `supr` and `infi` under `Prop` -/
@[simp] theorem supr_false {s : false → α} : supr s = ⊥ :=
le_antisymm (supr_le $ λ i, false.elim i) bot_le
@[simp] theorem infi_false {s : false → α} : infi s = ⊤ :=
le_antisymm le_top (le_infi $ λ i, false.elim i)
lemma supr_true {s : true → α} : supr s = s trivial := supr_pos trivial
lemma infi_true {s : true → α} : infi s = s trivial := infi_pos trivial
@[simp] lemma supr_exists {p : ι → Prop} {f : Exists p → α} : (⨆ x, f x) = ⨆ i h, f ⟨i, h⟩ :=
le_antisymm (supr_le $ λ ⟨i, h⟩, le_supr₂ i h) (supr₂_le $ λ i h, le_supr _ _)
@[simp] lemma infi_exists {p : ι → Prop} {f : Exists p → α} : (⨅ x, f x) = ⨅ i h, f ⟨i, h⟩ :=
@supr_exists αᵒᵈ _ _ _ _
lemma supr_and {p q : Prop} {s : p ∧ q → α} : supr s = ⨆ h₁ h₂, s ⟨h₁, h₂⟩ :=
le_antisymm (supr_le $ λ ⟨i, h⟩, le_supr₂ i h) (supr₂_le $ λ i h, le_supr _ _)
lemma infi_and {p q : Prop} {s : p ∧ q → α} : infi s = ⨅ h₁ h₂, s ⟨h₁, h₂⟩ := @supr_and αᵒᵈ _ _ _ _
/-- The symmetric case of `supr_and`, useful for rewriting into a supremum over a conjunction -/
lemma supr_and' {p q : Prop} {s : p → q → α} :
(⨆ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨆ (h : p ∧ q), s h.1 h.2 :=
eq.symm supr_and
/-- The symmetric case of `infi_and`, useful for rewriting into a infimum over a conjunction -/
lemma infi_and' {p q : Prop} {s : p → q → α} :
(⨅ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨅ (h : p ∧ q), s h.1 h.2 :=
eq.symm infi_and
theorem supr_or {p q : Prop} {s : p ∨ q → α} :
(⨆ x, s x) = (⨆ i, s (or.inl i)) ⊔ (⨆ j, s (or.inr j)) :=
le_antisymm
(supr_le $ λ i, match i with
| or.inl i := le_sup_of_le_left $ le_supr _ i
| or.inr j := le_sup_of_le_right $ le_supr _ j
end)
(sup_le (supr_comp_le _ _) (supr_comp_le _ _))
theorem infi_or {p q : Prop} {s : p ∨ q → α} :
(⨅ x, s x) = (⨅ i, s (or.inl i)) ⊓ (⨅ j, s (or.inr j)) :=
@supr_or αᵒᵈ _ _ _ _
section
variables (p : ι → Prop) [decidable_pred p]
lemma supr_dite (f : Π i, p i → α) (g : Π i, ¬p i → α) :
(⨆ i, if h : p i then f i h else g i h) = (⨆ i (h : p i), f i h) ⊔ (⨆ i (h : ¬ p i), g i h) :=
begin
rw ←supr_sup_eq,
congr' 1 with i,
split_ifs with h;
simp [h],
end
lemma infi_dite (f : Π i, p i → α) (g : Π i, ¬p i → α) :
(⨅ i, if h : p i then f i h else g i h) = (⨅ i (h : p i), f i h) ⊓ (⨅ i (h : ¬ p i), g i h) :=
supr_dite p (show Π i, p i → αᵒᵈ, from f) g
lemma supr_ite (f g : ι → α) :
(⨆ i, if p i then f i else g i) = (⨆ i (h : p i), f i) ⊔ (⨆ i (h : ¬ p i), g i) :=
supr_dite _ _ _
lemma infi_ite (f g : ι → α) :
(⨅ i, if p i then f i else g i) = (⨅ i (h : p i), f i) ⊓ (⨅ i (h : ¬ p i), g i) :=
infi_dite _ _ _
end
lemma supr_range {g : β → α} {f : ι → β} : (⨆ b ∈ range f, g b) = ⨆ i, g (f i) :=
by rw [← supr_subtype'', supr_range']
lemma infi_range : ∀ {g : β → α} {f : ι → β}, (⨅ b ∈ range f, g b) = ⨅ i, g (f i) :=
@supr_range αᵒᵈ _ _ _
theorem Sup_image {s : set β} {f : β → α} : Sup (f '' s) = ⨆ a ∈ s, f a :=
by rw [← supr_subtype'', Sup_image']
theorem Inf_image {s : set β} {f : β → α} : Inf (f '' s) = ⨅ a ∈ s, f a := @Sup_image αᵒᵈ _ _ _ _
/-
### supr and infi under set constructions
-/
theorem supr_emptyset {f : β → α} : (⨆ x ∈ (∅ : set β), f x) = ⊥ := by simp
theorem infi_emptyset {f : β → α} : (⨅ x ∈ (∅ : set β), f x) = ⊤ := by simp
theorem supr_univ {f : β → α} : (⨆ x ∈ (univ : set β), f x) = ⨆ x, f x := by simp
theorem infi_univ {f : β → α} : (⨅ x ∈ (univ : set β), f x) = ⨅ x, f x := by simp
theorem supr_union {f : β → α} {s t : set β} :
(⨆ x ∈ s ∪ t, f x) = (⨆ x ∈ s, f x) ⊔ (⨆ x ∈ t, f x) :=
by simp_rw [mem_union, supr_or, supr_sup_eq]
theorem infi_union {f : β → α} {s t : set β} :
(⨅ x ∈ s ∪ t, f x) = (⨅ x ∈ s, f x) ⊓ (⨅ x ∈ t, f x) :=
@supr_union αᵒᵈ _ _ _ _ _
lemma supr_split (f : β → α) (p : β → Prop) :
(⨆ i, f i) = (⨆ i (h : p i), f i) ⊔ (⨆ i (h : ¬ p i), f i) :=
by simpa [classical.em] using @supr_union _ _ _ f {i | p i} {i | ¬ p i}
lemma infi_split : ∀ (f : β → α) (p : β → Prop),
(⨅ i, f i) = (⨅ i (h : p i), f i) ⊓ (⨅ i (h : ¬ p i), f i) :=
@supr_split αᵒᵈ _ _
lemma supr_split_single (f : β → α) (i₀ : β) : (⨆ i, f i) = f i₀ ⊔ ⨆ i (h : i ≠ i₀), f i :=
by { convert supr_split _ _, simp }
lemma infi_split_single (f : β → α) (i₀ : β) : (⨅ i, f i) = f i₀ ⊓ ⨅ i (h : i ≠ i₀), f i :=
@supr_split_single αᵒᵈ _ _ _ _
lemma supr_le_supr_of_subset {f : β → α} {s t : set β} : s ⊆ t → (⨆ x ∈ s, f x) ≤ ⨆ x ∈ t, f x :=
bsupr_mono
lemma infi_le_infi_of_subset {f : β → α} {s t : set β} : s ⊆ t → (⨅ x ∈ t, f x) ≤ ⨅ x ∈ s, f x :=
binfi_mono
theorem supr_insert {f : β → α} {s : set β} {b : β} :
(⨆ x ∈ insert b s, f x) = f b ⊔ (⨆ x ∈ s, f x) :=
eq.trans supr_union $ congr_arg (λ x, x ⊔ (⨆ x ∈ s, f x)) supr_supr_eq_left
theorem infi_insert {f : β → α} {s : set β} {b : β} :
(⨅ x ∈ insert b s, f x) = f b ⊓ (⨅ x ∈ s, f x) :=
eq.trans infi_union $ congr_arg (λ x, x ⊓ (⨅ x ∈ s, f x)) infi_infi_eq_left
theorem supr_singleton {f : β → α} {b : β} : (⨆ x ∈ (singleton b : set β), f x) = f b :=
by simp
theorem infi_singleton {f : β → α} {b : β} : (⨅ x ∈ (singleton b : set β), f x) = f b :=
by simp
theorem supr_pair {f : β → α} {a b : β} : (⨆ x ∈ ({a, b} : set β), f x) = f a ⊔ f b :=
by rw [supr_insert, supr_singleton]
theorem infi_pair {f : β → α} {a b : β} : (⨅ x ∈ ({a, b} : set β), f x) = f a ⊓ f b :=
by rw [infi_insert, infi_singleton]
lemma supr_image {γ} {f : β → γ} {g : γ → α} {t : set β} :
(⨆ c ∈ f '' t, g c) = (⨆ b ∈ t, g (f b)) :=
by rw [← Sup_image, ← Sup_image, ← image_comp]
lemma infi_image : ∀ {γ} {f : β → γ} {g : γ → α} {t : set β},
(⨅ c ∈ f '' t, g c) = (⨅ b ∈ t, g (f b)) :=
@supr_image αᵒᵈ _ _
theorem supr_extend_bot {e : ι → β} (he : injective e) (f : ι → α) :
(⨆ j, extend e f ⊥ j) = ⨆ i, f i :=
begin
rw supr_split _ (λ j, ∃ i, e i = j),
simp [extend_apply he, extend_apply', @supr_comm _ β ι] { contextual := tt }
end
lemma infi_extend_top {e : ι → β} (he : injective e) (f : ι → α) : (⨅ j, extend e f ⊤ j) = infi f :=
@supr_extend_bot αᵒᵈ _ _ _ _ he _
/-!
