Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 60,124 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot
-/
import group_theory.group_action.conj_act
import group_theory.group_action.quotient
import order.filter.pointwise
import topology.algebra.monoid
import topology.compact_open
import topology.sets.compacts
import topology.algebra.constructions

/-!
# Topological groups

This file defines the following typeclasses:

* `topological_group`, `topological_add_group`: multiplicative and additive topological groups,
  i.e., groups with continuous `(*)` and `(⁻¹)` / `(+)` and `(-)`;

* `has_continuous_sub G` means that `G` has a continuous subtraction operation.

There is an instance deducing `has_continuous_sub` from `topological_group` but we use a separate
typeclass because, e.g., `ℕ` and `ℝ≥0` have continuous subtraction but are not additive groups.

We also define `homeomorph` versions of several `equiv`s: `homeomorph.mul_left`,
`homeomorph.mul_right`, `homeomorph.inv`, and prove a few facts about neighbourhood filters in
groups.

## Tags

topological space, group, topological group
-/

open classical set filter topological_space function
open_locale classical topological_space filter pointwise

universes u v w x
variables {α : Type u} {β : Type v} {G : Type w} {H : Type x}

section continuous_mul_group

/-!
### Groups with continuous multiplication

In this section we prove a few statements about groups with continuous `(*)`.
-/

variables [topological_space G] [group G] [has_continuous_mul G]

/-- Multiplication from the left in a topological group as a homeomorphism. -/
@[to_additive "Addition from the left in a topological additive group as a homeomorphism."]
protected def homeomorph.mul_left (a : G) : G ≃ₜ G :=
{ continuous_to_fun  := continuous_const.mul continuous_id,
  continuous_inv_fun := continuous_const.mul continuous_id,
  .. equiv.mul_left a }

@[simp, to_additive]
lemma homeomorph.coe_mul_left (a : G) : ⇑(homeomorph.mul_left a) = (*) a := rfl

@[to_additive]
lemma homeomorph.mul_left_symm (a : G) : (homeomorph.mul_left a).symm = homeomorph.mul_left a⁻¹ :=
by { ext, refl }

@[to_additive]
lemma is_open_map_mul_left (a : G) : is_open_map (λ x, a * x) :=
(homeomorph.mul_left a).is_open_map

@[to_additive is_open.left_add_coset]
lemma is_open.left_coset {U : set G} (h : is_open U) (x : G) : is_open (left_coset x U) :=
is_open_map_mul_left x _ h

@[to_additive]
lemma is_closed_map_mul_left (a : G) : is_closed_map (λ x, a * x) :=
(homeomorph.mul_left a).is_closed_map

@[to_additive is_closed.left_add_coset]
lemma is_closed.left_coset {U : set G} (h : is_closed U) (x : G) : is_closed (left_coset x U) :=
is_closed_map_mul_left x _ h

/-- Multiplication from the right in a topological group as a homeomorphism. -/
@[to_additive "Addition from the right in a topological additive group as a homeomorphism."]
protected def homeomorph.mul_right (a : G) :
  G ≃ₜ G :=
{ continuous_to_fun  := continuous_id.mul continuous_const,
  continuous_inv_fun := continuous_id.mul continuous_const,
  .. equiv.mul_right a }

@[simp, to_additive]
lemma homeomorph.coe_mul_right (a : G) : ⇑(homeomorph.mul_right a) = λ g, g * a := rfl

@[to_additive]
lemma homeomorph.mul_right_symm (a : G) :
  (homeomorph.mul_right a).symm = homeomorph.mul_right a⁻¹ :=
by { ext, refl }

@[to_additive]
lemma is_open_map_mul_right (a : G) : is_open_map (λ x, x * a) :=
(homeomorph.mul_right a).is_open_map

@[to_additive is_open.right_add_coset]
lemma is_open.right_coset {U : set G} (h : is_open U) (x : G) : is_open (right_coset U x) :=
is_open_map_mul_right x _ h

@[to_additive]
lemma is_closed_map_mul_right (a : G) : is_closed_map (λ x, x * a) :=
(homeomorph.mul_right a).is_closed_map

@[to_additive is_closed.right_add_coset]
lemma is_closed.right_coset {U : set G} (h : is_closed U) (x : G) : is_closed (right_coset U x) :=
is_closed_map_mul_right x _ h

@[to_additive]
lemma discrete_topology_of_open_singleton_one (h : is_open ({1} : set G)) : discrete_topology G :=
begin
  rw ← singletons_open_iff_discrete,
  intro g,
  suffices : {g} = (λ (x : G), g⁻¹ * x) ⁻¹' {1},
  { rw this, exact (continuous_mul_left (g⁻¹)).is_open_preimage _ h, },
  simp only [mul_one, set.preimage_mul_left_singleton, eq_self_iff_true,
    inv_inv, set.singleton_eq_singleton_iff],
end

@[to_additive]
lemma discrete_topology_iff_open_singleton_one : discrete_topology G ↔ is_open ({1} : set G) :=
⟨λ h, forall_open_iff_discrete.mpr h {1}, discrete_topology_of_open_singleton_one⟩

end continuous_mul_group

/-!
### `has_continuous_inv` and `has_continuous_neg`
-/

/-- Basic hypothesis to talk about a topological additive group. A topological additive group
over `M`, for example, is obtained by requiring the instances `add_group M` and
`has_continuous_add M` and `has_continuous_neg M`. -/
class has_continuous_neg (G : Type u) [topological_space G] [has_neg G] : Prop :=
(continuous_neg : continuous (λ a : G, -a))

/-- Basic hypothesis to talk about a topological group. A topological group over `M`, for example,
is obtained by requiring the instances `group M` and `has_continuous_mul M` and
`has_continuous_inv M`. -/
@[to_additive]
class has_continuous_inv (G : Type u) [topological_space G] [has_inv G] : Prop :=
(continuous_inv : continuous (λ a : G, a⁻¹))

export has_continuous_inv (continuous_inv)
export has_continuous_neg (continuous_neg)

section continuous_inv

variables [topological_space G] [has_inv G] [has_continuous_inv G]

@[to_additive]
lemma continuous_on_inv {s : set G} : continuous_on has_inv.inv s :=
continuous_inv.continuous_on

@[to_additive]
lemma continuous_within_at_inv {s : set G} {x : G} : continuous_within_at has_inv.inv s x :=
continuous_inv.continuous_within_at

@[to_additive]
lemma continuous_at_inv {x : G} : continuous_at has_inv.inv x :=
continuous_inv.continuous_at

@[to_additive]
lemma tendsto_inv (a : G) : tendsto has_inv.inv (𝓝 a) (𝓝 (a⁻¹)) :=
continuous_at_inv

/-- If a function converges to a value in a multiplicative topological group, then its inverse
converges to the inverse of this value. For the version in normed fields assuming additionally
that the limit is nonzero, use `tendsto.inv'`. -/
@[to_additive]
lemma filter.tendsto.inv {f : α → G} {l : filter α} {y : G} (h : tendsto f l (𝓝 y)) :
  tendsto (λ x, (f x)⁻¹) l (𝓝 y⁻¹) :=
(continuous_inv.tendsto y).comp h

variables [topological_space α] {f : α → G} {s : set α} {x : α}

@[continuity, to_additive]
lemma continuous.inv (hf : continuous f) : continuous (λx, (f x)⁻¹) :=
continuous_inv.comp hf

@[to_additive]
lemma continuous_at.inv (hf : continuous_at f x) : continuous_at (λ x, (f x)⁻¹) x :=
continuous_at_inv.comp hf

@[to_additive]
lemma continuous_on.inv (hf : continuous_on f s) : continuous_on (λx, (f x)⁻¹) s :=
continuous_inv.comp_continuous_on hf

@[to_additive]
lemma continuous_within_at.inv (hf : continuous_within_at f s x) :
  continuous_within_at (λ x, (f x)⁻¹) s x :=
hf.inv

@[to_additive]
instance [topological_space H] [has_inv H] [has_continuous_inv H] : has_continuous_inv (G × H) :=
⟨continuous_inv.fst'.prod_mk continuous_inv.snd'⟩

variable {ι : Type*}

@[to_additive]
instance pi.has_continuous_inv {C : ι → Type*} [∀ i, topological_space (C i)]
  [∀ i, has_inv (C i)] [∀ i, has_continuous_inv (C i)] : has_continuous_inv (Π i, C i) :=
{ continuous_inv := continuous_pi (λ i, (continuous_apply i).inv) }

/-- A version of `pi.has_continuous_inv` for non-dependent functions. It is needed because sometimes
Lean fails to use `pi.has_continuous_inv` for non-dependent functions. -/
@[to_additive "A version of `pi.has_continuous_neg` for non-dependent functions. It is needed
because sometimes Lean fails to use `pi.has_continuous_neg` for non-dependent functions."]
instance pi.has_continuous_inv' : has_continuous_inv (ι → G) :=
pi.has_continuous_inv

@[priority 100, to_additive]
instance has_continuous_inv_of_discrete_topology [topological_space H]
  [has_inv H] [discrete_topology H] : has_continuous_inv H :=
⟨continuous_of_discrete_topology⟩

section pointwise_limits

variables (G₁ G₂ : Type*) [topological_space G₂] [t2_space G₂]

@[to_additive] lemma is_closed_set_of_map_inv [has_inv G₁] [has_inv G₂] [has_continuous_inv G₂] :
  is_closed {f : G₁ → G₂ | ∀ x, f x⁻¹ = (f x)⁻¹ } :=
begin
  simp only [set_of_forall],
  refine is_closed_Inter (λ i, is_closed_eq (continuous_apply _) (continuous_apply _).inv),
end

end pointwise_limits

instance additive.has_continuous_neg [h : topological_space H] [has_inv H]
  [has_continuous_inv H] : @has_continuous_neg (additive H) h _ :=
{ continuous_neg := @continuous_inv H _ _ _ }

instance multiplicative.has_continuous_inv [h : topological_space H] [has_neg H]
  [has_continuous_neg H] : @has_continuous_inv (multiplicative H) h _ :=
{ continuous_inv := @continuous_neg H _ _ _ }

end continuous_inv

section continuous_involutive_inv
variables [topological_space G] [has_involutive_inv G] [has_continuous_inv G] {s : set G}

@[to_additive] lemma is_compact.inv (hs : is_compact s) : is_compact s⁻¹ :=
by { rw [← image_inv], exact hs.image continuous_inv }

variables (G)

/-- Inversion in a topological group as a homeomorphism. -/
@[to_additive "Negation in a topological group as a homeomorphism."]
protected def homeomorph.inv (G : Type*) [topological_space G] [has_involutive_inv G]
  [has_continuous_inv G] : G ≃ₜ G :=
{ continuous_to_fun  := continuous_inv,
  continuous_inv_fun := continuous_inv,
  .. equiv.inv G }

@[to_additive] lemma is_open_map_inv : is_open_map (has_inv.inv : G → G) :=
(homeomorph.inv _).is_open_map

@[to_additive] lemma is_closed_map_inv : is_closed_map (has_inv.inv : G → G) :=
(homeomorph.inv _).is_closed_map

variables {G}

@[to_additive] lemma is_open.inv (hs : is_open s) : is_open s⁻¹ := hs.preimage continuous_inv
@[to_additive] lemma is_closed.inv (hs : is_closed s) : is_closed s⁻¹ := hs.preimage continuous_inv
@[to_additive] lemma inv_closure : ∀ s : set G, (closure s)⁻¹ = closure s⁻¹ :=
(homeomorph.inv G).preimage_closure

end continuous_involutive_inv

section lattice_ops

variables {ι' : Sort*} [has_inv G]

@[to_additive] lemma has_continuous_inv_Inf {ts : set (topological_space G)}
  (h : Π t ∈ ts, @has_continuous_inv G t _) :
  @has_continuous_inv G (Inf ts) _ :=
{ continuous_inv := continuous_Inf_rng.2 (λ t ht, continuous_Inf_dom ht
  (@has_continuous_inv.continuous_inv G t _ (h t ht))) }

@[to_additive] lemma has_continuous_inv_infi {ts' : ι' → topological_space G}
  (h' : Π i, @has_continuous_inv G (ts' i) _) :
  @has_continuous_inv G (⨅ i, ts' i) _ :=
by {rw ← Inf_range, exact has_continuous_inv_Inf (set.forall_range_iff.mpr h')}

@[to_additive] lemma has_continuous_inv_inf {t₁ t₂ : topological_space G}
  (h₁ : @has_continuous_inv G t₁ _) (h₂ : @has_continuous_inv G t₂ _) :
  @has_continuous_inv G (t₁ ⊓ t₂) _ :=
by { rw inf_eq_infi, refine has_continuous_inv_infi (λ b, _), cases b; assumption }

end lattice_ops

@[to_additive] lemma inducing.has_continuous_inv {G H : Type*} [has_inv G] [has_inv H]
  [topological_space G] [topological_space H] [has_continuous_inv H] {f : G → H} (hf : inducing f)
  (hf_inv : ∀ x, f x⁻¹ = (f x)⁻¹) : has_continuous_inv G :=
⟨hf.continuous_iff.2 $ by simpa only [(∘), hf_inv] using hf.continuous.inv⟩

section topological_group

/-!
### Topological groups

A topological group is a group in which the multiplication and inversion operations are
continuous. Topological additive groups are defined in the same way. Equivalently, we can require
that the division operation `λ x y, x * y⁻¹` (resp., subtraction) is continuous.
-/

/-- A topological (additive) group is a group in which the addition and negation operations are
continuous. -/
class topological_add_group (G : Type u) [topological_space G] [add_group G]
  extends has_continuous_add G, has_continuous_neg G : Prop

/-- A topological group is a group in which the multiplication and inversion operations are
continuous.

When you declare an instance that does not already have a `uniform_space` instance,
you should also provide an instance of `uniform_space` and `uniform_group` using
`topological_group.to_uniform_space` and `topological_group_is_uniform`. -/
@[to_additive]
class topological_group (G : Type*) [topological_space G] [group G]
  extends has_continuous_mul G, has_continuous_inv G : Prop

section conj

instance conj_act.units_has_continuous_const_smul {M} [monoid M] [topological_space M]
  [has_continuous_mul M] :
  has_continuous_const_smul (conj_act Mˣ) M :=
⟨λ m, (continuous_const.mul continuous_id).mul continuous_const⟩

/-- we slightly weaken the type class assumptions here so that it will also apply to `ennreal`, but
we nevertheless leave it in the `topological_group` namespace. -/

variables [topological_space G] [has_inv G] [has_mul G] [has_continuous_mul G]

/-- Conjugation is jointly continuous on `G × G` when both `mul` and `inv` are continuous. -/
@[to_additive "Conjugation is jointly continuous on `G × G` when both `mul` and `inv` are
continuous."]
lemma topological_group.continuous_conj_prod [has_continuous_inv G] :
  continuous (λ g : G × G, g.fst * g.snd * g.fst⁻¹) :=
continuous_mul.mul (continuous_inv.comp continuous_fst)

/-- Conjugation by a fixed element is continuous when `mul` is continuous. -/
@[to_additive "Conjugation by a fixed element is continuous when `add` is continuous."]
lemma topological_group.continuous_conj (g : G) : continuous (λ (h : G), g * h * g⁻¹) :=
(continuous_mul_right g⁻¹).comp (continuous_mul_left g)

/-- Conjugation acting on fixed element of the group is continuous when both `mul` and
`inv` are continuous. -/
@[to_additive "Conjugation acting on fixed element of the additive group is continuous when both
  `add` and `neg` are continuous."]
lemma topological_group.continuous_conj' [has_continuous_inv G]
  (h : G) : continuous (λ (g : G), g * h * g⁻¹) :=
(continuous_mul_right h).mul continuous_inv

end conj

variables [topological_space G] [group G] [topological_group G]
[topological_space α] {f : α → G} {s : set α} {x : α}

section zpow

@[continuity, to_additive]
lemma continuous_zpow : ∀ z : ℤ, continuous (λ a : G, a ^ z)
| (int.of_nat n) := by simpa using continuous_pow n
| -[1+n] := by simpa using (continuous_pow (n + 1)).inv

instance add_group.has_continuous_const_smul_int {A} [add_group A] [topological_space A]
  [topological_add_group A] : has_continuous_const_smul ℤ A := ⟨continuous_zsmul⟩

instance add_group.has_continuous_smul_int {A} [add_group A] [topological_space A]
  [topological_add_group A] : has_continuous_smul ℤ A :=
⟨continuous_uncurry_of_discrete_topology continuous_zsmul⟩

@[continuity, to_additive]
lemma continuous.zpow {f : α → G} (h : continuous f) (z : ℤ) :
  continuous (λ b, (f b) ^ z) :=
(continuous_zpow z).comp h

@[to_additive]
lemma continuous_on_zpow {s : set G} (z : ℤ) : continuous_on (λ x, x ^ z) s :=
(continuous_zpow z).continuous_on

@[to_additive]
lemma continuous_at_zpow (x : G) (z : ℤ) : continuous_at (λ x, x ^ z) x :=
(continuous_zpow z).continuous_at

@[to_additive]
lemma filter.tendsto.zpow {α} {l : filter α} {f : α → G} {x : G} (hf : tendsto f l (𝓝 x)) (z : ℤ) :
  tendsto (λ x, f x ^ z) l (𝓝 (x ^ z)) :=
(continuous_at_zpow _ _).tendsto.comp hf

@[to_additive]
lemma continuous_within_at.zpow {f : α → G} {x : α} {s : set α} (hf : continuous_within_at f s x)
  (z : ℤ) : continuous_within_at (λ x, f x ^ z) s x :=
hf.zpow z

@[to_additive]
lemma continuous_at.zpow {f : α → G} {x : α} (hf : continuous_at f x) (z : ℤ) :
  continuous_at (λ x, f x ^ z) x :=
hf.zpow z

@[to_additive continuous_on.zsmul]
lemma continuous_on.zpow {f : α → G} {s : set α} (hf : continuous_on f s) (z : ℤ) :
  continuous_on (λ x, f x ^ z) s :=
λ x hx, (hf x hx).zpow z

end zpow

section ordered_comm_group

variables [topological_space H] [ordered_comm_group H] [topological_group H]

@[to_additive] lemma tendsto_inv_nhds_within_Ioi {a : H} :
  tendsto has_inv.inv (𝓝[>] a) (𝓝[<] (a⁻¹)) :=
(continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal]

@[to_additive] lemma tendsto_inv_nhds_within_Iio {a : H} :
  tendsto has_inv.inv (𝓝[<] a) (𝓝[>] (a⁻¹)) :=
(continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal]

@[to_additive] lemma tendsto_inv_nhds_within_Ioi_inv {a : H} :
  tendsto has_inv.inv (𝓝[>] (a⁻¹)) (𝓝[<] a) :=
by simpa only [inv_inv] using @tendsto_inv_nhds_within_Ioi _ _ _ _ (a⁻¹)

@[to_additive] lemma tendsto_inv_nhds_within_Iio_inv {a : H} :
  tendsto has_inv.inv (𝓝[<] (a⁻¹)) (𝓝[>] a) :=
by simpa only [inv_inv] using @tendsto_inv_nhds_within_Iio _ _ _ _ (a⁻¹)

@[to_additive] lemma tendsto_inv_nhds_within_Ici {a : H} :
  tendsto has_inv.inv (𝓝[≥] a) (𝓝[≤] (a⁻¹)) :=
(continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal]

@[to_additive] lemma tendsto_inv_nhds_within_Iic {a : H} :
  tendsto has_inv.inv (𝓝[≤] a) (𝓝[≥] (a⁻¹)) :=
(continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal]

@[to_additive] lemma tendsto_inv_nhds_within_Ici_inv {a : H} :
  tendsto has_inv.inv (𝓝[≥] (a⁻¹)) (𝓝[≤] a) :=
by simpa only [inv_inv] using @tendsto_inv_nhds_within_Ici _ _ _ _ (a⁻¹)

@[to_additive] lemma tendsto_inv_nhds_within_Iic_inv {a : H} :
  tendsto has_inv.inv (𝓝[≤] (a⁻¹)) (𝓝[≥] a) :=
by simpa only [inv_inv] using @tendsto_inv_nhds_within_Iic _ _ _ _ (a⁻¹)

end ordered_comm_group

@[instance, to_additive]
instance [topological_space H] [group H] [topological_group H] :
  topological_group (G × H) :=
{ continuous_inv := continuous_inv.prod_map continuous_inv }

@[to_additive]
instance pi.topological_group {C : β → Type*} [∀ b, topological_space (C b)]
  [∀ b, group (C b)] [∀ b, topological_group (C b)] : topological_group (Π b, C b) :=
{ continuous_inv := continuous_pi (λ i, (continuous_apply i).inv) }

open mul_opposite

@[to_additive]
instance [group α] [has_continuous_inv α] : has_continuous_inv αᵐᵒᵖ :=
op_homeomorph.symm.inducing.has_continuous_inv unop_inv

/-- If multiplication is continuous in `α`, then it also is in `αᵐᵒᵖ`. -/
@[to_additive "If addition is continuous in `α`, then it also is in `αᵃᵒᵖ`."]
instance [group α] [topological_group α] :
  topological_group αᵐᵒᵖ := { }

variable (G)

@[to_additive]
lemma nhds_one_symm : comap has_inv.inv (𝓝 (1 : G)) = 𝓝 (1 : G) :=
((homeomorph.inv G).comap_nhds_eq _).trans (congr_arg nhds inv_one)

/-- The map `(x, y) ↦ (x, xy)` as a homeomorphism. This is a shear mapping. -/
@[to_additive "The map `(x, y) ↦ (x, x + y)` as a homeomorphism.
This is a shear mapping."]
protected def homeomorph.shear_mul_right : G × G ≃ₜ G × G :=
{ continuous_to_fun  := continuous_fst.prod_mk continuous_mul,
  continuous_inv_fun := continuous_fst.prod_mk $ continuous_fst.inv.mul continuous_snd,
  .. equiv.prod_shear (equiv.refl _) equiv.mul_left }

@[simp, to_additive]
lemma homeomorph.shear_mul_right_coe :
  ⇑(homeomorph.shear_mul_right G) = λ z : G × G, (z.1, z.1 * z.2) :=
rfl

@[simp, to_additive]
lemma homeomorph.shear_mul_right_symm_coe :
  ⇑(homeomorph.shear_mul_right G).symm = λ z : G × G, (z.1, z.1⁻¹ * z.2) :=
rfl

variables {G}

@[to_additive] protected lemma inducing.topological_group {F : Type*} [group H]
  [topological_space H] [monoid_hom_class F H G] (f : F) (hf : inducing f) :
  topological_group H :=
{ to_has_continuous_mul := hf.has_continuous_mul _,
  to_has_continuous_inv := hf.has_continuous_inv (map_inv f) }

@[to_additive] protected lemma topological_group_induced {F : Type*} [group H]
  [monoid_hom_class F H G] (f : F) :
  @topological_group H (induced f ‹_›) _ :=
by { letI := induced f ‹_›, exact inducing.topological_group f ⟨rfl⟩  }

namespace subgroup

@[to_additive] instance (S : subgroup G) : topological_group S :=
inducing.topological_group S.subtype inducing_coe

end subgroup

/-- The (topological-space) closure of a subgroup of a space `M` with `has_continuous_mul` is
itself a subgroup. -/
@[to_additive "The (topological-space) closure of an additive subgroup of a space `M` with
`has_continuous_add` is itself an additive subgroup."]
def subgroup.topological_closure (s : subgroup G) : subgroup G :=
{ carrier := closure (s : set G),
  inv_mem' := λ g m, by simpa [←set.mem_inv, inv_closure] using m,
  ..s.to_submonoid.topological_closure }

@[simp, to_additive] lemma subgroup.topological_closure_coe {s : subgroup G} :
  (s.topological_closure : set G) = closure s :=
rfl

@[to_additive] lemma subgroup.subgroup_topological_closure (s : subgroup G) :
  s ≤ s.topological_closure :=
subset_closure

@[to_additive] lemma subgroup.is_closed_topological_closure (s : subgroup G) :
  is_closed (s.topological_closure : set G) :=
by convert is_closed_closure

@[to_additive] lemma subgroup.topological_closure_minimal
  (s : subgroup G) {t : subgroup G} (h : s ≤ t) (ht : is_closed (t : set G)) :
  s.topological_closure ≤ t :=
closure_minimal h ht

@[to_additive] lemma dense_range.topological_closure_map_subgroup [group H] [topological_space H]
  [topological_group H] {f : G →* H} (hf : continuous f) (hf' : dense_range f) {s : subgroup G}
  (hs : s.topological_closure = ⊤) :
  (s.map f).topological_closure = ⊤ :=
begin
  rw set_like.ext'_iff at hs ⊢,
  simp only [subgroup.topological_closure_coe, subgroup.coe_top, ← dense_iff_closure_eq] at hs ⊢,
  exact hf'.dense_image hf hs
end

/-- The topological closure of a normal subgroup is normal.-/
@[to_additive "The topological closure of a normal additive subgroup is normal."]
lemma subgroup.is_normal_topological_closure {G : Type*} [topological_space G] [group G]
  [topological_group G] (N : subgroup G) [N.normal] :
  (subgroup.topological_closure N).normal :=
{ conj_mem := λ n hn g,
  begin
    apply mem_closure_of_continuous (topological_group.continuous_conj g) hn,
    intros m hm,
    exact subset_closure (subgroup.normal.conj_mem infer_instance m hm g),
  end }

@[to_additive] lemma mul_mem_connected_component_one {G : Type*} [topological_space G]
  [mul_one_class G] [has_continuous_mul G] {g h : G} (hg : g ∈ connected_component (1 : G))
  (hh : h ∈ connected_component (1 : G)) : g * h ∈ connected_component (1 : G) :=
begin
  rw connected_component_eq hg,
  have hmul: g ∈ connected_component (g*h),
  { apply continuous.image_connected_component_subset (continuous_mul_left g),
    rw ← connected_component_eq hh,
    exact ⟨(1 : G), mem_connected_component, by simp only [mul_one]⟩ },
  simpa [← connected_component_eq hmul] using (mem_connected_component)
end

@[to_additive] lemma inv_mem_connected_component_one {G : Type*} [topological_space G] [group G]
  [topological_group G] {g : G} (hg : g ∈ connected_component (1 : G)) :
  g⁻¹ ∈ connected_component (1 : G) :=
begin
  rw ← inv_one,
  exact continuous.image_connected_component_subset continuous_inv _
    ((set.mem_image _ _ _).mp ⟨g, hg, rfl⟩)
end

/-- The connected component of 1 is a subgroup of `G`. -/
@[to_additive "The connected component of 0 is a subgroup of `G`."]
def subgroup.connected_component_of_one (G : Type*) [topological_space G] [group G]
  [topological_group G] : subgroup G :=
{ carrier  := connected_component (1 : G),
  one_mem' := mem_connected_component,
  mul_mem' := λ g h hg hh, mul_mem_connected_component_one hg hh,
  inv_mem' := λ g hg, inv_mem_connected_component_one hg }

/-- If a subgroup of a topological group is commutative, then so is its topological closure. -/
@[to_additive "If a subgroup of an additive topological group is commutative, then so is its
topological closure."]
def subgroup.comm_group_topological_closure [t2_space G] (s : subgroup G)
  (hs : ∀ (x y : s), x * y = y * x) : comm_group s.topological_closure :=
{ ..s.topological_closure.to_group,
  ..s.to_submonoid.comm_monoid_topological_closure hs }

@[to_additive exists_nhds_half_neg]
lemma exists_nhds_split_inv {s : set G} (hs : s ∈ 𝓝 (1 : G)) :
  ∃ V ∈ 𝓝 (1 : G), ∀ (v ∈ V) (w ∈ V), v / w ∈ s :=
have ((λp : G × G, p.1 * p.2⁻¹) ⁻¹' s) ∈ 𝓝 ((1, 1) : G × G),
  from continuous_at_fst.mul continuous_at_snd.inv (by simpa),
by simpa only [div_eq_mul_inv, nhds_prod_eq, mem_prod_self_iff, prod_subset_iff, mem_preimage]
  using this

@[to_additive]
lemma nhds_translation_mul_inv (x : G) : comap (λ y : G, y * x⁻¹) (𝓝 1) = 𝓝 x :=
((homeomorph.mul_right x⁻¹).comap_nhds_eq 1).trans $ show 𝓝 (1 * x⁻¹⁻¹) = 𝓝 x, by simp

@[simp, to_additive] lemma map_mul_left_nhds (x y : G) : map ((*) x) (𝓝 y) = 𝓝 (x * y) :=
(homeomorph.mul_left x).map_nhds_eq y

@[to_additive] lemma map_mul_left_nhds_one (x : G) : map ((*) x) (𝓝 1) = 𝓝 x := by simp

/-- A monoid homomorphism (a bundled morphism of a type that implements `monoid_hom_class`) from a
topological group to a topological monoid is continuous provided that it is continuous at one. See
also `uniform_continuous_of_continuous_at_one`. -/
@[to_additive "An additive monoid homomorphism (a bundled morphism of a type that implements
`add_monoid_hom_class`) from an additive topological group to an additive topological monoid is
continuous provided that it is continuous at zero. See also
`uniform_continuous_of_continuous_at_zero`."]
lemma continuous_of_continuous_at_one {M hom : Type*} [mul_one_class M] [topological_space M]
  [has_continuous_mul M] [monoid_hom_class hom G M] (f : hom) (hf : continuous_at f 1) :
  continuous f :=
continuous_iff_continuous_at.2 $ λ x,
  by simpa only [continuous_at, ← map_mul_left_nhds_one x, tendsto_map'_iff, (∘),
    map_mul, map_one, mul_one] using hf.tendsto.const_mul (f x)

@[to_additive]
lemma topological_group.ext {G : Type*} [group G] {t t' : topological_space G}
  (tg : @topological_group G t _) (tg' : @topological_group G t' _)
  (h : @nhds G t 1 = @nhds G t' 1) : t = t' :=
eq_of_nhds_eq_nhds $ λ x, by
  rw [← @nhds_translation_mul_inv G t _ _ x , ← @nhds_translation_mul_inv G t' _ _ x , ← h]

@[to_additive]
lemma topological_group.of_nhds_aux {G : Type*} [group G] [topological_space G]
  (hinv : tendsto (λ (x : G), x⁻¹) (𝓝 1) (𝓝 1))
  (hleft : ∀ (x₀ : G), 𝓝 x₀ = map (λ (x : G), x₀ * x) (𝓝 1))
  (hconj : ∀ (x₀ : G), map (λ (x : G), x₀ * x * x₀⁻¹) (𝓝 1) ≤ 𝓝 1) : continuous (λ x : G, x⁻¹) :=
begin
  rw continuous_iff_continuous_at,
  rintros x₀,
  have key : (λ x, (x₀*x)⁻¹) = (λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹) ∘ (λ x, x⁻¹),
    by {ext ; simp[mul_assoc] },
  calc map (λ x, x⁻¹) (𝓝 x₀)
      = map (λ x, x⁻¹) (map (λ x, x₀*x) $ 𝓝 1) : by rw hleft
  ... = map (λ x, (x₀*x)⁻¹) (𝓝 1) : by rw filter.map_map
  ... = map (((λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹)) ∘ (λ x, x⁻¹)) (𝓝 1) : by rw key
  ... = map ((λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹)) _ : by rw ← filter.map_map
  ... ≤ map ((λ x, x₀⁻¹ * x) ∘ λ x, x₀ * x * x₀⁻¹) (𝓝 1) : map_mono hinv
  ... = map (λ x, x₀⁻¹ * x) (map (λ x, x₀ * x * x₀⁻¹) (𝓝 1)) : filter.map_map
  ... ≤ map (λ x, x₀⁻¹ * x) (𝓝 1) : map_mono (hconj x₀)
  ... = 𝓝 x₀⁻¹ : (hleft _).symm
end

@[to_additive]
lemma topological_group.of_nhds_one' {G : Type u} [group G] [topological_space G]
  (hmul : tendsto (uncurry ((*) : G → G → G)) ((𝓝 1) ×ᶠ 𝓝 1) (𝓝 1))
  (hinv : tendsto (λ x : G, x⁻¹) (𝓝 1) (𝓝 1))
  (hleft : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1))
  (hright : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x*x₀) (𝓝 1)) : topological_group G :=
begin
  refine { continuous_mul := (has_continuous_mul.of_nhds_one hmul hleft hright).continuous_mul,
           continuous_inv := topological_group.of_nhds_aux hinv hleft _ },
  intros x₀,
  suffices : map (λ (x : G), x₀ * x * x₀⁻¹) (𝓝 1) = 𝓝 1, by simp [this, le_refl],
  rw [show (λ x, x₀ * x * x₀⁻¹) = (λ x, x₀ * x) ∘ λ x, x*x₀⁻¹, by {ext, simp [mul_assoc] },
      ← filter.map_map, ← hright, hleft x₀⁻¹, filter.map_map],
  convert map_id,
  ext,
  simp
end

@[to_additive]
lemma topological_group.of_nhds_one {G : Type u} [group G] [topological_space G]
  (hmul : tendsto (uncurry ((*) : G → G → G)) ((𝓝 1) ×ᶠ 𝓝 1) (𝓝 1))
  (hinv : tendsto (λ x : G, x⁻¹) (𝓝 1) (𝓝 1))
  (hleft : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1))
  (hconj : ∀ x₀ : G, tendsto (λ x, x₀*x*x₀⁻¹) (𝓝 1) (𝓝 1)) : topological_group G :=
 { continuous_mul := begin
    rw continuous_iff_continuous_at,
    rintros ⟨x₀, y₀⟩,
    have key : (λ (p : G × G), x₀ * p.1 * (y₀ * p.2)) =
      ((λ x, x₀*y₀*x) ∘ (uncurry (*)) ∘ (prod.map (λ x, y₀⁻¹*x*y₀) id)),
      by { ext, simp [uncurry, prod.map, mul_assoc] },
    specialize hconj y₀⁻¹, rw inv_inv at hconj,
    calc map (λ (p : G × G), p.1 * p.2) (𝓝 (x₀, y₀))
        = map (λ (p : G × G), p.1 * p.2) ((𝓝 x₀) ×ᶠ 𝓝 y₀)
            : by rw nhds_prod_eq
    ... = map (λ (p : G × G), x₀ * p.1 * (y₀ * p.2)) ((𝓝 1) ×ᶠ (𝓝 1))
            : by rw [hleft x₀, hleft y₀, prod_map_map_eq, filter.map_map]
    ... = map (((λ x, x₀*y₀*x) ∘ (uncurry (*))) ∘ (prod.map (λ x, y₀⁻¹*x*y₀) id))((𝓝 1) ×ᶠ (𝓝 1))
            : by rw key
    ... = map ((λ x, x₀*y₀*x) ∘ (uncurry (*))) ((map  (λ x, y₀⁻¹*x*y₀) $ 𝓝 1) ×ᶠ (𝓝 1))
            : by rw [← filter.map_map, ← prod_map_map_eq', map_id]
    ... ≤ map ((λ x, x₀*y₀*x) ∘ (uncurry (*))) ((𝓝 1) ×ᶠ (𝓝 1))
            : map_mono (filter.prod_mono hconj $ le_rfl)
    ... = map (λ x, x₀*y₀*x) (map (uncurry (*)) ((𝓝 1) ×ᶠ (𝓝 1)))   : by rw filter.map_map
    ... ≤ map (λ x, x₀*y₀*x) (𝓝 1)   : map_mono hmul
    ... = 𝓝 (x₀*y₀)   : (hleft _).symm
  end,
  continuous_inv := topological_group.of_nhds_aux hinv hleft hconj}

@[to_additive]
lemma topological_group.of_comm_of_nhds_one {G : Type u} [comm_group G] [topological_space G]
  (hmul : tendsto (uncurry ((*) : G → G → G)) ((𝓝 1) ×ᶠ 𝓝 1) (𝓝 1))
  (hinv : tendsto (λ x : G, x⁻¹) (𝓝 1) (𝓝 1))
  (hleft : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1)) : topological_group G :=
topological_group.of_nhds_one hmul hinv hleft (by simpa using tendsto_id)

end topological_group

section quotient_topological_group
variables [topological_space G] [group G] [topological_group G] (N : subgroup G) (n : N.normal)

@[to_additive]
instance quotient_group.quotient.topological_space {G : Type*} [group G] [topological_space G]
  (N : subgroup G) : topological_space (G ⧸ N) :=
quotient.topological_space

open quotient_group

@[to_additive]
lemma quotient_group.is_open_map_coe : is_open_map (coe : G → G ⧸ N) :=
begin
  intros s s_op,
  change is_open ((coe : G → G ⧸ N) ⁻¹' (coe '' s)),
  rw quotient_group.preimage_image_coe N s,
  exact is_open_Union (λ n, (continuous_mul_right _).is_open_preimage s s_op)
end

@[to_additive]
instance topological_group_quotient [N.normal] : topological_group (G ⧸ N) :=
{ continuous_mul := begin
    have cont : continuous ((coe : G → G ⧸ N) ∘ (λ (p : G × G), p.fst * p.snd)) :=
      continuous_quot_mk.comp continuous_mul,
    have quot : quotient_map (λ p : G × G, ((p.1 : G ⧸ N), (p.2 : G ⧸ N))),
    { apply is_open_map.to_quotient_map,
      { exact (quotient_group.is_open_map_coe N).prod (quotient_group.is_open_map_coe N) },
      { exact continuous_quot_mk.prod_map continuous_quot_mk },
      { exact (surjective_quot_mk _).prod_map (surjective_quot_mk _) } },
    exact (quotient_map.continuous_iff quot).2 cont,
  end,
  continuous_inv := begin
    have : continuous ((coe : G → G ⧸ N) ∘ (λ (a : G), a⁻¹)) :=
      continuous_quot_mk.comp continuous_inv,
    convert continuous_quotient_lift _ this,
  end }

end quotient_topological_group

/-- A typeclass saying that `λ p : G × G, p.1 - p.2` is a continuous function. This property
automatically holds for topological additive groups but it also holds, e.g., for `ℝ≥0`. -/
class has_continuous_sub (G : Type*) [topological_space G] [has_sub G] : Prop :=
(continuous_sub : continuous (λ p : G × G, p.1 - p.2))

/-- A typeclass saying that `λ p : G × G, p.1 / p.2` is a continuous function. This property
automatically holds for topological groups. Lemmas using this class have primes.
The unprimed version is for `group_with_zero`. -/
@[to_additive]
class has_continuous_div (G : Type*) [topological_space G] [has_div G] : Prop :=
(continuous_div' : continuous (λ p : G × G, p.1 / p.2))

@[priority 100, to_additive] -- see Note [lower instance priority]
instance topological_group.to_has_continuous_div [topological_space G] [group G]
  [topological_group G] : has_continuous_div G :=
⟨by { simp only [div_eq_mul_inv], exact continuous_fst.mul continuous_snd.inv }⟩

export has_continuous_sub (continuous_sub)
export has_continuous_div (continuous_div')

section has_continuous_div

variables [topological_space G] [has_div G] [has_continuous_div G]

@[to_additive sub]
lemma filter.tendsto.div' {f g : α → G} {l : filter α} {a b : G} (hf : tendsto f l (𝓝 a))
  (hg : tendsto g l (𝓝 b)) : tendsto (λ x, f x / g x) l (𝓝 (a / b)) :=
(continuous_div'.tendsto (a, b)).comp (hf.prod_mk_nhds hg)

@[to_additive const_sub]
lemma filter.tendsto.const_div' (b : G) {c : G} {f : α → G} {l : filter α}
  (h : tendsto f l (𝓝 c)) : tendsto (λ k : α, b / f k) l (𝓝 (b / c)) :=
tendsto_const_nhds.div' h

@[to_additive sub_const]
lemma filter.tendsto.div_const' (b : G) {c : G} {f : α → G} {l : filter α}
  (h : tendsto f l (𝓝 c)) : tendsto (λ k : α, f k / b) l (𝓝 (c / b)) :=
h.div' tendsto_const_nhds

variables [topological_space α] {f g : α → G} {s : set α} {x : α}

@[continuity, to_additive sub] lemma continuous.div' (hf : continuous f) (hg : continuous g) :
  continuous (λ x, f x / g x) :=
continuous_div'.comp (hf.prod_mk hg : _)

@[to_additive continuous_sub_left]
lemma continuous_div_left' (a : G) : continuous (λ b : G, a / b) :=
continuous_const.div' continuous_id

@[to_additive continuous_sub_right]
lemma continuous_div_right' (a : G) : continuous (λ b : G, b / a) :=
continuous_id.div' continuous_const

@[to_additive sub]
lemma continuous_at.div' {f g : α → G} {x : α} (hf : continuous_at f x) (hg : continuous_at g x) :
  continuous_at (λx, f x / g x) x :=
hf.div' hg

@[to_additive sub]
lemma continuous_within_at.div' (hf : continuous_within_at f s x)
  (hg : continuous_within_at g s x) :
  continuous_within_at (λ x, f x / g x) s x :=
hf.div' hg

@[to_additive sub]
lemma continuous_on.div' (hf : continuous_on f s) (hg : continuous_on g s) :
  continuous_on (λx, f x / g x) s :=
λ x hx, (hf x hx).div' (hg x hx)

end has_continuous_div

section div_in_topological_group
variables [group G] [topological_space G] [topological_group G]

/-- A version of `homeomorph.mul_left a b⁻¹` that is defeq to `a / b`. -/
@[to_additive /-" A version of `homeomorph.add_left a (-b)` that is defeq to `a - b`. "-/,
  simps {simp_rhs := tt}]
def homeomorph.div_left (x : G) : G ≃ₜ G :=
{ continuous_to_fun := continuous_const.div' continuous_id,
  continuous_inv_fun := continuous_inv.mul continuous_const,
  .. equiv.div_left x }

@[to_additive] lemma is_open_map_div_left (a : G) : is_open_map ((/) a) :=
(homeomorph.div_left _).is_open_map

@[to_additive] lemma is_closed_map_div_left (a : G) : is_closed_map ((/) a) :=
(homeomorph.div_left _).is_closed_map

/-- A version of `homeomorph.mul_right a⁻¹ b` that is defeq to `b / a`. -/
@[to_additive /-" A version of `homeomorph.add_right (-a) b` that is defeq to `b - a`. "-/,
  simps {simp_rhs := tt}]
def homeomorph.div_right (x : G) : G ≃ₜ G :=
{ continuous_to_fun := continuous_id.div' continuous_const,
  continuous_inv_fun := continuous_id.mul continuous_const,
  .. equiv.div_right x }

@[to_additive]
lemma is_open_map_div_right (a : G) : is_open_map (λ x, x / a) :=
(homeomorph.div_right a).is_open_map

@[to_additive]
lemma is_closed_map_div_right (a : G) : is_closed_map (λ x, x / a) :=
(homeomorph.div_right a).is_closed_map

@[to_additive]
lemma tendsto_div_nhds_one_iff
  {α : Type*} {l : filter α} {x : G} {u : α → G} :
  tendsto (λ n, u n / x) l (𝓝 1) ↔ tendsto u l (𝓝 x) :=
begin
  have A : tendsto (λ (n : α), x) l (𝓝 x) := tendsto_const_nhds,
  exact ⟨λ h, by simpa using h.mul A, λ h, by simpa using h.div' A⟩
end

@[to_additive] lemma nhds_translation_div (x : G) : comap (/ x) (𝓝 1) = 𝓝 x :=
by simpa only [div_eq_mul_inv] using nhds_translation_mul_inv x

end div_in_topological_group

/-!
### Topological operations on pointwise sums and products

A few results about interior and closure of the pointwise addition/multiplication of sets in groups
with continuous addition/multiplication. See also `submonoid.top_closure_mul_self_eq` in
`topology.algebra.monoid`.
-/

section has_continuous_mul
variables [topological_space α] [group α] [has_continuous_mul α] {s t : set α}

@[to_additive] lemma is_open.mul_left (ht : is_open t) : is_open (s * t) :=
by { rw ←Union_mul_left_image, exact is_open_bUnion (λ a ha, is_open_map_mul_left a t ht) }

@[to_additive] lemma is_open.mul_right (hs : is_open s) : is_open (s * t) :=
by { rw ←Union_mul_right_image, exact is_open_bUnion (λ a ha, is_open_map_mul_right a s hs) }

@[to_additive] lemma subset_interior_mul_left : interior s * t ⊆ interior (s * t) :=
interior_maximal (set.mul_subset_mul_right interior_subset) is_open_interior.mul_right

@[to_additive] lemma subset_interior_mul_right : s * interior t ⊆ interior (s * t) :=
interior_maximal (set.mul_subset_mul_left interior_subset) is_open_interior.mul_left

@[to_additive] lemma subset_interior_mul : interior s * interior t ⊆ interior (s * t) :=
(set.mul_subset_mul_left interior_subset).trans subset_interior_mul_left

end has_continuous_mul

section topological_group
variables [topological_space α] [group α] [topological_group α] {s t : set α}

@[to_additive] lemma is_open.div_left (ht : is_open t) : is_open (s / t) :=
by { rw ←Union_div_left_image, exact is_open_bUnion (λ a ha, is_open_map_div_left a t ht) }

@[to_additive] lemma is_open.div_right (hs : is_open s) : is_open (s / t) :=
by { rw ←Union_div_right_image, exact is_open_bUnion (λ a ha, is_open_map_div_right a s hs) }

@[to_additive] lemma subset_interior_div_left : interior s / t ⊆ interior (s / t) :=
interior_maximal (div_subset_div_right interior_subset) is_open_interior.div_right

@[to_additive] lemma subset_interior_div_right : s / interior t ⊆ interior (s / t) :=
interior_maximal (div_subset_div_left interior_subset) is_open_interior.div_left

@[to_additive] lemma subset_interior_div : interior s / interior t ⊆ interior (s / t) :=
(div_subset_div_left interior_subset).trans subset_interior_div_left

@[to_additive] lemma is_open.mul_closure (hs : is_open s) (t : set α) : s * closure t = s * t :=
begin
  refine (mul_subset_iff.2 $ λ a ha b hb, _).antisymm (mul_subset_mul_left subset_closure),
  rw mem_closure_iff at hb,
  have hbU : b ∈ s⁻¹ * {a * b} := ⟨a⁻¹, a * b, set.inv_mem_inv.2 ha, rfl, inv_mul_cancel_left _ _⟩,
  obtain ⟨_, ⟨c, d, hc, (rfl : d = _), rfl⟩, hcs⟩ := hb _ hs.inv.mul_right hbU,
  exact ⟨c⁻¹, _, hc, hcs, inv_mul_cancel_left _ _⟩,
end

@[to_additive] lemma is_open.closure_mul (ht : is_open t) (s : set α) : closure s * t = s * t :=
by rw [←inv_inv (closure s * t), mul_inv_rev, inv_closure, ht.inv.mul_closure, mul_inv_rev, inv_inv,
  inv_inv]

@[to_additive] lemma is_open.div_closure (hs : is_open s) (t : set α) : s / closure t = s / t :=
by simp_rw [div_eq_mul_inv, inv_closure, hs.mul_closure]

@[to_additive] lemma is_open.closure_div (ht : is_open t) (s : set α) : closure s / t = s / t :=
by simp_rw [div_eq_mul_inv, ht.inv.closure_mul]

end topological_group

/-- additive group with a neighbourhood around 0.
Only used to construct a topology and uniform space.

This is currently only available for commutative groups, but it can be extended to
non-commutative groups too.
-/
class add_group_with_zero_nhd (G : Type u) extends add_comm_group G :=
(Z [] : filter G)
(zero_Z : pure 0 ≤ Z)
(sub_Z : tendsto (λp:G×G, p.1 - p.2) (Z ×ᶠ Z) Z)

section filter_mul

section
variables (G) [topological_space G] [group G] [topological_group G]

@[to_additive]
lemma topological_group.t1_space (h : @is_closed G _ {1}) : t1_space G :=
⟨assume x, by { convert is_closed_map_mul_right x _ h, simp }⟩

@[to_additive]
lemma topological_group.t3_space [t1_space G] : t3_space G :=
⟨assume s a hs ha,
 let f := λ p : G × G, p.1 * (p.2)⁻¹ in
 have hf : continuous f := continuous_fst.mul continuous_snd.inv,
 -- a ∈ -s implies f (a, 1) ∈ -s, and so (a, 1) ∈ f⁻¹' (-s);
 -- and so can find t₁ t₂ open such that a ∈ t₁ × t₂ ⊆ f⁻¹' (-s)
 let ⟨t₁, t₂, ht₁, ht₂, a_mem_t₁, one_mem_t₂, t_subset⟩ :=
   is_open_prod_iff.1 ((is_open_compl_iff.2 hs).preimage hf) a (1:G) (by simpa [f]) in
 begin
   use [s * t₂, ht₂.mul_left, λ x hx, ⟨x, 1, hx, one_mem_t₂, mul_one _⟩],
   rw [nhds_within, inf_principal_eq_bot, mem_nhds_iff],
   refine ⟨t₁, _, ht₁, a_mem_t₁⟩,
   rintros x hx ⟨y, z, hy, hz, yz⟩,
   have : x * z⁻¹ ∈ sᶜ := (prod_subset_iff.1 t_subset) x hx z hz,
   have : x * z⁻¹ ∈ s, rw ← yz, simpa,
   contradiction
 end⟩

@[to_additive]
lemma topological_group.t2_space [t1_space G] : t2_space G :=
@t3_space.t2_space G _ (topological_group.t3_space G)

variables {G} (S : subgroup G) [subgroup.normal S] [is_closed (S : set G)]

@[to_additive]
instance subgroup.t3_quotient_of_is_closed
  (S : subgroup G) [subgroup.normal S] [is_closed (S : set G)] : t3_space (G ⧸ S) :=
begin
  suffices : t1_space (G ⧸ S), { exact @topological_group.t3_space _ _ _ _ this, },
  have hS : is_closed (S : set G) := infer_instance,
  rw ← quotient_group.ker_mk S at hS,
  exact topological_group.t1_space (G ⧸ S) ((quotient_map_quotient_mk.is_closed_preimage).mp hS),
end

end

section

/-! Some results about an open set containing the product of two sets in a topological group. -/

variables [topological_space G] [group G] [topological_group G]

/-- Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of `1`
  such that `K * V ⊆ U`. -/
@[to_additive "Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of
`0` such that `K + V ⊆ U`."]
lemma compact_open_separated_mul_right {K U : set G} (hK : is_compact K) (hU : is_open U)
  (hKU : K ⊆ U) : ∃ V ∈ 𝓝 (1 : G), K * V ⊆ U :=
begin
  apply hK.induction_on,
  { exact ⟨univ, by simp⟩ },
  { rintros s t hst ⟨V, hV, hV'⟩,
    exact ⟨V, hV, (mul_subset_mul_right hst).trans hV'⟩ },
  { rintros s t  ⟨V, V_in, hV'⟩ ⟨W, W_in, hW'⟩,
    use [V ∩ W, inter_mem V_in W_in],
    rw union_mul,
    exact union_subset ((mul_subset_mul_left (V.inter_subset_left W)).trans hV')
                       ((mul_subset_mul_left (V.inter_subset_right W)).trans hW') },
  { intros x hx,
    have := tendsto_mul (show U ∈ 𝓝 (x * 1), by simpa using hU.mem_nhds (hKU hx)),
    rw [nhds_prod_eq, mem_map, mem_prod_iff] at this,
    rcases this with ⟨t, ht, s, hs, h⟩,
    rw [← image_subset_iff, image_mul_prod] at h,
    exact ⟨t, mem_nhds_within_of_mem_nhds ht, s, hs, h⟩ }
end

open mul_opposite

/-- Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of `1`
  such that `V * K ⊆ U`. -/
@[to_additive "Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of
`0` such that `V + K ⊆ U`."]
lemma compact_open_separated_mul_left {K U : set G} (hK : is_compact K) (hU : is_open U)
  (hKU : K ⊆ U) : ∃ V ∈ 𝓝 (1 : G), V * K ⊆ U :=
begin
  rcases compact_open_separated_mul_right (hK.image continuous_op) (op_homeomorph.is_open_map U hU)
    (image_subset op hKU) with ⟨V, (hV : V ∈ 𝓝 (op (1 : G))), hV' : op '' K * V ⊆ op '' U⟩,
  refine ⟨op ⁻¹' V, continuous_op.continuous_at hV, _⟩,
  rwa [← image_preimage_eq V op_surjective, ← image_op_mul, image_subset_iff,
    preimage_image_eq _ op_injective] at hV'
end

/-- A compact set is covered by finitely many left multiplicative translates of a set
  with non-empty interior. -/
@[to_additive "A compact set is covered by finitely many left additive translates of a set
  with non-empty interior."]
lemma compact_covered_by_mul_left_translates {K V : set G} (hK : is_compact K)
  (hV : (interior V).nonempty) : ∃ t : finset G, K ⊆ ⋃ g ∈ t, (λ h, g * h) ⁻¹' V :=
begin
  obtain ⟨t, ht⟩ : ∃ t : finset G, K ⊆ ⋃ x ∈ t, interior (((*) x) ⁻¹' V),
  { refine hK.elim_finite_subcover (λ x, interior $ ((*) x) ⁻¹' V) (λ x, is_open_interior) _,
    cases hV with g₀ hg₀,
    refine λ g hg, mem_Union.2 ⟨g₀ * g⁻¹, _⟩,
    refine preimage_interior_subset_interior_preimage (continuous_const.mul continuous_id) _,
    rwa [mem_preimage, inv_mul_cancel_right] },
  exact ⟨t, subset.trans ht $ Union₂_mono $ λ g hg, interior_subset⟩
end

/-- Every locally compact separable topological group is σ-compact.
  Note: this is not true if we drop the topological group hypothesis. -/
@[priority 100, to_additive separable_locally_compact_add_group.sigma_compact_space]
instance separable_locally_compact_group.sigma_compact_space
  [separable_space G] [locally_compact_space G] : sigma_compact_space G :=
begin
  obtain ⟨L, hLc, hL1⟩ := exists_compact_mem_nhds (1 : G),
  refine ⟨⟨λ n, (λ x, x * dense_seq G n) ⁻¹' L, _, _⟩⟩,
  { intro n, exact (homeomorph.mul_right _).compact_preimage.mpr hLc },
  { refine Union_eq_univ_iff.2 (λ x, _),
    obtain ⟨_, ⟨n, rfl⟩, hn⟩ : (range (dense_seq G) ∩ (λ y, x * y) ⁻¹' L).nonempty,
    { rw [← (homeomorph.mul_left x).apply_symm_apply 1] at hL1,
      exact (dense_range_dense_seq G).inter_nhds_nonempty
        ((homeomorph.mul_left x).continuous.continuous_at $ hL1) },
    exact ⟨n, hn⟩ }
end

/-- Every separated topological group in which there exists a compact set with nonempty interior
is locally compact. -/
@[to_additive] lemma topological_space.positive_compacts.locally_compact_space_of_group
  [t2_space G] (K : positive_compacts G) :
  locally_compact_space G :=
begin
  refine locally_compact_of_compact_nhds (λ x, _),
  obtain ⟨y, hy⟩ := K.interior_nonempty,
  let F := homeomorph.mul_left (x * y⁻¹),
  refine ⟨F '' K, _, K.compact.image F.continuous⟩,
  suffices : F.symm ⁻¹' K ∈ 𝓝 x, by { convert this, apply equiv.image_eq_preimage },
  apply continuous_at.preimage_mem_nhds F.symm.continuous.continuous_at,
  have : F.symm x = y, by simp [F, homeomorph.mul_left_symm],
  rw this,
  exact mem_interior_iff_mem_nhds.1 hy
end

end

section
variables [topological_space G] [comm_group G] [topological_group G]

@[to_additive]
lemma nhds_mul (x y : G) : 𝓝 (x * y) = 𝓝 x * 𝓝 y :=
filter_eq $ set.ext $ assume s,
begin
  rw [← nhds_translation_mul_inv x, ← nhds_translation_mul_inv y, ← nhds_translation_mul_inv (x*y)],
  split,
  { rintros ⟨t, ht, ts⟩,
    rcases exists_nhds_one_split ht with ⟨V, V1, h⟩,
    refine ⟨(λa, a * x⁻¹) ⁻¹' V, (λa, a * y⁻¹) ⁻¹' V,
            ⟨V, V1, subset.refl _⟩, ⟨V, V1, subset.refl _⟩, _⟩,
    rintros a ⟨v, w, v_mem, w_mem, rfl⟩,
    apply ts,
    simpa [mul_comm, mul_assoc, mul_left_comm] using h (v * x⁻¹) v_mem (w * y⁻¹) w_mem },
  { rintros ⟨a, c, ⟨b, hb, ba⟩, ⟨d, hd, dc⟩, ac⟩,
    refine ⟨b ∩ d, inter_mem hb hd, assume v, _⟩,
    simp only [preimage_subset_iff, mul_inv_rev, mem_preimage] at *,
    rintros ⟨vb, vd⟩,
    refine ac ⟨v * y⁻¹, y, _, _, _⟩,
    { rw ← mul_assoc _ _ _ at vb, exact ba _ vb },
    { apply dc y, rw mul_right_inv, exact mem_of_mem_nhds hd },
    { simp only [inv_mul_cancel_right] } }
end

/-- On a topological group, `𝓝 : G → filter G` can be promoted to a `mul_hom`. -/
@[to_additive "On an additive topological group, `𝓝 : G → filter G` can be promoted to an
`add_hom`.", simps]
def nhds_mul_hom : G →ₙ* (filter G) :=
{ to_fun := 𝓝,
  map_mul' := λ_ _, nhds_mul _ _ }

end

end filter_mul

instance additive.topological_add_group {G} [h : topological_space G]
  [group G] [topological_group G] : @topological_add_group (additive G) h _ :=
{ continuous_neg := @continuous_inv G _ _ _ }

instance multiplicative.topological_group {G} [h : topological_space G]
  [add_group G] [topological_add_group G] : @topological_group (multiplicative G) h _ :=
{ continuous_inv := @continuous_neg G _ _ _ }

section quotient
variables [group G] [topological_space G] [topological_group G] {Γ : subgroup G}

@[to_additive]
instance quotient_group.has_continuous_const_smul : has_continuous_const_smul G (G ⧸ Γ) :=
{ continuous_const_smul := λ g₀, begin
    apply continuous_coinduced_dom.2,
    change continuous (λ g : G, quotient_group.mk (g₀ * g)),
    exact continuous_coinduced_rng.comp (continuous_mul_left g₀),
  end }

@[to_additive]
lemma quotient_group.continuous_smul₁ (x : G ⧸ Γ) : continuous (λ g : G, g • x) :=
begin
  obtain ⟨g₀, rfl⟩ : ∃ g₀, quotient_group.mk g₀ = x,
  { exact @quotient.exists_rep _ (quotient_group.left_rel Γ) x },
  change continuous (λ g, quotient_group.mk (g * g₀)),
  exact continuous_coinduced_rng.comp (continuous_mul_right g₀)
end

@[to_additive]
instance quotient_group.has_continuous_smul [locally_compact_space G] :
  has_continuous_smul G (G ⧸ Γ) :=
{ continuous_smul := begin
    let F : G × G ⧸ Γ → G ⧸ Γ := λ p, p.1 • p.2,
    change continuous F,
    have H : continuous (F ∘ (λ p : G × G, (p.1, quotient_group.mk p.2))),
    { change continuous (λ p : G × G, quotient_group.mk (p.1 * p.2)),
      refine continuous_coinduced_rng.comp continuous_mul },
    exact quotient_map.continuous_lift_prod_right quotient_map_quotient_mk H,
  end }

end quotient

namespace units

open mul_opposite (continuous_op continuous_unop)

variables [monoid α] [topological_space α] [has_continuous_mul α] [monoid β] [topological_space β]
  [has_continuous_mul β]

@[to_additive] instance : topological_group αˣ :=
{ continuous_inv := continuous_induced_rng.2 ((continuous_unop.comp
    (@continuous_embed_product α _ _).snd).prod_mk (continuous_op.comp continuous_coe)) }

/-- The topological group isomorphism between the units of a product of two monoids, and the product
    of the units of each monoid. -/
def homeomorph.prod_units : homeomorph (α × β)ˣ (αˣ × βˣ) :=
{ continuous_to_fun  :=
  begin
    show continuous (λ i : (α × β)ˣ, (map (monoid_hom.fst α β) i, map (monoid_hom.snd α β) i)),
    refine continuous.prod_mk _ _,
    { refine continuous_induced_rng.2 ((continuous_fst.comp units.continuous_coe).prod_mk _),
      refine mul_opposite.continuous_op.comp (continuous_fst.comp _),
      simp_rw units.inv_eq_coe_inv,
      exact units.continuous_coe.comp continuous_inv, },
    { refine continuous_induced_rng.2 ((continuous_snd.comp units.continuous_coe).prod_mk _),
      simp_rw units.coe_map_inv,
      exact continuous_op.comp (continuous_snd.comp (units.continuous_coe.comp continuous_inv)), }
  end,
  continuous_inv_fun :=
  begin
    refine continuous_induced_rng.2 (continuous.prod_mk _ _),
    { exact (units.continuous_coe.comp continuous_fst).prod_mk
        (units.continuous_coe.comp continuous_snd), },
    { refine continuous_op.comp
        (units.continuous_coe.comp $ continuous_induced_rng.2 $ continuous.prod_mk _ _),
      { exact (units.continuous_coe.comp (continuous_inv.comp continuous_fst)).prod_mk
          (units.continuous_coe.comp (continuous_inv.comp continuous_snd)) },
      { exact continuous_op.comp ((units.continuous_coe.comp continuous_fst).prod_mk
            (units.continuous_coe.comp continuous_snd)) }}
  end,
  ..mul_equiv.prod_units }

end units

section lattice_ops

variables {ι : Sort*} [group G] [group H]
  {t : topological_space H} [topological_group H] {F : Type*}
  [monoid_hom_class F G H] (f : F)

@[to_additive] lemma topological_group_Inf {ts : set (topological_space G)}
  (h : ∀ t ∈ ts, @topological_group G t _) :
  @topological_group G (Inf ts) _ :=
{ continuous_inv := @has_continuous_inv.continuous_inv G (Inf ts) _
    (@has_continuous_inv_Inf _ _ _
      (λ t ht, @topological_group.to_has_continuous_inv G t _ (h t ht))),
  continuous_mul := @has_continuous_mul.continuous_mul G (Inf ts) _
    (@has_continuous_mul_Inf _ _ _
      (λ t ht, @topological_group.to_has_continuous_mul G t _ (h t ht))) }

@[to_additive] lemma topological_group_infi {ts' : ι → topological_space G}
  (h' : ∀ i, @topological_group G (ts' i) _) :
  @topological_group G (⨅ i, ts' i) _ :=
by {rw ← Inf_range, exact topological_group_Inf (set.forall_range_iff.mpr h')}

@[to_additive] lemma topological_group_inf {t₁ t₂ : topological_space G}
  (h₁ : @topological_group G t₁ _) (h₂ : @topological_group G t₂ _) :
  @topological_group G (t₁ ⊓ t₂) _ :=
by {rw inf_eq_infi, refine topological_group_infi (λ b, _), cases b; assumption}

end lattice_ops

/-!
### Lattice of group topologies

We define a type class `group_topology α` which endows a group `α` with a topology such that all
group operations are continuous.

Group topologies on a fixed group `α` are ordered, by reverse inclusion. They form a complete
lattice, with `⊥` the discrete topology and `⊤` the indiscrete topology.

Any function `f : α → β` induces `coinduced f : topological_space α → group_topology β`.

The additive version `add_group_topology α` and corresponding results are provided as well.
-/

/-- A group topology on a group `α` is a topology for which multiplication and inversion
are continuous. -/
structure group_topology (α : Type u) [group α]
  extends topological_space α, topological_group α : Type u

/-- An additive group topology on an additive group `α` is a topology for which addition and
  negation are continuous. -/
structure add_group_topology (α : Type u) [add_group α]
  extends topological_space α, topological_add_group α : Type u

attribute [to_additive] group_topology

namespace group_topology

variables [group α]

/-- A version of the global `continuous_mul` suitable for dot notation. -/
@[to_additive]
lemma continuous_mul' (g : group_topology α) :
  by haveI := g.to_topological_space; exact continuous (λ p : α × α, p.1 * p.2) :=
begin
  letI := g.to_topological_space,
  haveI := g.to_topological_group,
  exact continuous_mul,
end

/-- A version of the global `continuous_inv` suitable for dot notation. -/
@[to_additive]
lemma continuous_inv' (g : group_topology α) :
  by haveI := g.to_topological_space; exact continuous (has_inv.inv : α → α) :=
begin
  letI := g.to_topological_space,
  haveI := g.to_topological_group,
  exact continuous_inv,
end

@[to_additive]
lemma to_topological_space_injective :
  function.injective (to_topological_space : group_topology α → topological_space α):=
λ f g h, by { cases f, cases g, congr' }

@[ext, to_additive]
lemma ext' {f g : group_topology α} (h : f.is_open = g.is_open) : f = g :=
to_topological_space_injective $ topological_space_eq h

/-- The ordering on group topologies on the group `γ`.
  `t ≤ s` if every set open in `s` is also open in `t` (`t` is finer than `s`). -/
@[to_additive]
instance : partial_order (group_topology α) :=
partial_order.lift to_topological_space to_topological_space_injective

@[simp, to_additive] lemma to_topological_space_le {x y : group_topology α} :
  x.to_topological_space ≤ y.to_topological_space ↔ x ≤ y := iff.rfl

@[to_additive]
instance : has_top (group_topology α) :=
⟨{to_topological_space := ⊤,
  continuous_mul       := continuous_top,
  continuous_inv       := continuous_top}⟩

@[simp, to_additive] lemma to_topological_space_top :
  (⊤ : group_topology α).to_topological_space = ⊤ := rfl

@[to_additive]
instance : has_bot (group_topology α) :=
⟨{to_topological_space := ