Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 60,124 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 |
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot
-/
import group_theory.group_action.conj_act
import group_theory.group_action.quotient
import order.filter.pointwise
import topology.algebra.monoid
import topology.compact_open
import topology.sets.compacts
import topology.algebra.constructions
/-!
# Topological groups
This file defines the following typeclasses:
* `topological_group`, `topological_add_group`: multiplicative and additive topological groups,
i.e., groups with continuous `(*)` and `(⁻¹)` / `(+)` and `(-)`;
* `has_continuous_sub G` means that `G` has a continuous subtraction operation.
There is an instance deducing `has_continuous_sub` from `topological_group` but we use a separate
typeclass because, e.g., `ℕ` and `ℝ≥0` have continuous subtraction but are not additive groups.
We also define `homeomorph` versions of several `equiv`s: `homeomorph.mul_left`,
`homeomorph.mul_right`, `homeomorph.inv`, and prove a few facts about neighbourhood filters in
groups.
## Tags
topological space, group, topological group
-/
open classical set filter topological_space function
open_locale classical topological_space filter pointwise
universes u v w x
variables {α : Type u} {β : Type v} {G : Type w} {H : Type x}
section continuous_mul_group
/-!
### Groups with continuous multiplication
In this section we prove a few statements about groups with continuous `(*)`.
-/
variables [topological_space G] [group G] [has_continuous_mul G]
/-- Multiplication from the left in a topological group as a homeomorphism. -/
@[to_additive "Addition from the left in a topological additive group as a homeomorphism."]
protected def homeomorph.mul_left (a : G) : G ≃ₜ G :=
{ continuous_to_fun := continuous_const.mul continuous_id,
continuous_inv_fun := continuous_const.mul continuous_id,
.. equiv.mul_left a }
@[simp, to_additive]
lemma homeomorph.coe_mul_left (a : G) : ⇑(homeomorph.mul_left a) = (*) a := rfl
@[to_additive]
lemma homeomorph.mul_left_symm (a : G) : (homeomorph.mul_left a).symm = homeomorph.mul_left a⁻¹ :=
by { ext, refl }
@[to_additive]
lemma is_open_map_mul_left (a : G) : is_open_map (λ x, a * x) :=
(homeomorph.mul_left a).is_open_map
@[to_additive is_open.left_add_coset]
lemma is_open.left_coset {U : set G} (h : is_open U) (x : G) : is_open (left_coset x U) :=
is_open_map_mul_left x _ h
@[to_additive]
lemma is_closed_map_mul_left (a : G) : is_closed_map (λ x, a * x) :=
(homeomorph.mul_left a).is_closed_map
@[to_additive is_closed.left_add_coset]
lemma is_closed.left_coset {U : set G} (h : is_closed U) (x : G) : is_closed (left_coset x U) :=
is_closed_map_mul_left x _ h
/-- Multiplication from the right in a topological group as a homeomorphism. -/
@[to_additive "Addition from the right in a topological additive group as a homeomorphism."]
protected def homeomorph.mul_right (a : G) :
G ≃ₜ G :=
{ continuous_to_fun := continuous_id.mul continuous_const,
continuous_inv_fun := continuous_id.mul continuous_const,
.. equiv.mul_right a }
@[simp, to_additive]
lemma homeomorph.coe_mul_right (a : G) : ⇑(homeomorph.mul_right a) = λ g, g * a := rfl
@[to_additive]
lemma homeomorph.mul_right_symm (a : G) :
(homeomorph.mul_right a).symm = homeomorph.mul_right a⁻¹ :=
by { ext, refl }
@[to_additive]
lemma is_open_map_mul_right (a : G) : is_open_map (λ x, x * a) :=
(homeomorph.mul_right a).is_open_map
@[to_additive is_open.right_add_coset]
lemma is_open.right_coset {U : set G} (h : is_open U) (x : G) : is_open (right_coset U x) :=
is_open_map_mul_right x _ h
@[to_additive]
lemma is_closed_map_mul_right (a : G) : is_closed_map (λ x, x * a) :=
(homeomorph.mul_right a).is_closed_map
@[to_additive is_closed.right_add_coset]
lemma is_closed.right_coset {U : set G} (h : is_closed U) (x : G) : is_closed (right_coset U x) :=
is_closed_map_mul_right x _ h
@[to_additive]
lemma discrete_topology_of_open_singleton_one (h : is_open ({1} : set G)) : discrete_topology G :=
begin
rw ← singletons_open_iff_discrete,
intro g,
suffices : {g} = (λ (x : G), g⁻¹ * x) ⁻¹' {1},
{ rw this, exact (continuous_mul_left (g⁻¹)).is_open_preimage _ h, },
simp only [mul_one, set.preimage_mul_left_singleton, eq_self_iff_true,
inv_inv, set.singleton_eq_singleton_iff],
end
@[to_additive]
lemma discrete_topology_iff_open_singleton_one : discrete_topology G ↔ is_open ({1} : set G) :=
⟨λ h, forall_open_iff_discrete.mpr h {1}, discrete_topology_of_open_singleton_one⟩
end continuous_mul_group
/-!
### `has_continuous_inv` and `has_continuous_neg`
-/
/-- Basic hypothesis to talk about a topological additive group. A topological additive group
over `M`, for example, is obtained by requiring the instances `add_group M` and
`has_continuous_add M` and `has_continuous_neg M`. -/
class has_continuous_neg (G : Type u) [topological_space G] [has_neg G] : Prop :=
(continuous_neg : continuous (λ a : G, -a))
/-- Basic hypothesis to talk about a topological group. A topological group over `M`, for example,
is obtained by requiring the instances `group M` and `has_continuous_mul M` and
`has_continuous_inv M`. -/
@[to_additive]
class has_continuous_inv (G : Type u) [topological_space G] [has_inv G] : Prop :=
(continuous_inv : continuous (λ a : G, a⁻¹))
export has_continuous_inv (continuous_inv)
export has_continuous_neg (continuous_neg)
section continuous_inv
variables [topological_space G] [has_inv G] [has_continuous_inv G]
@[to_additive]
lemma continuous_on_inv {s : set G} : continuous_on has_inv.inv s :=
continuous_inv.continuous_on
@[to_additive]
lemma continuous_within_at_inv {s : set G} {x : G} : continuous_within_at has_inv.inv s x :=
continuous_inv.continuous_within_at
@[to_additive]
lemma continuous_at_inv {x : G} : continuous_at has_inv.inv x :=
continuous_inv.continuous_at
@[to_additive]
lemma tendsto_inv (a : G) : tendsto has_inv.inv (𝓝 a) (𝓝 (a⁻¹)) :=
continuous_at_inv
/-- If a function converges to a value in a multiplicative topological group, then its inverse
converges to the inverse of this value. For the version in normed fields assuming additionally
that the limit is nonzero, use `tendsto.inv'`. -/
@[to_additive]
lemma filter.tendsto.inv {f : α → G} {l : filter α} {y : G} (h : tendsto f l (𝓝 y)) :
tendsto (λ x, (f x)⁻¹) l (𝓝 y⁻¹) :=
(continuous_inv.tendsto y).comp h
variables [topological_space α] {f : α → G} {s : set α} {x : α}
@[continuity, to_additive]
lemma continuous.inv (hf : continuous f) : continuous (λx, (f x)⁻¹) :=
continuous_inv.comp hf
@[to_additive]
lemma continuous_at.inv (hf : continuous_at f x) : continuous_at (λ x, (f x)⁻¹) x :=
continuous_at_inv.comp hf
@[to_additive]
lemma continuous_on.inv (hf : continuous_on f s) : continuous_on (λx, (f x)⁻¹) s :=
continuous_inv.comp_continuous_on hf
@[to_additive]
lemma continuous_within_at.inv (hf : continuous_within_at f s x) :
continuous_within_at (λ x, (f x)⁻¹) s x :=
hf.inv
@[to_additive]
instance [topological_space H] [has_inv H] [has_continuous_inv H] : has_continuous_inv (G × H) :=
⟨continuous_inv.fst'.prod_mk continuous_inv.snd'⟩
variable {ι : Type*}
@[to_additive]
instance pi.has_continuous_inv {C : ι → Type*} [∀ i, topological_space (C i)]
[∀ i, has_inv (C i)] [∀ i, has_continuous_inv (C i)] : has_continuous_inv (Π i, C i) :=
{ continuous_inv := continuous_pi (λ i, (continuous_apply i).inv) }
/-- A version of `pi.has_continuous_inv` for non-dependent functions. It is needed because sometimes
Lean fails to use `pi.has_continuous_inv` for non-dependent functions. -/
@[to_additive "A version of `pi.has_continuous_neg` for non-dependent functions. It is needed
because sometimes Lean fails to use `pi.has_continuous_neg` for non-dependent functions."]
instance pi.has_continuous_inv' : has_continuous_inv (ι → G) :=
pi.has_continuous_inv
@[priority 100, to_additive]
instance has_continuous_inv_of_discrete_topology [topological_space H]
[has_inv H] [discrete_topology H] : has_continuous_inv H :=
⟨continuous_of_discrete_topology⟩
section pointwise_limits
variables (G₁ G₂ : Type*) [topological_space G₂] [t2_space G₂]
@[to_additive] lemma is_closed_set_of_map_inv [has_inv G₁] [has_inv G₂] [has_continuous_inv G₂] :
is_closed {f : G₁ → G₂ | ∀ x, f x⁻¹ = (f x)⁻¹ } :=
begin
simp only [set_of_forall],
refine is_closed_Inter (λ i, is_closed_eq (continuous_apply _) (continuous_apply _).inv),
end
end pointwise_limits
instance additive.has_continuous_neg [h : topological_space H] [has_inv H]
[has_continuous_inv H] : @has_continuous_neg (additive H) h _ :=
{ continuous_neg := @continuous_inv H _ _ _ }
instance multiplicative.has_continuous_inv [h : topological_space H] [has_neg H]
[has_continuous_neg H] : @has_continuous_inv (multiplicative H) h _ :=
{ continuous_inv := @continuous_neg H _ _ _ }
end continuous_inv
section continuous_involutive_inv
variables [topological_space G] [has_involutive_inv G] [has_continuous_inv G] {s : set G}
@[to_additive] lemma is_compact.inv (hs : is_compact s) : is_compact s⁻¹ :=
by { rw [← image_inv], exact hs.image continuous_inv }
variables (G)
/-- Inversion in a topological group as a homeomorphism. -/
@[to_additive "Negation in a topological group as a homeomorphism."]
protected def homeomorph.inv (G : Type*) [topological_space G] [has_involutive_inv G]
[has_continuous_inv G] : G ≃ₜ G :=
{ continuous_to_fun := continuous_inv,
continuous_inv_fun := continuous_inv,
.. equiv.inv G }
@[to_additive] lemma is_open_map_inv : is_open_map (has_inv.inv : G → G) :=
(homeomorph.inv _).is_open_map
@[to_additive] lemma is_closed_map_inv : is_closed_map (has_inv.inv : G → G) :=
(homeomorph.inv _).is_closed_map
variables {G}
@[to_additive] lemma is_open.inv (hs : is_open s) : is_open s⁻¹ := hs.preimage continuous_inv
@[to_additive] lemma is_closed.inv (hs : is_closed s) : is_closed s⁻¹ := hs.preimage continuous_inv
@[to_additive] lemma inv_closure : ∀ s : set G, (closure s)⁻¹ = closure s⁻¹ :=
(homeomorph.inv G).preimage_closure
end continuous_involutive_inv
section lattice_ops
variables {ι' : Sort*} [has_inv G]
@[to_additive] lemma has_continuous_inv_Inf {ts : set (topological_space G)}
(h : Π t ∈ ts, @has_continuous_inv G t _) :
@has_continuous_inv G (Inf ts) _ :=
{ continuous_inv := continuous_Inf_rng.2 (λ t ht, continuous_Inf_dom ht
(@has_continuous_inv.continuous_inv G t _ (h t ht))) }
@[to_additive] lemma has_continuous_inv_infi {ts' : ι' → topological_space G}
(h' : Π i, @has_continuous_inv G (ts' i) _) :
@has_continuous_inv G (⨅ i, ts' i) _ :=
by {rw ← Inf_range, exact has_continuous_inv_Inf (set.forall_range_iff.mpr h')}
@[to_additive] lemma has_continuous_inv_inf {t₁ t₂ : topological_space G}
(h₁ : @has_continuous_inv G t₁ _) (h₂ : @has_continuous_inv G t₂ _) :
@has_continuous_inv G (t₁ ⊓ t₂) _ :=
by { rw inf_eq_infi, refine has_continuous_inv_infi (λ b, _), cases b; assumption }
end lattice_ops
@[to_additive] lemma inducing.has_continuous_inv {G H : Type*} [has_inv G] [has_inv H]
[topological_space G] [topological_space H] [has_continuous_inv H] {f : G → H} (hf : inducing f)
(hf_inv : ∀ x, f x⁻¹ = (f x)⁻¹) : has_continuous_inv G :=
⟨hf.continuous_iff.2 $ by simpa only [(∘), hf_inv] using hf.continuous.inv⟩
section topological_group
/-!
### Topological groups
A topological group is a group in which the multiplication and inversion operations are
continuous. Topological additive groups are defined in the same way. Equivalently, we can require
that the division operation `λ x y, x * y⁻¹` (resp., subtraction) is continuous.
-/
/-- A topological (additive) group is a group in which the addition and negation operations are
continuous. -/
class topological_add_group (G : Type u) [topological_space G] [add_group G]
extends has_continuous_add G, has_continuous_neg G : Prop
/-- A topological group is a group in which the multiplication and inversion operations are
continuous.
When you declare an instance that does not already have a `uniform_space` instance,
you should also provide an instance of `uniform_space` and `uniform_group` using
`topological_group.to_uniform_space` and `topological_group_is_uniform`. -/
@[to_additive]
class topological_group (G : Type*) [topological_space G] [group G]
extends has_continuous_mul G, has_continuous_inv G : Prop
section conj
instance conj_act.units_has_continuous_const_smul {M} [monoid M] [topological_space M]
[has_continuous_mul M] :
has_continuous_const_smul (conj_act Mˣ) M :=
⟨λ m, (continuous_const.mul continuous_id).mul continuous_const⟩
/-- we slightly weaken the type class assumptions here so that it will also apply to `ennreal`, but
we nevertheless leave it in the `topological_group` namespace. -/
variables [topological_space G] [has_inv G] [has_mul G] [has_continuous_mul G]
/-- Conjugation is jointly continuous on `G × G` when both `mul` and `inv` are continuous. -/
@[to_additive "Conjugation is jointly continuous on `G × G` when both `mul` and `inv` are
continuous."]
lemma topological_group.continuous_conj_prod [has_continuous_inv G] :
continuous (λ g : G × G, g.fst * g.snd * g.fst⁻¹) :=
continuous_mul.mul (continuous_inv.comp continuous_fst)
/-- Conjugation by a fixed element is continuous when `mul` is continuous. -/
@[to_additive "Conjugation by a fixed element is continuous when `add` is continuous."]
lemma topological_group.continuous_conj (g : G) : continuous (λ (h : G), g * h * g⁻¹) :=
(continuous_mul_right g⁻¹).comp (continuous_mul_left g)
/-- Conjugation acting on fixed element of the group is continuous when both `mul` and
`inv` are continuous. -/
@[to_additive "Conjugation acting on fixed element of the additive group is continuous when both
`add` and `neg` are continuous."]
