File size: 13,957 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/-
Copyright (c) 2022 Rémy Degenne. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Rémy Degenne
-/

import probability.variance

/-!
# Moments and moment generating function

## Main definitions

* `probability_theory.moment X p μ`: `p`th moment of a real random variable `X` with respect to
  measure `μ`, `μ[X^p]`
* `probability_theory.central_moment X p μ`:`p`th central moment of `X` with respect to measure `μ`,
  `μ[(X - μ[X])^p]`
* `probability_theory.mgf X μ t`: moment generating function of `X` with respect to measure `μ`,
  `μ[exp(t*X)]`
* `probability_theory.cgf X μ t`: cumulant generating function, logarithm of the moment generating
  function

## Main results

* `probability_theory.indep_fun.mgf_add`: if two real random variables `X` and `Y` are independent
  and their mgf are defined at `t`, then `mgf (X + Y) μ t = mgf X μ t * mgf Y μ t`
* `probability_theory.indep_fun.cgf_add`: if two real random variables `X` and `Y` are independent
  and their mgf are defined at `t`, then `cgf (X + Y) μ t = cgf X μ t + cgf Y μ t`
* `probability_theory.measure_ge_le_exp_cgf` and `probability_theory.measure_le_le_exp_cgf`:
  Chernoff bound on the upper (resp. lower) tail of a random variable. For `t` nonnegative such that
  the cgf exists, `ℙ(ε ≤ X) ≤ exp(- t*ε + cgf X ℙ t)`. See also
  `probability_theory.measure_ge_le_exp_mul_mgf` and
  `probability_theory.measure_le_le_exp_mul_mgf` for versions of these results using `mgf` instead
  of `cgf`.

-/

open measure_theory filter finset real

noncomputable theory

open_locale big_operators measure_theory probability_theory ennreal nnreal

namespace probability_theory

variables {Ω ι : Type*} {m : measurable_space Ω} {X : Ω → ℝ} {p : ℕ} {μ : measure Ω}

include m

/-- Moment of a real random variable, `μ[X ^ p]`. -/
def moment (X : Ω → ℝ) (p : ℕ) (μ : measure Ω) : ℝ := μ[X ^ p]

/-- Central moment of a real random variable, `μ[(X - μ[X]) ^ p]`. -/
def central_moment (X : Ω → ℝ) (p : ℕ) (μ : measure Ω) : ℝ := μ[(X - (λ x, μ[X])) ^ p]

@[simp] lemma moment_zero (hp : p ≠ 0) : moment 0 p μ = 0 :=
by simp only [moment, hp, zero_pow', ne.def, not_false_iff, pi.zero_apply, integral_const,
  algebra.id.smul_eq_mul, mul_zero]

@[simp] lemma central_moment_zero (hp : p ≠ 0) : central_moment 0 p μ = 0 :=
by simp only [central_moment, hp, pi.zero_apply, integral_const, algebra.id.smul_eq_mul,
  mul_zero, zero_sub, pi.pow_apply, pi.neg_apply, neg_zero', zero_pow', ne.def, not_false_iff]

lemma central_moment_one' [is_finite_measure μ] (h_int : integrable X μ) :
  central_moment X 1 μ = (1 - (μ set.univ).to_real) * μ[X] :=
begin
  simp only [central_moment, pi.sub_apply, pow_one],
  rw integral_sub h_int (integrable_const _),
  simp only [sub_mul, integral_const, algebra.id.smul_eq_mul, one_mul],
end

@[simp] lemma central_moment_one [is_probability_measure μ] : central_moment X 1 μ = 0 :=
begin
  by_cases h_int : integrable X μ,
  { rw central_moment_one' h_int,
    simp only [measure_univ, ennreal.one_to_real, sub_self, zero_mul], },
  { simp only [central_moment, pi.sub_apply, pow_one],
    have : ¬ integrable (λ x, X x - integral μ X) μ,
    { refine λ h_sub, h_int _,
      have h_add : X = (λ x, X x - integral μ X) + (λ x, integral μ X),
      { ext1 x, simp, },
      rw h_add,
      exact h_sub.add (integrable_const _), },
    rw integral_undef this, },
end

@[simp] lemma central_moment_two_eq_variance : central_moment X 2 μ = variance X μ := rfl

section moment_generating_function

variables {t : ℝ}

/-- Moment generating function of a real random variable `X`: `λ t, μ[exp(t*X)]`. -/
def mgf (X : Ω → ℝ) (μ : measure Ω) (t : ℝ) : ℝ := μ[λ ω, exp (t * X ω)]

/-- Cumulant generating function of a real random variable `X`: `λ t, log μ[exp(t*X)]`. -/
def cgf (X : Ω → ℝ) (μ : measure Ω) (t : ℝ) : ℝ := log (mgf X μ t)

@[simp] lemma mgf_zero_fun : mgf 0 μ t = (μ set.univ).to_real :=
by simp only [mgf, pi.zero_apply, mul_zero, exp_zero, integral_const, algebra.id.smul_eq_mul,
  mul_one]

@[simp] lemma cgf_zero_fun : cgf 0 μ t = log (μ set.univ).to_real :=
by simp only [cgf, mgf_zero_fun]

@[simp] lemma mgf_zero_measure : mgf X (0 : measure Ω) t = 0 :=
by simp only [mgf, integral_zero_measure]

@[simp] lemma cgf_zero_measure : cgf X (0 : measure Ω) t = 0 :=
by simp only [cgf, log_zero, mgf_zero_measure]

@[simp] lemma mgf_const' (c : ℝ) : mgf (λ _, c) μ t = (μ set.univ).to_real * exp (t * c) :=
by simp only [mgf, integral_const, algebra.id.smul_eq_mul]

@[simp] lemma mgf_const (c : ℝ) [is_probability_measure μ] : mgf (λ _, c) μ t = exp (t * c) :=
by simp only [mgf_const', measure_univ, ennreal.one_to_real, one_mul]

@[simp] lemma cgf_const' [is_finite_measure μ] (hμ : μ ≠ 0) (c : ℝ) :
  cgf (λ _, c) μ t = log (μ set.univ).to_real + t * c :=
begin
  simp only [cgf, mgf_const'],
  rw log_mul _ (exp_pos _).ne',
  { rw log_exp _, },
  { rw [ne.def, ennreal.to_real_eq_zero_iff, measure.measure_univ_eq_zero],
    simp only [hμ, measure_ne_top μ set.univ, or_self, not_false_iff], },
end

@[simp] lemma cgf_const [is_probability_measure μ] (c : ℝ) : cgf (λ _, c) μ t = t * c :=
by simp only [cgf, mgf_const, log_exp]

@[simp] lemma mgf_zero' : mgf X μ 0 = (μ set.univ).to_real :=
by simp only [mgf, zero_mul, exp_zero, integral_const, algebra.id.smul_eq_mul, mul_one]

@[simp] lemma mgf_zero [is_probability_measure μ] : mgf X μ 0 = 1 :=
by simp only [mgf_zero', measure_univ, ennreal.one_to_real]

@[simp] lemma cgf_zero' : cgf X μ 0 = log (μ set.univ).to_real :=
by simp only [cgf, mgf_zero']

@[simp] lemma cgf_zero [is_probability_measure μ] : cgf X μ 0 = 0 :=
by simp only [cgf_zero', measure_univ, ennreal.one_to_real, log_one]

lemma mgf_undef (hX : ¬ integrable (λ ω, exp (t * X ω)) μ) : mgf X μ t = 0 :=
by simp only [mgf, integral_undef hX]

lemma cgf_undef (hX : ¬ integrable (λ ω, exp (t * X ω)) μ) : cgf X μ t = 0 :=
by simp only [cgf, mgf_undef hX, log_zero]

lemma mgf_nonneg : 0 ≤ mgf X μ t :=
begin
  refine integral_nonneg _,
  intro ω,
  simp only [pi.zero_apply],
  exact (exp_pos _).le,
end

lemma mgf_pos' (hμ : μ ≠ 0) (h_int_X : integrable (λ ω, exp (t * X ω)) μ) : 0 < mgf X μ t :=
begin
  simp_rw mgf,
  have : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in set.univ, exp (t * X x) ∂μ,
  { simp only [measure.restrict_univ], },
  rw [this, set_integral_pos_iff_support_of_nonneg_ae _ _],
  { have h_eq_univ : function.support (λ (x : Ω), exp (t * X x)) = set.univ,
    { ext1 x,
      simp only [function.mem_support, set.mem_univ, iff_true],
      exact (exp_pos _).ne', },
    rw [h_eq_univ, set.inter_univ _],
    refine ne.bot_lt _,
    simp only [hμ, ennreal.bot_eq_zero, ne.def, measure.measure_univ_eq_zero, not_false_iff], },
  { refine eventually_of_forall (λ x, _),
    rw pi.zero_apply,
    exact (exp_pos _).le, },
  { rwa integrable_on_univ, },
end

lemma mgf_pos [is_probability_measure μ] (h_int_X : integrable (λ ω, exp (t * X ω)) μ) :
  0 < mgf X μ t :=
mgf_pos' (is_probability_measure.ne_zero μ) h_int_X

lemma mgf_neg : mgf (-X) μ t = mgf X μ (-t) :=
by simp_rw [mgf, pi.neg_apply, mul_neg, neg_mul]

lemma cgf_neg : cgf (-X) μ t = cgf X μ (-t) := by simp_rw [cgf, mgf_neg]

/-- This is a trivial application of `indep_fun.comp` but it will come up frequently. -/
lemma indep_fun.exp_mul {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ) (s t : ℝ) :
  indep_fun (λ ω, exp (s * X ω)) (λ ω, exp (t * Y ω)) μ :=
begin
  have h_meas : ∀ t, measurable (λ x, exp (t * x)) := λ t, (measurable_id'.const_mul t).exp,
  change indep_fun ((λ x, exp (s * x)) ∘ X) ((λ x, exp (t * x)) ∘ Y) μ,
  exact indep_fun.comp h_indep (h_meas s) (h_meas t),
end

lemma indep_fun.mgf_add {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ)
  (h_int_X : integrable (λ ω, exp (t * X ω)) μ)
  (h_int_Y : integrable (λ ω, exp (t * Y ω)) μ) :
  mgf (X + Y) μ t = mgf X μ t * mgf Y μ t :=
begin
  simp_rw [mgf, pi.add_apply, mul_add, exp_add],
  exact (h_indep.exp_mul t t).integral_mul_of_integrable' h_int_X h_int_Y,
end

lemma indep_fun.cgf_add {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ)
  (h_int_X : integrable (λ ω, exp (t * X ω)) μ)
  (h_int_Y : integrable (λ ω, exp (t * Y ω)) μ) :
  cgf (X + Y) μ t = cgf X μ t + cgf Y μ t :=
begin
  by_cases hμ : μ = 0,
  { simp [hμ], },
  simp only [cgf, h_indep.mgf_add h_int_X h_int_Y],
  exact log_mul (mgf_pos' hμ h_int_X).ne' (mgf_pos' hμ h_int_Y).ne',
end

lemma indep_fun.integrable_exp_mul_add {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ)
  (h_int_X : integrable (λ ω, exp (t * X ω)) μ)
  (h_int_Y : integrable (λ ω, exp (t * Y ω)) μ) :
  integrable (λ ω, exp (t * (X + Y) ω)) μ :=
begin
  simp_rw [pi.add_apply, mul_add, exp_add],
  exact (h_indep.exp_mul t t).integrable_mul h_int_X h_int_Y,
end

lemma Indep_fun.integrable_exp_mul_sum [is_probability_measure μ]
  {X : ι → Ω → ℝ} (h_indep : Indep_fun (λ i, infer_instance) X μ) (h_meas : ∀ i, measurable (X i))
  {s : finset ι} (h_int : ∀ i ∈ s, integrable (λ ω, exp (t * X i ω)) μ) :
  integrable (λ ω, exp (t * (∑ i in s, X i) ω)) μ :=
begin
  classical,
  induction s using finset.induction_on with i s hi_notin_s h_rec h_int,
  { simp only [pi.zero_apply, sum_apply, sum_empty, mul_zero, exp_zero],
    exact integrable_const _, },
  { have : ∀ (i : ι), i ∈ s → integrable (λ (ω : Ω), exp (t * X i ω)) μ,
      from λ i hi, h_int i (mem_insert_of_mem hi),
    specialize h_rec this,
    rw sum_insert hi_notin_s,
    refine indep_fun.integrable_exp_mul_add _ (h_int i (mem_insert_self _ _)) h_rec,
    exact (h_indep.indep_fun_finset_sum_of_not_mem h_meas hi_notin_s).symm, },
end

lemma Indep_fun.mgf_sum [is_probability_measure μ]
  {X : ι → Ω → ℝ} (h_indep : Indep_fun (λ i, infer_instance) X μ) (h_meas : ∀ i, measurable (X i))
  {s : finset ι} (h_int : ∀ i ∈ s, integrable (λ ω, exp (t * X i ω)) μ) :
  mgf (∑ i in s, X i) μ t = ∏ i in s, mgf (X i) μ t :=
begin
  classical,
  induction s using finset.induction_on with i s hi_notin_s h_rec h_int,
  { simp only [sum_empty, mgf_zero_fun, measure_univ, ennreal.one_to_real, prod_empty], },
  { have h_int' : ∀ (i : ι), i ∈ s → integrable (λ (ω : Ω), exp (t * X i ω)) μ,
      from λ i hi, h_int i (mem_insert_of_mem hi),
    rw [sum_insert hi_notin_s, indep_fun.mgf_add
        (h_indep.indep_fun_finset_sum_of_not_mem h_meas hi_notin_s).symm
        (h_int i (mem_insert_self _ _)) (h_indep.integrable_exp_mul_sum h_meas h_int'),
      h_rec h_int', prod_insert hi_notin_s], },
end

lemma Indep_fun.cgf_sum [is_probability_measure μ]
  {X : ι → Ω → ℝ} (h_indep : Indep_fun (λ i, infer_instance) X μ) (h_meas : ∀ i, measurable (X i))
  {s : finset ι} (h_int : ∀ i ∈ s, integrable (λ ω, exp (t * X i ω)) μ) :
  cgf (∑ i in s, X i) μ t = ∑ i in s, cgf (X i) μ t :=
begin
  simp_rw cgf,
  rw ← log_prod _ _ (λ j hj, _),
  { rw h_indep.mgf_sum h_meas h_int, },
  { exact (mgf_pos (h_int j hj)).ne', },
end

/-- **Chernoff bound** on the upper tail of a real random variable. -/
lemma measure_ge_le_exp_mul_mgf [is_finite_measure μ] (ε : ℝ) (ht : 0 ≤ t)
  (h_int : integrable (λ ω, exp (t * X ω)) μ) :
  (μ {ω | ε ≤ X ω}).to_real ≤ exp (- t * ε) * mgf X μ t :=
begin
  cases ht.eq_or_lt with ht_zero_eq ht_pos,
  { rw ht_zero_eq.symm,
    simp only [neg_zero', zero_mul, exp_zero, mgf_zero', one_mul],
    rw ennreal.to_real_le_to_real (measure_ne_top μ _) (measure_ne_top μ _),
    exact measure_mono (set.subset_univ _), },
  calc (μ {ω | ε ≤ X ω}).to_real
      = (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).to_real :
    begin
      congr' with ω,
      simp only [exp_le_exp, eq_iff_iff],
      exact ⟨λ h, mul_le_mul_of_nonneg_left h ht_pos.le, λ h, le_of_mul_le_mul_left h ht_pos⟩,
    end
  ... ≤ (exp (t * ε))⁻¹ * μ[λ ω, exp (t * X ω)] :
    begin
      have : exp (t * ε) * (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).to_real
          ≤ μ[λ ω, exp (t * X ω)],
        from mul_meas_ge_le_integral_of_nonneg (λ x, (exp_pos _).le) h_int _,
      rwa [mul_comm (exp (t * ε))⁻¹, ← div_eq_mul_inv, le_div_iff' (exp_pos _)],
    end
  ... = exp (- t * ε) * mgf X μ t : by { rw [neg_mul, exp_neg], refl, },
end

/-- **Chernoff bound** on the lower tail of a real random variable. -/
lemma measure_le_le_exp_mul_mgf [is_finite_measure μ] (ε : ℝ) (ht : t ≤ 0)
  (h_int : integrable (λ ω, exp (t * X ω)) μ) :
  (μ {ω | X ω ≤ ε}).to_real ≤ exp (- t * ε) * mgf X μ t :=
begin
  rw [← neg_neg t, ← mgf_neg, neg_neg, ← neg_mul_neg (-t)],
  refine eq.trans_le _ (measure_ge_le_exp_mul_mgf (-ε) (neg_nonneg.mpr ht) _),
  { congr' with ω,
    simp only [pi.neg_apply, neg_le_neg_iff], },
  { simp_rw [pi.neg_apply, neg_mul_neg],
    exact h_int, },
end

/-- **Chernoff bound** on the upper tail of a real random variable. -/
lemma measure_ge_le_exp_cgf [is_finite_measure μ] (ε : ℝ) (ht : 0 ≤ t)
  (h_int : integrable (λ ω, exp (t * X ω)) μ) :
  (μ {ω | ε ≤ X ω}).to_real ≤ exp (- t * ε + cgf X μ t) :=
begin
  refine (measure_ge_le_exp_mul_mgf ε ht h_int).trans _,
  rw exp_add,
  exact mul_le_mul le_rfl (le_exp_log _) mgf_nonneg (exp_pos _).le,
end

/-- **Chernoff bound** on the lower tail of a real random variable. -/
lemma measure_le_le_exp_cgf [is_finite_measure μ] (ε : ℝ) (ht : t ≤ 0)
  (h_int : integrable (λ ω, exp (t * X ω)) μ) :
  (μ {ω | X ω ≤ ε}).to_real ≤ exp (- t * ε + cgf X μ t) :=
begin
  refine (measure_le_le_exp_mul_mgf ε ht h_int).trans _,
  rw exp_add,
  exact mul_le_mul le_rfl (le_exp_log _) mgf_nonneg (exp_pos _).le,
end

end moment_generating_function

end probability_theory