### `supr` and `infi` under `Type`
-/
theorem supr_of_empty' {α ι} [has_Sup α] [is_empty ι] (f : ι → α) :
supr f = Sup (∅ : set α) :=
congr_arg Sup (range_eq_empty f)
theorem infi_of_empty' {α ι} [has_Inf α] [is_empty ι] (f : ι → α) :
infi f = Inf (∅ : set α) :=
congr_arg Inf (range_eq_empty f)
theorem supr_of_empty [is_empty ι] (f : ι → α) : supr f = ⊥ :=
(supr_of_empty' f).trans Sup_empty
theorem infi_of_empty [is_empty ι] (f : ι → α) : infi f = ⊤ := @supr_of_empty αᵒᵈ _ _ _ f
lemma supr_bool_eq {f : bool → α} : (⨆b:bool, f b) = f tt ⊔ f ff :=
by rw [supr, bool.range_eq, Sup_pair, sup_comm]
lemma infi_bool_eq {f : bool → α} : (⨅b:bool, f b) = f tt ⊓ f ff := @supr_bool_eq αᵒᵈ _ _
lemma sup_eq_supr (x y : α) : x ⊔ y = ⨆ b : bool, cond b x y :=
by rw [supr_bool_eq, bool.cond_tt, bool.cond_ff]
lemma inf_eq_infi (x y : α) : x ⊓ y = ⨅ b : bool, cond b x y := @sup_eq_supr αᵒᵈ _ _ _
lemma is_glb_binfi {s : set β} {f : β → α} : is_glb (f '' s) (⨅ x ∈ s, f x) :=
by simpa only [range_comp, subtype.range_coe, infi_subtype'] using @is_glb_infi α s _ (f ∘ coe)
lemma is_lub_bsupr {s : set β} {f : β → α} : is_lub (f '' s) (⨆ x ∈ s, f x) :=
by simpa only [range_comp, subtype.range_coe, supr_subtype'] using @is_lub_supr α s _ (f ∘ coe)
theorem supr_sigma {p : β → Type*} {f : sigma p → α} : (⨆ x, f x) = ⨆ i j, f ⟨i, j⟩ :=
eq_of_forall_ge_iff $ λ c, by simp only [supr_le_iff, sigma.forall]
theorem infi_sigma {p : β → Type*} {f : sigma p → α} : (⨅ x, f x) = ⨅ i j, f ⟨i, j⟩ :=
@supr_sigma αᵒᵈ _ _ _ _
theorem supr_prod {f : β × γ → α} : (⨆ x, f x) = ⨆ i j, f (i, j) :=
eq_of_forall_ge_iff $ λ c, by simp only [supr_le_iff, prod.forall]
theorem infi_prod {f : β × γ → α} : (⨅ x, f x) = ⨅ i j, f (i, j) := @supr_prod αᵒᵈ _ _ _ _
lemma bsupr_prod {f : β × γ → α} {s : set β} {t : set γ} :
(⨆ x ∈ s ×ˢ t, f x) = ⨆ (a ∈ s) (b ∈ t), f (a, b) :=
by { simp_rw [supr_prod, mem_prod, supr_and], exact supr_congr (λ _, supr_comm) }
lemma binfi_prod {f : β × γ → α} {s : set β} {t : set γ} :
(⨅ x ∈ s ×ˢ t, f x) = ⨅ (a ∈ s) (b ∈ t), f (a, b) :=
@bsupr_prod αᵒᵈ _ _ _ _ _ _
theorem supr_sum {f : β ⊕ γ → α} :
(⨆ x, f x) = (⨆ i, f (sum.inl i)) ⊔ (⨆ j, f (sum.inr j)) :=
eq_of_forall_ge_iff $ λ c, by simp only [sup_le_iff, supr_le_iff, sum.forall]
theorem infi_sum {f : β ⊕ γ → α} : (⨅ x, f x) = (⨅ i, f (sum.inl i)) ⊓ (⨅ j, f (sum.inr j)) :=
@supr_sum αᵒᵈ _ _ _ _
theorem supr_option (f : option β → α) : (⨆ o, f o) = f none ⊔ ⨆ b, f (option.some b) :=
eq_of_forall_ge_iff $ λ c, by simp only [supr_le_iff, sup_le_iff, option.forall]
theorem infi_option (f : option β → α) : (⨅ o, f o) = f none ⊓ ⨅ b, f (option.some b) :=
@supr_option αᵒᵈ _ _ _
/-- A version of `supr_option` useful for rewriting right-to-left. -/
lemma supr_option_elim (a : α) (f : β → α) : (⨆ o : option β, o.elim a f) = a ⊔ ⨆ b, f b :=
by simp [supr_option]
/-- A version of `infi_option` useful for rewriting right-to-left. -/
lemma infi_option_elim (a : α) (f : β → α) : (⨅ o : option β, o.elim a f) = a ⊓ ⨅ b, f b :=
@supr_option_elim αᵒᵈ _ _ _ _
/-- When taking the supremum of `f : ι → α`, the elements of `ι` on which `f` gives `⊥` can be
dropped, without changing the result. -/
lemma supr_ne_bot_subtype (f : ι → α) : (⨆ i : {i // f i ≠ ⊥}, f i) = ⨆ i, f i :=
begin
by_cases htriv : ∀ i, f i = ⊥,
{ simp only [supr_bot, (funext htriv : f = _)] },
refine (supr_comp_le f _).antisymm (supr_mono' $ λ i, _),
by_cases hi : f i = ⊥,
{ rw hi,
obtain ⟨i₀, hi₀⟩ := not_forall.mp htriv,
exact ⟨⟨i₀, hi₀⟩, bot_le⟩ },
{ exact ⟨⟨i, hi⟩, rfl.le⟩ },
end
/-- When taking the infimum of `f : ι → α`, the elements of `ι` on which `f` gives `⊤` can be
dropped, without changing the result. -/
lemma infi_ne_top_subtype (f : ι → α) : (⨅ i : {i // f i ≠ ⊤}, f i) = ⨅ i, f i :=
@supr_ne_bot_subtype αᵒᵈ ι _ f
lemma Sup_image2 {f : β → γ → α} {s : set β} {t : set γ} :
Sup (image2 f s t) = ⨆ (a ∈ s) (b ∈ t), f a b :=
by rw [←image_prod, Sup_image, bsupr_prod]
lemma Inf_image2 {f : β → γ → α} {s : set β} {t : set γ} :
Inf (image2 f s t) = ⨅ (a ∈ s) (b ∈ t), f a b :=
by rw [←image_prod, Inf_image, binfi_prod]
/-!
### `supr` and `infi` under `ℕ`
-/
lemma supr_ge_eq_supr_nat_add (u : ℕ → α) (n : ℕ) : (⨆ i ≥ n, u i) = ⨆ i, u (i + n) :=
begin
apply le_antisymm;
simp only [supr_le_iff],
{ exact λ i hi, le_Sup ⟨i - n, by { dsimp only, rw tsub_add_cancel_of_le hi }⟩ },
{ exact λ i, le_Sup ⟨i + n, supr_pos (nat.le_add_left _ _)⟩ }
end
lemma infi_ge_eq_infi_nat_add (u : ℕ → α) (n : ℕ) : (⨅ i ≥ n, u i) = ⨅ i, u (i + n) :=
@supr_ge_eq_supr_nat_add αᵒᵈ _ _ _
lemma monotone.supr_nat_add {f : ℕ → α} (hf : monotone f) (k : ℕ) :
(⨆ n, f (n + k)) = ⨆ n, f n :=
le_antisymm (supr_le $ λ i, le_supr _ (i + k)) $ supr_mono $ λ i, hf $ nat.le_add_right i k
lemma antitone.infi_nat_add {f : ℕ → α} (hf : antitone f) (k : ℕ) :
(⨅ n, f (n + k)) = ⨅ n, f n :=
hf.dual_right.supr_nat_add k
@[simp] lemma supr_infi_ge_nat_add (f : ℕ → α) (k : ℕ) :
(⨆ n, ⨅ i ≥ n, f (i + k)) = ⨆ n, ⨅ i ≥ n, f i :=
begin
have hf : monotone (λ n, ⨅ i ≥ n, f i) := λ n m h, binfi_mono (λ i, h.trans),
rw ←monotone.supr_nat_add hf k,
{ simp_rw [infi_ge_eq_infi_nat_add, ←nat.add_assoc], },
end
@[simp] lemma infi_supr_ge_nat_add : ∀ (f : ℕ → α) (k : ℕ),
(⨅ n, ⨆ i ≥ n, f (i + k)) = ⨅ n, ⨆ i ≥ n, f i :=
@supr_infi_ge_nat_add αᵒᵈ _
lemma sup_supr_nat_succ (u : ℕ → α) : u 0 ⊔ (⨆ i, u (i + 1)) = ⨆ i, u i :=
begin
refine eq_of_forall_ge_iff (λ c, _),
simp only [sup_le_iff, supr_le_iff],
refine ⟨λ h, _, λ h, ⟨h _, λ i, h _⟩⟩,
rintro (_|i),
exacts [h.1, h.2 i]
end
lemma inf_infi_nat_succ (u : ℕ → α) : u 0 ⊓ (⨅ i, u (i + 1)) = ⨅ i, u i :=
@sup_supr_nat_succ αᵒᵈ _ u
end
section complete_linear_order
variables [complete_linear_order α]
lemma supr_eq_top (f : ι → α) : supr f = ⊤ ↔ ∀ b < ⊤, ∃ i, b < f i :=
by simp only [← Sup_range, Sup_eq_top, set.exists_range_iff]
lemma infi_eq_bot (f : ι → α) : infi f = ⊥ ↔ ∀ b > ⊥, ∃ i, f i < b :=
by simp only [← Inf_range, Inf_eq_bot, set.exists_range_iff]
end complete_linear_order
/-!
### Instances
-/
instance Prop.complete_lattice : complete_lattice Prop :=
{ Sup := λ s, ∃ a ∈ s, a,
le_Sup := λ s a h p, ⟨a, h, p⟩,
Sup_le := λ s a h ⟨b, h', p⟩, h b h' p,
Inf := λ s, ∀ a, a ∈ s → a,
Inf_le := λ s a h p, p a h,
le_Inf := λ s a h p b hb, h b hb p,
.. Prop.bounded_order,
.. Prop.distrib_lattice }
noncomputable instance Prop.complete_linear_order : complete_linear_order Prop :=
{ ..Prop.complete_lattice, ..Prop.linear_order }
@[simp] lemma Sup_Prop_eq {s : set Prop} : Sup s = ∃ p ∈ s, p := rfl
@[simp] lemma Inf_Prop_eq {s : set Prop} : Inf s = ∀ p ∈ s, p := rfl
@[simp] lemma supr_Prop_eq {p : ι → Prop} : (⨆ i, p i) = ∃ i, p i :=
le_antisymm (λ ⟨q, ⟨i, (eq : p i = q)⟩, hq⟩, ⟨i, eq.symm ▸ hq⟩) (λ ⟨i, hi⟩, ⟨p i, ⟨i, rfl⟩, hi⟩)
@[simp] lemma infi_Prop_eq {p : ι → Prop} : (⨅ i, p i) = ∀ i, p i :=
le_antisymm (λ h i, h _ ⟨i, rfl⟩ ) (λ h p ⟨i, eq⟩, eq ▸ h i)
instance pi.has_Sup {α : Type*} {β : α → Type*} [Π i, has_Sup (β i)] : has_Sup (Π i, β i) :=
⟨λ s i, ⨆ f : s, (f : Π i, β i) i⟩
instance pi.has_Inf {α : Type*} {β : α → Type*} [Π i, has_Inf (β i)] : has_Inf (Π i, β i) :=
⟨λ s i, ⨅ f : s, (f : Π i, β i) i⟩
instance pi.complete_lattice {α : Type*} {β : α → Type*} [∀ i, complete_lattice (β i)] :
complete_lattice (Π i, β i) :=
{ Sup := Sup,
Inf := Inf,
le_Sup := λ s f hf i, le_supr (λ f : s, (f : Π i, β i) i) ⟨f, hf⟩,
Inf_le := λ s f hf i, infi_le (λ f : s, (f : Π i, β i) i) ⟨f, hf⟩,
Sup_le := λ s f hf i, supr_le $ λ g, hf g g.2 i,
le_Inf := λ s f hf i, le_infi $ λ g, hf g g.2 i,
.. pi.bounded_order,
.. pi.lattice }
lemma Sup_apply {α : Type*} {β : α → Type*} [Π i, has_Sup (β i)] {s : set (Π a, β a)} {a : α} :
(Sup s) a = ⨆ f : s, (f : Π a, β a) a :=
rfl
lemma Inf_apply {α : Type*} {β : α → Type*} [Π i, has_Inf (β i)]
{s : set (Π a, β a)} {a : α} : Inf s a = ⨅ f : s, (f : Π a, β a) a :=
rfl
@[simp] lemma supr_apply {α : Type*} {β : α → Type*} {ι : Sort*} [Π i, has_Sup (β i)]
{f : ι → Π a, β a} {a : α} : (⨆ i, f i) a = ⨆ i, f i a :=
by rw [supr, Sup_apply, supr, supr, ← image_eq_range (λ f : Π i, β i, f a) (range f), ← range_comp]
@[simp] lemma infi_apply {α : Type*} {β : α → Type*} {ι : Sort*} [Π i, has_Inf (β i)]
{f : ι → Π a, β a} {a : α} : (⨅ i, f i) a = ⨅ i, f i a :=
@supr_apply α (λ i, (β i)ᵒᵈ) _ _ _ _
lemma unary_relation_Sup_iff {α : Type*} (s : set (α → Prop)) {a : α} :
Sup s a ↔ ∃ r : α → Prop, r ∈ s ∧ r a :=
by { unfold Sup, simp [←eq_iff_iff] }
lemma unary_relation_Inf_iff {α : Type*} (s : set (α → Prop)) {a : α} :
Inf s a ↔ ∀ r : α → Prop, r ∈ s → r a :=
by { unfold Inf, simp [←eq_iff_iff] }
lemma binary_relation_Sup_iff {α β : Type*} (s : set (α → β → Prop)) {a : α} {b : β} :
Sup s a b ↔ ∃ r : α → β → Prop, r ∈ s ∧ r a b :=
by { unfold Sup, simp [←eq_iff_iff] }
lemma binary_relation_Inf_iff {α β : Type*} (s : set (α → β → Prop)) {a : α} {b : β} :
Inf s a b ↔ ∀ r : α → β → Prop, r ∈ s → r a b :=
by { unfold Inf, simp [←eq_iff_iff] }
section complete_lattice
variables [preorder α] [complete_lattice β]
theorem monotone_Sup_of_monotone {s : set (α → β)} (m_s : ∀ f ∈ s, monotone f) : monotone (Sup s) :=
λ x y h, supr_mono $ λ f, m_s f f.2 h
theorem monotone_Inf_of_monotone {s : set (α → β)} (m_s : ∀ f ∈ s, monotone f) : monotone (Inf s) :=
λ x y h, infi_mono $ λ f, m_s f f.2 h
end complete_lattice
namespace prod
variables (α β)
instance [has_Sup α] [has_Sup β] : has_Sup (α × β) :=
⟨λ s, (Sup (prod.fst '' s), Sup (prod.snd '' s))⟩
instance [has_Inf α] [has_Inf β] : has_Inf (α × β) :=
⟨λ s, (Inf (prod.fst '' s), Inf (prod.snd '' s))⟩
instance [complete_lattice α] [complete_lattice β] : complete_lattice (α × β) :=
{ le_Sup := λ s p hab, ⟨le_Sup $ mem_image_of_mem _ hab, le_Sup $ mem_image_of_mem _ hab⟩,