lemma topological_group.continuous_conj' [has_continuous_inv G]
(h : G) : continuous (λ (g : G), g * h * g⁻¹) :=
(continuous_mul_right h).mul continuous_inv
end conj
variables [topological_space G] [group G] [topological_group G]
[topological_space α] {f : α → G} {s : set α} {x : α}
section zpow
@[continuity, to_additive]
lemma continuous_zpow : ∀ z : ℤ, continuous (λ a : G, a ^ z)
| (int.of_nat n) := by simpa using continuous_pow n
| -[1+n] := by simpa using (continuous_pow (n + 1)).inv
instance add_group.has_continuous_const_smul_int {A} [add_group A] [topological_space A]
[topological_add_group A] : has_continuous_const_smul ℤ A := ⟨continuous_zsmul⟩
instance add_group.has_continuous_smul_int {A} [add_group A] [topological_space A]
[topological_add_group A] : has_continuous_smul ℤ A :=
⟨continuous_uncurry_of_discrete_topology continuous_zsmul⟩
@[continuity, to_additive]
lemma continuous.zpow {f : α → G} (h : continuous f) (z : ℤ) :
continuous (λ b, (f b) ^ z) :=
(continuous_zpow z).comp h
@[to_additive]
lemma continuous_on_zpow {s : set G} (z : ℤ) : continuous_on (λ x, x ^ z) s :=
(continuous_zpow z).continuous_on
@[to_additive]
lemma continuous_at_zpow (x : G) (z : ℤ) : continuous_at (λ x, x ^ z) x :=
(continuous_zpow z).continuous_at
@[to_additive]
lemma filter.tendsto.zpow {α} {l : filter α} {f : α → G} {x : G} (hf : tendsto f l (𝓝 x)) (z : ℤ) :
tendsto (λ x, f x ^ z) l (𝓝 (x ^ z)) :=
(continuous_at_zpow _ _).tendsto.comp hf
@[to_additive]
lemma continuous_within_at.zpow {f : α → G} {x : α} {s : set α} (hf : continuous_within_at f s x)
(z : ℤ) : continuous_within_at (λ x, f x ^ z) s x :=
hf.zpow z
@[to_additive]
lemma continuous_at.zpow {f : α → G} {x : α} (hf : continuous_at f x) (z : ℤ) :
continuous_at (λ x, f x ^ z) x :=
hf.zpow z
@[to_additive continuous_on.zsmul]
lemma continuous_on.zpow {f : α → G} {s : set α} (hf : continuous_on f s) (z : ℤ) :
continuous_on (λ x, f x ^ z) s :=
λ x hx, (hf x hx).zpow z
end zpow
section ordered_comm_group
variables [topological_space H] [ordered_comm_group H] [topological_group H]
@[to_additive] lemma tendsto_inv_nhds_within_Ioi {a : H} :
tendsto has_inv.inv (𝓝[>] a) (𝓝[<] (a⁻¹)) :=
(continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal]
@[to_additive] lemma tendsto_inv_nhds_within_Iio {a : H} :
tendsto has_inv.inv (𝓝[<] a) (𝓝[>] (a⁻¹)) :=
(continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal]
@[to_additive] lemma tendsto_inv_nhds_within_Ioi_inv {a : H} :
tendsto has_inv.inv (𝓝[>] (a⁻¹)) (𝓝[<] a) :=
by simpa only [inv_inv] using @tendsto_inv_nhds_within_Ioi _ _ _ _ (a⁻¹)
@[to_additive] lemma tendsto_inv_nhds_within_Iio_inv {a : H} :
tendsto has_inv.inv (𝓝[<] (a⁻¹)) (𝓝[>] a) :=
by simpa only [inv_inv] using @tendsto_inv_nhds_within_Iio _ _ _ _ (a⁻¹)
@[to_additive] lemma tendsto_inv_nhds_within_Ici {a : H} :
tendsto has_inv.inv (𝓝[≥] a) (𝓝[≤] (a⁻¹)) :=
(continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal]
@[to_additive] lemma tendsto_inv_nhds_within_Iic {a : H} :
tendsto has_inv.inv (𝓝[≤] a) (𝓝[≥] (a⁻¹)) :=
(continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal]
@[to_additive] lemma tendsto_inv_nhds_within_Ici_inv {a : H} :
tendsto has_inv.inv (𝓝[≥] (a⁻¹)) (𝓝[≤] a) :=
by simpa only [inv_inv] using @tendsto_inv_nhds_within_Ici _ _ _ _ (a⁻¹)
@[to_additive] lemma tendsto_inv_nhds_within_Iic_inv {a : H} :
tendsto has_inv.inv (𝓝[≤] (a⁻¹)) (𝓝[≥] a) :=
by simpa only [inv_inv] using @tendsto_inv_nhds_within_Iic _ _ _ _ (a⁻¹)
end ordered_comm_group
@[instance, to_additive]
instance [topological_space H] [group H] [topological_group H] :
topological_group (G × H) :=
{ continuous_inv := continuous_inv.prod_map continuous_inv }
@[to_additive]
instance pi.topological_group {C : β → Type*} [∀ b, topological_space (C b)]
[∀ b, group (C b)] [∀ b, topological_group (C b)] : topological_group (Π b, C b) :=
{ continuous_inv := continuous_pi (λ i, (continuous_apply i).inv) }
open mul_opposite
@[to_additive]
instance [group α] [has_continuous_inv α] : has_continuous_inv αᵐᵒᵖ :=
op_homeomorph.symm.inducing.has_continuous_inv unop_inv
/-- If multiplication is continuous in `α`, then it also is in `αᵐᵒᵖ`. -/
@[to_additive "If addition is continuous in `α`, then it also is in `αᵃᵒᵖ`."]
instance [group α] [topological_group α] :
topological_group αᵐᵒᵖ := { }
variable (G)
@[to_additive]
lemma nhds_one_symm : comap has_inv.inv (𝓝 (1 : G)) = 𝓝 (1 : G) :=
((homeomorph.inv G).comap_nhds_eq _).trans (congr_arg nhds inv_one)
/-- The map `(x, y) ↦ (x, xy)` as a homeomorphism. This is a shear mapping. -/
@[to_additive "The map `(x, y) ↦ (x, x + y)` as a homeomorphism.
This is a shear mapping."]
protected def homeomorph.shear_mul_right : G × G ≃ₜ G × G :=
{ continuous_to_fun := continuous_fst.prod_mk continuous_mul,
continuous_inv_fun := continuous_fst.prod_mk $ continuous_fst.inv.mul continuous_snd,
.. equiv.prod_shear (equiv.refl _) equiv.mul_left }
@[simp, to_additive]
lemma homeomorph.shear_mul_right_coe :
⇑(homeomorph.shear_mul_right G) = λ z : G × G, (z.1, z.1 * z.2) :=
rfl
@[simp, to_additive]
lemma homeomorph.shear_mul_right_symm_coe :
⇑(homeomorph.shear_mul_right G).symm = λ z : G × G, (z.1, z.1⁻¹ * z.2) :=
rfl
variables {G}
@[to_additive] protected lemma inducing.topological_group {F : Type*} [group H]
[topological_space H] [monoid_hom_class F H G] (f : F) (hf : inducing f) :
topological_group H :=
{ to_has_continuous_mul := hf.has_continuous_mul _,
to_has_continuous_inv := hf.has_continuous_inv (map_inv f) }
@[to_additive] protected lemma topological_group_induced {F : Type*} [group H]
[monoid_hom_class F H G] (f : F) :
@topological_group H (induced f ‹_›) _ :=
by { letI := induced f ‹_›, exact inducing.topological_group f ⟨rfl⟩ }
namespace subgroup
@[to_additive] instance (S : subgroup G) : topological_group S :=
inducing.topological_group S.subtype inducing_coe
end subgroup
/-- The (topological-space) closure of a subgroup of a space `M` with `has_continuous_mul` is
itself a subgroup. -/
@[to_additive "The (topological-space) closure of an additive subgroup of a space `M` with
`has_continuous_add` is itself an additive subgroup."]
def subgroup.topological_closure (s : subgroup G) : subgroup G :=
{ carrier := closure (s : set G),
inv_mem' := λ g m, by simpa [←set.mem_inv, inv_closure] using m,
..s.to_submonoid.topological_closure }
@[simp, to_additive] lemma subgroup.topological_closure_coe {s : subgroup G} :
(s.topological_closure : set G) = closure s :=
rfl
@[to_additive] lemma subgroup.subgroup_topological_closure (s : subgroup G) :
s ≤ s.topological_closure :=
subset_closure
@[to_additive] lemma subgroup.is_closed_topological_closure (s : subgroup G) :
is_closed (s.topological_closure : set G) :=
by convert is_closed_closure
@[to_additive] lemma subgroup.topological_closure_minimal
(s : subgroup G) {t : subgroup G} (h : s ≤ t) (ht : is_closed (t : set G)) :
s.topological_closure ≤ t :=
closure_minimal h ht
@[to_additive] lemma dense_range.topological_closure_map_subgroup [group H] [topological_space H]
[topological_group H] {f : G →* H} (hf : continuous f) (hf' : dense_range f) {s : subgroup G}
(hs : s.topological_closure = ⊤) :
(s.map f).topological_closure = ⊤ :=
begin
rw set_like.ext'_iff at hs ⊢,
simp only [subgroup.topological_closure_coe, subgroup.coe_top, ← dense_iff_closure_eq] at hs ⊢,
exact hf'.dense_image hf hs
end
/-- The topological closure of a normal subgroup is normal.-/
@[to_additive "The topological closure of a normal additive subgroup is normal."]
lemma subgroup.is_normal_topological_closure {G : Type*} [topological_space G] [group G]
[topological_group G] (N : subgroup G) [N.normal] :
(subgroup.topological_closure N).normal :=
{ conj_mem := λ n hn g,
begin
apply mem_closure_of_continuous (topological_group.continuous_conj g) hn,
intros m hm,
exact subset_closure (subgroup.normal.conj_mem infer_instance m hm g),
end }
@[to_additive] lemma mul_mem_connected_component_one {G : Type*} [topological_space G]
[mul_one_class G] [has_continuous_mul G] {g h : G} (hg : g ∈ connected_component (1 : G))
(hh : h ∈ connected_component (1 : G)) : g * h ∈ connected_component (1 : G) :=
begin
rw connected_component_eq hg,
have hmul: g ∈ connected_component (g*h),
{ apply continuous.image_connected_component_subset (continuous_mul_left g),
rw ← connected_component_eq hh,
exact ⟨(1 : G), mem_connected_component, by simp only [mul_one]⟩ },
simpa [← connected_component_eq hmul] using (mem_connected_component)
end
@[to_additive] lemma inv_mem_connected_component_one {G : Type*} [topological_space G] [group G]
[topological_group G] {g : G} (hg : g ∈ connected_component (1 : G)) :
g⁻¹ ∈ connected_component (1 : G) :=
begin
rw ← inv_one,
exact continuous.image_connected_component_subset continuous_inv _
((set.mem_image _ _ _).mp ⟨g, hg, rfl⟩)
end
/-- The connected component of 1 is a subgroup of `G`. -/
@[to_additive "The connected component of 0 is a subgroup of `G`."]
