Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 2,298 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/-
Copyright (c) 2020 Frédéric Dupuis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Frédéric Dupuis
-/
import linear_algebra.affine_space.affine_map
import topology.algebra.group
import topology.algebra.mul_action

/-!
# Topological properties of affine spaces and maps

For now, this contains only a few facts regarding the continuity of affine maps in the special
case when the point space and vector space are the same.

TODO: Deal with the case where the point spaces are different from the vector spaces. Note that
we do have some results in this direction under the assumption that the topologies are induced by
(semi)norms.
-/

namespace affine_map

variables {R E F : Type*}
variables [add_comm_group E] [topological_space E]
variables [add_comm_group F] [topological_space F] [topological_add_group F]

section ring

variables [ring R] [module R E] [module R F]

/-- An affine map is continuous iff its underlying linear map is continuous. See also
`affine_map.continuous_linear_iff`. -/
lemma continuous_iff {f : E →ᵃ[R] F} :
  continuous f ↔ continuous f.linear :=
begin
  split,
  { intro hc,
    rw decomp' f,
    have := hc.sub continuous_const,
    exact this, },
  { intro hc,
    rw decomp f,
    have := hc.add continuous_const,
    exact this }
end

/-- The line map is continuous. -/
@[continuity]
lemma line_map_continuous [topological_space R] [has_continuous_smul R F] {p v : F} :
  continuous ⇑(line_map p v : R →ᵃ[R] F) :=
continuous_iff.mpr $ (continuous_id.smul continuous_const).add $
  @continuous_const _ _ _ _ (0 : F)

end ring

section comm_ring

variables [comm_ring R] [module R F] [has_continuous_const_smul R F]

@[continuity]
lemma homothety_continuous (x : F) (t : R) : continuous $ homothety x t :=
begin
  suffices : ⇑(homothety x t) = λ y, t • (y - x) + x, { rw this, continuity, },
  ext y,
  simp [homothety_apply],
end

end comm_ring

section field

variables [field R] [module R F] [has_continuous_const_smul R F]

lemma homothety_is_open_map (x : F) (t : R) (ht : t0) : is_open_map $ homothety x t :=
begin
  apply is_open_map.of_inverse (homothety_continuous x t⁻¹);
  intros e;
  simp [← affine_map.comp_apply, ← homothety_mul, ht],
end

end field

end affine_map