Sup_le := λ s p h,
⟨ Sup_le $ ball_image_of_ball $ λ p hp, (h p hp).1,
Sup_le $ ball_image_of_ball $ λ p hp, (h p hp).2⟩,
Inf_le := λ s p hab, ⟨Inf_le $ mem_image_of_mem _ hab, Inf_le $ mem_image_of_mem _ hab⟩,
le_Inf := λ s p h,
⟨ le_Inf $ ball_image_of_ball $ λ p hp, (h p hp).1,
le_Inf $ ball_image_of_ball $ λ p hp, (h p hp).2⟩,
.. prod.lattice α β,
.. prod.bounded_order α β,
.. prod.has_Sup α β,
.. prod.has_Inf α β }
end prod
section complete_lattice
variables [complete_lattice α] {a : α} {s : set α}
/-- This is a weaker version of `sup_Inf_eq` -/
lemma sup_Inf_le_infi_sup : a ⊔ Inf s ≤ ⨅ b ∈ s, a ⊔ b :=
le_infi₂ $ λ i h, sup_le_sup_left (Inf_le h) _
/-- This is a weaker version of `inf_Sup_eq` -/
lemma supr_inf_le_inf_Sup : (⨆ b ∈ s, a ⊓ b) ≤ a ⊓ Sup s :=
@sup_Inf_le_infi_sup αᵒᵈ _ _ _
/-- This is a weaker version of `Inf_sup_eq` -/
lemma Inf_sup_le_infi_sup : Inf s ⊔ a ≤ ⨅ b ∈ s, b ⊔ a :=
le_infi₂ $ λ i h, sup_le_sup_right (Inf_le h) _
/-- This is a weaker version of `Sup_inf_eq` -/
lemma supr_inf_le_Sup_inf : (⨆ b ∈ s, b ⊓ a) ≤ Sup s ⊓ a :=
@Inf_sup_le_infi_sup αᵒᵈ _ _ _
lemma le_supr_inf_supr (f g : ι → α) : (⨆ i, f i ⊓ g i) ≤ (⨆ i, f i) ⊓ (⨆ i, g i) :=
le_inf (supr_mono $ λ i, inf_le_left) (supr_mono $ λ i, inf_le_right)
lemma infi_sup_infi_le (f g : ι → α) : (⨅ i, f i) ⊔ (⨅ i, g i) ≤ ⨅ i, f i ⊔ g i :=
@le_supr_inf_supr αᵒᵈ ι _ f g
lemma disjoint_Sup_left {a : set α} {b : α} (d : disjoint (Sup a) b) {i} (hi : i ∈ a) :
disjoint i b :=
(supr₂_le_iff.1 (supr_inf_le_Sup_inf.trans d) i hi : _)
lemma disjoint_Sup_right {a : set α} {b : α} (d : disjoint b (Sup a)) {i} (hi : i ∈ a) :
disjoint b i :=
(supr₂_le_iff.mp (supr_inf_le_inf_Sup.trans d) i hi : _)
end complete_lattice
/-- Pullback a `complete_lattice` along an injection. -/
@[reducible] -- See note [reducible non-instances]
protected def function.injective.complete_lattice [has_sup α] [has_inf α] [has_Sup α]
[has_Inf α] [has_top α] [has_bot α] [complete_lattice β]
(f : α → β) (hf : function.injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
(map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_Sup : ∀ s, f (Sup s) = ⨆ a ∈ s, f a)
(map_Inf : ∀ s, f (Inf s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) :
complete_lattice α :=
{ Sup := Sup,
le_Sup := λ s a h, (le_supr₂ a h).trans (map_Sup _).ge,
Sup_le := λ s a h, (map_Sup _).trans_le $ supr₂_le h,
Inf := Inf,
Inf_le := λ s a h, (map_Inf _).trans_le $ infi₂_le a h,
le_Inf := λ s a h, (le_infi₂ h).trans (map_Inf _).ge,
-- we cannot use bounded_order.lift here as the `has_le` instance doesn't exist yet
top := ⊤,
le_top := λ a, (@le_top β _ _ _).trans map_top.ge,
bot := ⊥,
bot_le := λ a, map_bot.le.trans bot_le,
..hf.lattice f map_sup map_inf }
|