def subgroup.connected_component_of_one (G : Type*) [topological_space G] [group G]
[topological_group G] : subgroup G :=
{ carrier := connected_component (1 : G),
one_mem' := mem_connected_component,
mul_mem' := λ g h hg hh, mul_mem_connected_component_one hg hh,
inv_mem' := λ g hg, inv_mem_connected_component_one hg }
/-- If a subgroup of a topological group is commutative, then so is its topological closure. -/
@[to_additive "If a subgroup of an additive topological group is commutative, then so is its
topological closure."]
def subgroup.comm_group_topological_closure [t2_space G] (s : subgroup G)
(hs : ∀ (x y : s), x * y = y * x) : comm_group s.topological_closure :=
{ ..s.topological_closure.to_group,
..s.to_submonoid.comm_monoid_topological_closure hs }
@[to_additive exists_nhds_half_neg]
lemma exists_nhds_split_inv {s : set G} (hs : s ∈ 𝓝 (1 : G)) :
∃ V ∈ 𝓝 (1 : G), ∀ (v ∈ V) (w ∈ V), v / w ∈ s :=
have ((λp : G × G, p.1 * p.2⁻¹) ⁻¹' s) ∈ 𝓝 ((1, 1) : G × G),
from continuous_at_fst.mul continuous_at_snd.inv (by simpa),
by simpa only [div_eq_mul_inv, nhds_prod_eq, mem_prod_self_iff, prod_subset_iff, mem_preimage]
using this
@[to_additive]
lemma nhds_translation_mul_inv (x : G) : comap (λ y : G, y * x⁻¹) (𝓝 1) = 𝓝 x :=
((homeomorph.mul_right x⁻¹).comap_nhds_eq 1).trans $ show 𝓝 (1 * x⁻¹⁻¹) = 𝓝 x, by simp
@[simp, to_additive] lemma map_mul_left_nhds (x y : G) : map ((*) x) (𝓝 y) = 𝓝 (x * y) :=
(homeomorph.mul_left x).map_nhds_eq y
@[to_additive] lemma map_mul_left_nhds_one (x : G) : map ((*) x) (𝓝 1) = 𝓝 x := by simp
/-- A monoid homomorphism (a bundled morphism of a type that implements `monoid_hom_class`) from a
topological group to a topological monoid is continuous provided that it is continuous at one. See
also `uniform_continuous_of_continuous_at_one`. -/
@[to_additive "An additive monoid homomorphism (a bundled morphism of a type that implements
`add_monoid_hom_class`) from an additive topological group to an additive topological monoid is
continuous provided that it is continuous at zero. See also
`uniform_continuous_of_continuous_at_zero`."]
lemma continuous_of_continuous_at_one {M hom : Type*} [mul_one_class M] [topological_space M]
[has_continuous_mul M] [monoid_hom_class hom G M] (f : hom) (hf : continuous_at f 1) :
continuous f :=
continuous_iff_continuous_at.2 $ λ x,
by simpa only [continuous_at, ← map_mul_left_nhds_one x, tendsto_map'_iff, (∘),
map_mul, map_one, mul_one] using hf.tendsto.const_mul (f x)
@[to_additive]
lemma topological_group.ext {G : Type*} [group G] {t t' : topological_space G}
(tg : @topological_group G t _) (tg' : @topological_group G t' _)
(h : @nhds G t 1 = @nhds G t' 1) : t = t' :=
eq_of_nhds_eq_nhds $ λ x, by
rw [← @nhds_translation_mul_inv G t _ _ x , ← @nhds_translation_mul_inv G t' _ _ x , ← h]
@[to_additive]
lemma topological_group.of_nhds_aux {G : Type*} [group G] [topological_space G]
(hinv : tendsto (λ (x : G), x⁻¹) (𝓝 1) (𝓝 1))
(hleft : ∀ (x₀ : G), 𝓝 x₀ = map (λ (x : G), x₀ * x) (𝓝 1))
(hconj : ∀ (x₀ : G), map (λ (x : G), x₀ * x * x₀⁻¹) (𝓝 1) ≤ 𝓝 1) : continuous (λ x : G, x⁻¹) :=
begin
rw continuous_iff_continuous_at,
rintros x₀,
have key : (λ x, (x₀*x)⁻¹) = (λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹) ∘ (λ x, x⁻¹),
by {ext ; simp[mul_assoc] },
calc map (λ x, x⁻¹) (𝓝 x₀)
= map (λ x, x⁻¹) (map (λ x, x₀*x) $ 𝓝 1) : by rw hleft
... = map (λ x, (x₀*x)⁻¹) (𝓝 1) : by rw filter.map_map
... = map (((λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹)) ∘ (λ x, x⁻¹)) (𝓝 1) : by rw key
... = map ((λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹)) _ : by rw ← filter.map_map
... ≤ map ((λ x, x₀⁻¹ * x) ∘ λ x, x₀ * x * x₀⁻¹) (𝓝 1) : map_mono hinv
... = map (λ x, x₀⁻¹ * x) (map (λ x, x₀ * x * x₀⁻¹) (𝓝 1)) : filter.map_map
... ≤ map (λ x, x₀⁻¹ * x) (𝓝 1) : map_mono (hconj x₀)
... = 𝓝 x₀⁻¹ : (hleft _).symm
end
@[to_additive]
lemma topological_group.of_nhds_one' {G : Type u} [group G] [topological_space G]
(hmul : tendsto (uncurry ((*) : G → G → G)) ((𝓝 1) ×ᶠ 𝓝 1) (𝓝 1))
(hinv : tendsto (λ x : G, x⁻¹) (𝓝 1) (𝓝 1))
(hleft : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1))
(hright : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x*x₀) (𝓝 1)) : topological_group G :=
begin
refine { continuous_mul := (has_continuous_mul.of_nhds_one hmul hleft hright).continuous_mul,
continuous_inv := topological_group.of_nhds_aux hinv hleft _ },
intros x₀,
suffices : map (λ (x : G), x₀ * x * x₀⁻¹) (𝓝 1) = 𝓝 1, by simp [this, le_refl],
rw [show (λ x, x₀ * x * x₀⁻¹) = (λ x, x₀ * x) ∘ λ x, x*x₀⁻¹, by {ext, simp [mul_assoc] },
← filter.map_map, ← hright, hleft x₀⁻¹, filter.map_map],
convert map_id,
ext,
simp
end
@[to_additive]
lemma topological_group.of_nhds_one {G : Type u} [group G] [topological_space G]
(hmul : tendsto (uncurry ((*) : G → G → G)) ((𝓝 1) ×ᶠ 𝓝 1) (𝓝 1))
(hinv : tendsto (λ x : G, x⁻¹) (𝓝 1) (𝓝 1))
(hleft : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1))
(hconj : ∀ x₀ : G, tendsto (λ x, x₀*x*x₀⁻¹) (𝓝 1) (𝓝 1)) : topological_group G :=
{ continuous_mul := begin
rw continuous_iff_continuous_at,
rintros ⟨x₀, y₀⟩,
have key : (λ (p : G × G), x₀ * p.1 * (y₀ * p.2)) =
((λ x, x₀*y₀*x) ∘ (uncurry (*)) ∘ (prod.map (λ x, y₀⁻¹*x*y₀) id)),
by { ext, simp [uncurry, prod.map, mul_assoc] },
specialize hconj y₀⁻¹, rw inv_inv at hconj,
calc map (λ (p : G × G), p.1 * p.2) (𝓝 (x₀, y₀))
= map (λ (p : G × G), p.1 * p.2) ((𝓝 x₀) ×ᶠ 𝓝 y₀)
: by rw nhds_prod_eq
... = map (λ (p : G × G), x₀ * p.1 * (y₀ * p.2)) ((𝓝 1) ×ᶠ (𝓝 1))
: by rw [hleft x₀, hleft y₀, prod_map_map_eq, filter.map_map]
... = map (((λ x, x₀*y₀*x) ∘ (uncurry (*))) ∘ (prod.map (λ x, y₀⁻¹*x*y₀) id))((𝓝 1) ×ᶠ (𝓝 1))
: by rw key
... = map ((λ x, x₀*y₀*x) ∘ (uncurry (*))) ((map (λ x, y₀⁻¹*x*y₀) $ 𝓝 1) ×ᶠ (𝓝 1))
: by rw [← filter.map_map, ← prod_map_map_eq', map_id]
... ≤ map ((λ x, x₀*y₀*x) ∘ (uncurry (*))) ((𝓝 1) ×ᶠ (𝓝 1))
: map_mono (filter.prod_mono hconj $ le_rfl)
... = map (λ x, x₀*y₀*x) (map (uncurry (*)) ((𝓝 1) ×ᶠ (𝓝 1))) : by rw filter.map_map
... ≤ map (λ x, x₀*y₀*x) (𝓝 1) : map_mono hmul
... = 𝓝 (x₀*y₀) : (hleft _).symm
end,
continuous_inv := topological_group.of_nhds_aux hinv hleft hconj}
@[to_additive]
lemma topological_group.of_comm_of_nhds_one {G : Type u} [comm_group G] [topological_space G]
(hmul : tendsto (uncurry ((*) : G → G → G)) ((𝓝 1) ×ᶠ 𝓝 1) (𝓝 1))
(hinv : tendsto (λ x : G, x⁻¹) (𝓝 1) (𝓝 1))
(hleft : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1)) : topological_group G :=
topological_group.of_nhds_one hmul hinv hleft (by simpa using tendsto_id)
end topological_group
section quotient_topological_group
variables [topological_space G] [group G] [topological_group G] (N : subgroup G) (n : N.normal)
@[to_additive]
instance quotient_group.quotient.topological_space {G : Type*} [group G] [topological_space G]
(N : subgroup G) : topological_space (G ⧸ N) :=
quotient.topological_space
open quotient_group
@[to_additive]
lemma quotient_group.is_open_map_coe : is_open_map (coe : G → G ⧸ N) :=
begin
intros s s_op,
change is_open ((coe : G → G ⧸ N) ⁻¹' (coe '' s)),
rw quotient_group.preimage_image_coe N s,
exact is_open_Union (λ n, (continuous_mul_right _).is_open_preimage s s_op)
end
@[to_additive]
instance topological_group_quotient [N.normal] : topological_group (G ⧸ N) :=
{ continuous_mul := begin
have cont : continuous ((coe : G → G ⧸ N) ∘ (λ (p : G × G), p.fst * p.snd)) :=
continuous_quot_mk.comp continuous_mul,
have quot : quotient_map (λ p : G × G, ((p.1 : G ⧸ N), (p.2 : G ⧸ N))),
{ apply is_open_map.to_quotient_map,
{ exact (quotient_group.is_open_map_coe N).prod (quotient_group.is_open_map_coe N) },
{ exact continuous_quot_mk.prod_map continuous_quot_mk },
{ exact (surjective_quot_mk _).prod_map (surjective_quot_mk _) } },
exact (quotient_map.continuous_iff quot).2 cont,
end,
continuous_inv := begin
have : continuous ((coe : G → G ⧸ N) ∘ (λ (a : G), a⁻¹)) :=
continuous_quot_mk.comp continuous_inv,
convert continuous_quotient_lift _ this,
end }
end quotient_topological_group
/-- A typeclass saying that `λ p : G × G, p.1 - p.2` is a continuous function. This property
automatically holds for topological additive groups but it also holds, e.g., for `ℝ≥0`. -/
class has_continuous_sub (G : Type*) [topological_space G] [has_sub G] : Prop :=
(continuous_sub : continuous (λ p : G × G, p.1 - p.2))
/-- A typeclass saying that `λ p : G × G, p.1 / p.2` is a continuous function. This property
automatically holds for topological groups. Lemmas using this class have primes.
The unprimed version is for `group_with_zero`. -/
@[to_additive]
class has_continuous_div (G : Type*) [topological_space G] [has_div G] : Prop :=
(continuous_div' : continuous (λ p : G × G, p.1 / p.2))
@[priority 100, to_additive] -- see Note [lower instance priority]
instance topological_group.to_has_continuous_div [topological_space G] [group G]
[topological_group G] : has_continuous_div G :=
⟨by { simp only [div_eq_mul_inv], exact continuous_fst.mul continuous_snd.inv }⟩
export has_continuous_sub (continuous_sub)
export has_continuous_div (continuous_div')
section has_continuous_div
variables [topological_space G] [has_div G] [has_continuous_div G]
@[to_additive sub]
lemma filter.tendsto.div' {f g : α → G} {l : filter α} {a b : G} (hf : tendsto f l (𝓝 a))
(hg : tendsto g l (𝓝 b)) : tendsto (λ x, f x / g x) l (𝓝 (a / b)) :=
(continuous_div'.tendsto (a, b)).comp (hf.prod_mk_nhds hg)
@[to_additive const_sub]
lemma filter.tendsto.const_div' (b : G) {c : G} {f : α → G} {l : filter α}
(h : tendsto f l (𝓝 c)) : tendsto (λ k : α, b / f k) l (𝓝 (b / c)) :=
tendsto_const_nhds.div' h
@[to_additive sub_const]
lemma filter.tendsto.div_const' (b : G) {c : G} {f : α → G} {l : filter α}
(h : tendsto f l (𝓝 c)) : tendsto (λ k : α, f k / b) l (𝓝 (c / b)) :=
h.div' tendsto_const_nhds
variables [topological_space α] {f g : α → G} {s : set α} {x : α}
@[continuity, to_additive sub] lemma continuous.div' (hf : continuous f) (hg : continuous g) :
continuous (λ x, f x / g x) :=
continuous_div'.comp (hf.prod_mk hg : _)
@[to_additive continuous_sub_left]
lemma continuous_div_left' (a : G) : continuous (λ b : G, a / b) :=
continuous_const.div' continuous_id
@[to_additive continuous_sub_right]
lemma continuous_div_right' (a : G) : continuous (λ b : G, b / a) :=
continuous_id.div' continuous_const
@[to_additive sub]
lemma continuous_at.div' {f g : α → G} {x : α} (hf : continuous_at f x) (hg : continuous_at g x) :
continuous_at (λx, f x / g x) x :=
hf.div' hg
@[to_additive sub]
lemma continuous_within_at.div' (hf : continuous_within_at f s x)
(hg : continuous_within_at g s x) :
continuous_within_at (λ x, f x / g x) s x :=
hf.div' hg
@[to_additive sub]
lemma continuous_on.div' (hf : continuous_on f s) (hg : continuous_on g s) :
continuous_on (λx, f x / g x) s :=
λ x hx, (hf x hx).div' (hg x hx)
end has_continuous_div
section div_in_topological_group
variables [group G] [topological_space G] [topological_group G]
/-- A version of `homeomorph.mul_left a b⁻¹` that is defeq to `a / b`. -/
@[to_additive /-" A version of `homeomorph.add_left a (-b)` that is defeq to `a - b`. "-/,
simps {simp_rhs := tt}]
def homeomorph.div_left (x : G) : G ≃ₜ G :=
{ continuous_to_fun := continuous_const.div' continuous_id,
continuous_inv_fun := continuous_inv.mul continuous_const,
.. equiv.div_left x }
@[to_additive] lemma is_open_map_div_left (a : G) : is_open_map ((/) a) :=
(homeomorph.div_left _).is_open_map
@[to_additive] lemma is_closed_map_div_left (a : G) : is_closed_map ((/) a) :=
(homeomorph.div_left _).is_closed_map
/-- A version of `homeomorph.mul_right a⁻¹ b` that is defeq to `b / a`. -/
@[to_additive /-" A version of `homeomorph.add_right (-a) b` that is defeq to `b - a`. "-/,
simps {simp_rhs := tt}]
def homeomorph.div_right (x : G) : G ≃ₜ G :=
{ continuous_to_fun := continuous_id.div' continuous_const,
continuous_inv_fun := continuous_id.mul continuous_const,
.. equiv.div_right x }
@[to_additive]
lemma is_open_map_div_right (a : G) : is_open_map (λ x, x / a) :=
(homeomorph.div_right a).is_open_map
@[to_additive]
lemma is_closed_map_div_right (a : G) : is_closed_map (λ x, x / a) :=
(homeomorph.div_right a).is_closed_map
@[to_additive]
lemma tendsto_div_nhds_one_iff
{α : Type*} {l : filter α} {x : G} {u : α → G} :
tendsto (λ n, u n / x) l (𝓝 1) ↔ tendsto u l (𝓝 x) :=
begin
have A : tendsto (λ (n : α), x) l (𝓝 x) := tendsto_const_nhds,
exact ⟨λ h, by simpa using h.mul A, λ h, by simpa using h.div' A⟩
end
@[to_additive] lemma nhds_translation_div (x : G) : comap (/ x) (𝓝 1) = 𝓝 x :=
by simpa only [div_eq_mul_inv] using nhds_translation_mul_inv x
end div_in_topological_group
/-!
### Topological operations on pointwise sums and products
A few results about interior and closure of the pointwise addition/multiplication of sets in groups
with continuous addition/multiplication. See also `submonoid.top_closure_mul_self_eq` in
`topology.algebra.monoid`.
-/
section has_continuous_mul
variables [topological_space α] [group α] [has_continuous_mul α] {s t : set α}
@[to_additive] lemma is_open.mul_left (ht : is_open t) : is_open (s * t) :=
by { rw ←Union_mul_left_image, exact is_open_bUnion (λ a ha, is_open_map_mul_left a t ht) }
@[to_additive] lemma is_open.mul_right (hs : is_open s) : is_open (s * t) :=
by { rw ←Union_mul_right_image, exact is_open_bUnion (λ a ha, is_open_map_mul_right a s hs) }
@[to_additive] lemma subset_interior_mul_left : interior s * t ⊆ interior (s * t) :=
interior_maximal (set.mul_subset_mul_right interior_subset) is_open_interior.mul_right
@[to_additive] lemma subset_interior_mul_right : s * interior t ⊆ interior (s * t) :=
interior_maximal (set.mul_subset_mul_left interior_subset) is_open_interior.mul_left
@[to_additive] lemma subset_interior_mul : interior s * interior t ⊆ interior (s * t) :=
(set.mul_subset_mul_left interior_subset).trans subset_interior_mul_left
end has_continuous_mul
section topological_group
variables [topological_space α] [group α] [topological_group α] {s t : set α}
@[to_additive] lemma is_open.div_left (ht : is_open t) : is_open (s / t) :=
by { rw ←Union_div_left_image, exact is_open_bUnion (λ a ha, is_open_map_div_left a t ht) }
@[to_additive] lemma is_open.div_right (hs : is_open s) : is_open (s / t) :=
by { rw ←Union_div_right_image, exact is_open_bUnion (λ a ha, is_open_map_div_right a s hs) }
@[to_additive] lemma subset_interior_div_left : interior s / t ⊆ interior (s / t) :=
interior_maximal (div_subset_div_right interior_subset) is_open_interior.div_right
@[to_additive] lemma subset_interior_div_right : s / interior t ⊆ interior (s / t) :=
interior_maximal (div_subset_div_left interior_subset) is_open_interior.div_left
@[to_additive] lemma subset_interior_div : interior s / interior t ⊆ interior (s / t) :=
(div_subset_div_left interior_subset).trans subset_interior_div_left
@[to_additive] lemma is_open.mul_closure (hs : is_open s) (t : set α) : s * closure t = s * t :=
begin
refine (mul_subset_iff.2 $ λ a ha b hb, _).antisymm (mul_subset_mul_left subset_closure),
rw mem_closure_iff at hb,
have hbU : b ∈ s⁻¹ * {a * b} := ⟨a⁻¹, a * b, set.inv_mem_inv.2 ha, rfl, inv_mul_cancel_left _ _⟩,
obtain ⟨_, ⟨c, d, hc, (rfl : d = _), rfl⟩, hcs⟩ := hb _ hs.inv.mul_right hbU,
exact ⟨c⁻¹, _, hc, hcs, inv_mul_cancel_left _ _⟩,
end
@[to_additive] lemma is_open.closure_mul (ht : is_open t) (s : set α) : closure s * t = s * t :=
by rw [←inv_inv (closure s * t), mul_inv_rev, inv_closure, ht.inv.mul_closure, mul_inv_rev, inv_inv,
inv_inv]
@[to_additive] lemma is_open.div_closure (hs : is_open s) (t : set α) : s / closure t = s / t :=
by simp_rw [div_eq_mul_inv, inv_closure, hs.mul_closure]
@[to_additive] lemma is_open.closure_div (ht : is_open t) (s : set α) : closure s / t = s / t :=
by simp_rw [div_eq_mul_inv, ht.inv.closure_mul]
end topological_group
/-- additive group with a neighbourhood around 0.
Only used to construct a topology and uniform space.
This is currently only available for commutative groups, but it can be extended to
non-commutative groups too.
-/
class add_group_with_zero_nhd (G : Type u) extends add_comm_group G :=
(Z [] : filter G)
(zero_Z : pure 0 ≤ Z)
(sub_Z : tendsto (λp:G×G, p.1 - p.2) (Z ×ᶠ Z) Z)
section filter_mul
section
variables (G) [topological_space G] [group G] [topological_group G]
@[to_additive]
lemma topological_group.t1_space (h : @is_closed G _ {1}) : t1_space G :=
⟨assume x, by { convert is_closed_map_mul_right x _ h, simp }⟩
@[to_additive]
lemma topological_group.t3_space [t1_space G] : t3_space G :=
⟨assume s a hs ha,
let f := λ p : G × G, p.1 * (p.2)⁻¹ in
have hf : continuous f := continuous_fst.mul continuous_snd.inv,
-- a ∈ -s implies f (a, 1) ∈ -s, and so (a, 1) ∈ f⁻¹' (-s);
-- and so can find t₁ t₂ open such that a ∈ t₁ × t₂ ⊆ f⁻¹' (-s)
let ⟨t₁, t₂, ht₁, ht₂, a_mem_t₁, one_mem_t₂, t_subset⟩ :=
is_open_prod_iff.1 ((is_open_compl_iff.2 hs).preimage hf) a (1:G) (by simpa [f]) in
begin
use [s * t₂, ht₂.mul_left, λ x hx, ⟨x, 1, hx, one_mem_t₂, mul_one _⟩],
rw [nhds_within, inf_principal_eq_bot, mem_nhds_iff],
refine ⟨t₁, _, ht₁, a_mem_t₁⟩,
rintros x hx ⟨y, z, hy, hz, yz⟩,
have : x * z⁻¹ ∈ sᶜ := (prod_subset_iff.1 t_subset) x hx z hz,
have : x * z⁻¹ ∈ s, rw ← yz, simpa,
contradiction
end⟩
@[to_additive]
lemma topological_group.t2_space [t1_space G] : t2_space G :=
@t3_space.t2_space G _ (topological_group.t3_space G)
variables {G} (S : subgroup G) [subgroup.normal S] [is_closed (S : set G)]
@[to_additive]
instance subgroup.t3_quotient_of_is_closed
(S : subgroup G) [subgroup.normal S] [is_closed (S : set G)] : t3_space (G ⧸ S) :=
begin
suffices : t1_space (G ⧸ S), { exact @topological_group.t3_space _ _ _ _ this, },
have hS : is_closed (S : set G) := infer_instance,
rw ← quotient_group.ker_mk S at hS,
exact topological_group.t1_space (G ⧸ S) ((quotient_map_quotient_mk.is_closed_preimage).mp hS),
end
end
section
/-! Some results about an open set containing the product of two sets in a topological group. -/
variables [topological_space G] [group G] [topological_group G]
/-- Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of `1`
such that `K * V ⊆ U`. -/
@[to_additive "Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of
`0` such that `K + V ⊆ U`."]
lemma compact_open_separated_mul_right {K U : set G} (hK : is_compact K) (hU : is_open U)
(hKU : K ⊆ U) : ∃ V ∈ 𝓝 (1 : G), K * V ⊆ U :=
begin
apply hK.induction_on,
{ exact ⟨univ, by simp⟩ },
{ rintros s t hst ⟨V, hV, hV'⟩,
exact ⟨V, hV, (mul_subset_mul_right hst).trans hV'⟩ },
{ rintros s t ⟨V, V_in, hV'⟩ ⟨W, W_in, hW'⟩,
use [V ∩ W, inter_mem V_in W_in],
rw union_mul,
exact union_subset ((mul_subset_mul_left (V.inter_subset_left W)).trans hV')
((mul_subset_mul_left (V.inter_subset_right W)).trans hW') },
{ intros x hx,
have := tendsto_mul (show U ∈ 𝓝 (x * 1), by simpa using hU.mem_nhds (hKU hx)),
rw [nhds_prod_eq, mem_map, mem_prod_iff] at this,
rcases this with ⟨t, ht, s, hs, h⟩,
rw [← image_subset_iff, image_mul_prod] at h,
exact ⟨t, mem_nhds_within_of_mem_nhds ht, s, hs, h⟩ }
end
open mul_opposite
/-- Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of `1`
such that `V * K ⊆ U`. -/
@[to_additive "Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of
`0` such that `V + K ⊆ U`."]
lemma compact_open_separated_mul_left {K U : set G} (hK : is_compact K) (hU : is_open U)
(hKU : K ⊆ U) : ∃ V ∈ 𝓝 (1 : G), V * K ⊆ U :=
begin
rcases compact_open_separated_mul_right (hK.image continuous_op) (op_homeomorph.is_open_map U hU)
(image_subset op hKU) with ⟨V, (hV : V ∈ 𝓝 (op (1 : G))), hV' : op '' K * V ⊆ op '' U⟩,
refine ⟨op ⁻¹' V, continuous_op.continuous_at hV, _⟩,
rwa [← image_preimage_eq V op_surjective, ← image_op_mul, image_subset_iff,
preimage_image_eq _ op_injective] at hV'
end
/-- A compact set is covered by finitely many left multiplicative translates of a set
with non-empty interior. -/
@[to_additive "A compact set is covered by finitely many left additive translates of a set
with non-empty interior."]
lemma compact_covered_by_mul_left_translates {K V : set G} (hK : is_compact K)
(hV : (interior V).nonempty) : ∃ t : finset G, K ⊆ ⋃ g ∈ t, (λ h, g * h) ⁻¹' V :=
begin
obtain ⟨t, ht⟩ : ∃ t : finset G, K ⊆ ⋃ x ∈ t, interior (((*) x) ⁻¹' V),
{ refine hK.elim_finite_subcover (λ x, interior $ ((*) x) ⁻¹' V) (λ x, is_open_interior) _,
cases hV with g₀ hg₀,
refine λ g hg, mem_Union.2 ⟨g₀ * g⁻¹, _⟩,
refine preimage_interior_subset_interior_preimage (continuous_const.mul continuous_id) _,
rwa [mem_preimage, inv_mul_cancel_right] },
exact ⟨t, subset.trans ht $ Union₂_mono $ λ g hg, interior_subset⟩
end
/-- Every locally compact separable topological group is σ-compact.
Note: this is not true if we drop the topological group hypothesis. -/
@[priority 100, to_additive separable_locally_compact_add_group.sigma_compact_space]
instance separable_locally_compact_group.sigma_compact_space
[separable_space G] [locally_compact_space G] : sigma_compact_space G :=
begin
obtain ⟨L, hLc, hL1⟩ := exists_compact_mem_nhds (1 : G),
refine ⟨⟨λ n, (λ x, x * dense_seq G n) ⁻¹' L, _, _⟩⟩,
{ intro n, exact (homeomorph.mul_right _).compact_preimage.mpr hLc },
{ refine Union_eq_univ_iff.2 (λ x, _),
obtain ⟨_, ⟨n, rfl⟩, hn⟩ : (range (dense_seq G) ∩ (λ y, x * y) ⁻¹' L).nonempty,
{ rw [← (homeomorph.mul_left x).apply_symm_apply 1] at hL1,
exact (dense_range_dense_seq G).inter_nhds_nonempty
((homeomorph.mul_left x).continuous.continuous_at $ hL1) },
exact ⟨n, hn⟩ }
end
/-- Every separated topological group in which there exists a compact set with nonempty interior
is locally compact. -/
@[to_additive] lemma topological_space.positive_compacts.locally_compact_space_of_group
[t2_space G] (K : positive_compacts G) :
locally_compact_space G :=
begin
refine locally_compact_of_compact_nhds (λ x, _),
obtain ⟨y, hy⟩ := K.interior_nonempty,
let F := homeomorph.mul_left (x * y⁻¹),
refine ⟨F '' K, _, K.compact.image F.continuous⟩,
suffices : F.symm ⁻¹' K ∈ 𝓝 x, by { convert this, apply equiv.image_eq_preimage },
apply continuous_at.preimage_mem_nhds F.symm.continuous.continuous_at,
have : F.symm x = y, by simp [F, homeomorph.mul_left_symm],
rw this,
exact mem_interior_iff_mem_nhds.1 hy
end
end
section
variables [topological_space G] [comm_group G] [topological_group G]
@[to_additive]
lemma nhds_mul (x y : G) : 𝓝 (x * y) = 𝓝 x * 𝓝 y :=
filter_eq $ set.ext $ assume s,
begin
rw [← nhds_translation_mul_inv x, ← nhds_translation_mul_inv y, ← nhds_translation_mul_inv (x*y)],
split,
{ rintros ⟨t, ht, ts⟩,
rcases exists_nhds_one_split ht with ⟨V, V1, h⟩,
refine ⟨(λa, a * x⁻¹) ⁻¹' V, (λa, a * y⁻¹) ⁻¹' V,
⟨V, V1, subset.refl _⟩, ⟨V, V1, subset.refl _⟩, _⟩,
rintros a ⟨v, w, v_mem, w_mem, rfl⟩,
apply ts,
simpa [mul_comm, mul_assoc, mul_left_comm] using h (v * x⁻¹) v_mem (w * y⁻¹) w_mem },
{ rintros ⟨a, c, ⟨b, hb, ba⟩, ⟨d, hd, dc⟩, ac⟩,
refine ⟨b ∩ d, inter_mem hb hd, assume v, _⟩,
simp only [preimage_subset_iff, mul_inv_rev, mem_preimage] at *,
rintros ⟨vb, vd⟩,
refine ac ⟨v * y⁻¹, y, _, _, _⟩,
{ rw ← mul_assoc _ _ _ at vb, exact ba _ vb },
{ apply dc y, rw mul_right_inv, exact mem_of_mem_nhds hd },
{ simp only [inv_mul_cancel_right] } }
end
/-- On a topological group, `𝓝 : G → filter G` can be promoted to a `mul_hom`. -/
@[to_additive "On an additive topological group, `𝓝 : G → filter G` can be promoted to an
`add_hom`.", simps]
def nhds_mul_hom : G →ₙ* (filter G) :=
{ to_fun := 𝓝,
map_mul' := λ_ _, nhds_mul _ _ }
end
end filter_mul
instance additive.topological_add_group {G} [h : topological_space G]
[group G] [topological_group G] : @topological_add_group (additive G) h _ :=
{ continuous_neg := @continuous_inv G _ _ _ }
instance multiplicative.topological_group {G} [h : topological_space G]
[add_group G] [topological_add_group G] : @topological_group (multiplicative G) h _ :=
{ continuous_inv := @continuous_neg G _ _ _ }
section quotient
variables [group G] [topological_space G] [topological_group G] {Γ : subgroup G}
@[to_additive]
instance quotient_group.has_continuous_const_smul : has_continuous_const_smul G (G ⧸ Γ) :=
{ continuous_const_smul := λ g₀, begin
apply continuous_coinduced_dom.2,
change continuous (λ g : G, quotient_group.mk (g₀ * g)),
exact continuous_coinduced_rng.comp (continuous_mul_left g₀),
end }
@[to_additive]
lemma quotient_group.continuous_smul₁ (x : G ⧸ Γ) : continuous (λ g : G, g • x) :=
begin
obtain ⟨g₀, rfl⟩ : ∃ g₀, quotient_group.mk g₀ = x,
{ exact @quotient.exists_rep _ (quotient_group.left_rel Γ) x },
change continuous (λ g, quotient_group.mk (g * g₀)),
exact continuous_coinduced_rng.comp (continuous_mul_right g₀)
end
@[to_additive]
instance quotient_group.has_continuous_smul [locally_compact_space G] :
has_continuous_smul G (G ⧸ Γ) :=
{ continuous_smul := begin
let F : G × G ⧸ Γ → G ⧸ Γ := λ p, p.1 • p.2,
change continuous F,
have H : continuous (F ∘ (λ p : G × G, (p.1, quotient_group.mk p.2))),
{ change continuous (λ p : G × G, quotient_group.mk (p.1 * p.2)),
refine continuous_coinduced_rng.comp continuous_mul },
exact quotient_map.continuous_lift_prod_right quotient_map_quotient_mk H,
end }
end quotient
namespace units
open mul_opposite (continuous_op continuous_unop)
variables [monoid α] [topological_space α] [has_continuous_mul α] [monoid β] [topological_space β]
[has_continuous_mul β]
@[to_additive] instance : topological_group αˣ :=
{ continuous_inv := continuous_induced_rng.2 ((continuous_unop.comp
(@continuous_embed_product α _ _).snd).prod_mk (continuous_op.comp continuous_coe)) }
/-- The topological group isomorphism between the units of a product of two monoids, and the product
of the units of each monoid. -/
def homeomorph.prod_units : homeomorph (α × β)ˣ (αˣ × βˣ) :=
{ continuous_to_fun :=
begin
show continuous (λ i : (α × β)ˣ, (map (monoid_hom.fst α β) i, map (monoid_hom.snd α β) i)),
refine continuous.prod_mk _ _,
{ refine continuous_induced_rng.2 ((continuous_fst.comp units.continuous_coe).prod_mk _),
refine mul_opposite.continuous_op.comp (continuous_fst.comp _),
simp_rw units.inv_eq_coe_inv,
exact units.continuous_coe.comp continuous_inv, },
{ refine continuous_induced_rng.2 ((continuous_snd.comp units.continuous_coe).prod_mk _),
simp_rw units.coe_map_inv,
exact continuous_op.comp (continuous_snd.comp (units.continuous_coe.comp continuous_inv)), }
end,
continuous_inv_fun :=
begin
refine continuous_induced_rng.2 (continuous.prod_mk _ _),
{ exact (units.continuous_coe.comp continuous_fst).prod_mk
(units.continuous_coe.comp continuous_snd), },
{ refine continuous_op.comp
(units.continuous_coe.comp $ continuous_induced_rng.2 $ continuous.prod_mk _ _),
{ exact (units.continuous_coe.comp (continuous_inv.comp continuous_fst)).prod_mk
(units.continuous_coe.comp (continuous_inv.comp continuous_snd)) },
{ exact continuous_op.comp ((units.continuous_coe.comp continuous_fst).prod_mk
(units.continuous_coe.comp continuous_snd)) }}
end,
..mul_equiv.prod_units }
end units
section lattice_ops
variables {ι : Sort*} [group G] [group H]
{t : topological_space H} [topological_group H] {F : Type*}
[monoid_hom_class F G H] (f : F)
@[to_additive] lemma topological_group_Inf {ts : set (topological_space G)}
(h : ∀ t ∈ ts, @topological_group G t _) :
@topological_group G (Inf ts) _ :=
{ continuous_inv := @has_continuous_inv.continuous_inv G (Inf ts) _
(@has_continuous_inv_Inf _ _ _
(λ t ht, @topological_group.to_has_continuous_inv G t _ (h t ht))),
continuous_mul := @has_continuous_mul.continuous_mul G (Inf ts) _
(@has_continuous_mul_Inf _ _ _
(λ t ht, @topological_group.to_has_continuous_mul G t _ (h t ht))) }
@[to_additive] lemma topological_group_infi {ts' : ι → topological_space G}
(h' : ∀ i, @topological_group G (ts' i) _) :
@topological_group G (⨅ i, ts' i) _ :=
by {rw ← Inf_range, exact topological_group_Inf (set.forall_range_iff.mpr h')}
@[to_additive] lemma topological_group_inf {t₁ t₂ : topological_space G}
(h₁ : @topological_group G t₁ _) (h₂ : @topological_group G t₂ _) :
@topological_group G (t₁ ⊓ t₂) _ :=
by {rw inf_eq_infi, refine topological_group_infi (λ b, _), cases b; assumption}
end lattice_ops
/-!
### Lattice of group topologies
We define a type class `group_topology α` which endows a group `α` with a topology such that all
group operations are continuous.
Group topologies on a fixed group `α` are ordered, by reverse inclusion. They form a complete
lattice, with `⊥` the discrete topology and `⊤` the indiscrete topology.
Any function `f : α → β` induces `coinduced f : topological_space α → group_topology β`.
The additive version `add_group_topology α` and corresponding results are provided as well.
-/
/-- A group topology on a group `α` is a topology for which multiplication and inversion
are continuous. -/
structure group_topology (α : Type u) [group α]
extends topological_space α, topological_group α : Type u
/-- An additive group topology on an additive group `α` is a topology for which addition and
negation are continuous. -/
structure add_group_topology (α : Type u) [add_group α]
extends topological_space α, topological_add_group α : Type u
attribute [to_additive] group_topology
namespace group_topology
variables [group α]
/-- A version of the global `continuous_mul` suitable for dot notation. -/
@[to_additive]
lemma continuous_mul' (g : group_topology α) :
by haveI := g.to_topological_space; exact continuous (λ p : α × α, p.1 * p.2) :=
begin
letI := g.to_topological_space,
haveI := g.to_topological_group,
exact continuous_mul,
end
/-- A version of the global `continuous_inv` suitable for dot notation. -/
@[to_additive]
lemma continuous_inv' (g : group_topology α) :
by haveI := g.to_topological_space; exact continuous (has_inv.inv : α → α) :=
begin
letI := g.to_topological_space,
haveI := g.to_topological_group,
exact continuous_inv,
end
@[to_additive]
lemma to_topological_space_injective :
function.injective (to_topological_space : group_topology α → topological_space α):=
λ f g h, by { cases f, cases g, congr' }
@[ext, to_additive]
lemma ext' {f g : group_topology α} (h : f.is_open = g.is_open) : f = g :=
to_topological_space_injective $ topological_space_eq h
/-- The ordering on group topologies on the group `γ`.
`t ≤ s` if every set open in `s` is also open in `t` (`t` is finer than `s`). -/
@[to_additive]
instance : partial_order (group_topology α) :=
partial_order.lift to_topological_space to_topological_space_injective
@[simp, to_additive] lemma to_topological_space_le {x y : group_topology α} :
x.to_topological_space ≤ y.to_topological_space ↔ x ≤ y := iff.rfl
@[to_additive]
instance : has_top (group_topology α) :=
⟨{to_topological_space := ⊤,
continuous_mul := continuous_top,
continuous_inv := continuous_top}⟩
@[simp, to_additive] lemma to_topological_space_top :
(⊤ : group_topology α).to_topological_space = ⊤ := rfl
@[to_additive]
instance : has_bot (group_topology α) :=
⟨{to_topological_space := ⊥,
continuous_mul := by continuity,
continuous_inv := continuous_bot}⟩
@[simp, to_additive] lemma to_topological_space_bot :
(⊥ : group_topology α).to_topological_space = ⊥ := rfl
@[to_additive]
instance : bounded_order (group_topology α) :=
{ top := ⊤,
le_top := λ x, show x.to_topological_space ≤ ⊤, from le_top,
bot := ⊥,
bot_le := λ x, show ⊥ ≤ x.to_topological_space, from bot_le }
@[to_additive]
instance : has_inf (group_topology α) :=
{ inf := λ x y, ⟨x.1 ⊓ y.1, topological_group_inf x.2 y.2⟩ }
@[simp, to_additive]
lemma to_topological_space_inf (x y : group_topology α) :
(x ⊓ y).to_topological_space = x.to_topological_space ⊓ y.to_topological_space := rfl
@[to_additive]
instance : semilattice_inf (group_topology α) :=
to_topological_space_injective.semilattice_inf _ to_topological_space_inf
@[to_additive]
instance : inhabited (group_topology α) := ⟨⊤⟩
local notation `cont` := @continuous _ _
@[to_additive "Infimum of a collection of additive group topologies"]
instance : has_Inf (group_topology α) :=
{ Inf := λ S,
⟨Inf (to_topological_space '' S), topological_group_Inf $ ball_image_iff.2 $ λ t ht, t.2⟩ }
@[simp, to_additive]
lemma to_topological_space_Inf (s : set (group_topology α)) :
(Inf s).to_topological_space = Inf (to_topological_space '' s) := rfl
@[simp, to_additive]
lemma to_topological_space_infi {ι} (s : ι → group_topology α) :
(⨅ i, s i).to_topological_space = ⨅ i, (s i).to_topological_space :=
congr_arg Inf (range_comp _ _).symm
/-- Group topologies on `γ` form a complete lattice, with `⊥` the discrete topology and `⊤` the
indiscrete topology.
The infimum of a collection of group topologies is the topology generated by all their open sets
(which is a group topology).
The supremum of two group topologies `s` and `t` is the infimum of the family of all group
topologies contained in the intersection of `s` and `t`. -/
@[to_additive]
instance : complete_semilattice_Inf (group_topology α) :=
{ Inf_le := λ S a haS, to_topological_space_le.1 $ Inf_le ⟨a, haS, rfl⟩,
le_Inf :=
begin
intros S a hab,
apply topological_space.complete_lattice.le_Inf,
rintros _ ⟨b, hbS, rfl⟩,
exact hab b hbS,
end,
..group_topology.has_Inf,
..group_topology.partial_order }
@[to_additive]
instance : complete_lattice (group_topology α) :=
{ inf := (⊓),
top := ⊤,
bot := ⊥,
..group_topology.bounded_order,
..group_topology.semilattice_inf,
..complete_lattice_of_complete_semilattice_Inf _ }
/-- Given `f : α → β` and a topology on `α`, the coinduced group topology on `β` is the finest
topology such that `f` is continuous and `β` is a topological group. -/
@[to_additive "Given `f : α → β` and a topology on `α`, the coinduced additive group topology on `β`
is the finest topology such that `f` is continuous and `β` is a topological additive group."]
def coinduced {α β : Type*} [t : topological_space α] [group β] (f : α → β) :
group_topology β :=
Inf {b : group_topology β | (topological_space.coinduced f t) ≤ b.to_topological_space}
@[to_additive]
lemma coinduced_continuous {α β : Type*} [t : topological_space α] [group β]
(f : α → β) : cont t (coinduced f).to_topological_space f :=
begin
rw continuous_iff_coinduced_le,
refine le_Inf _,
rintros _ ⟨t', ht', rfl⟩,
exact ht',
end
end group_topology
|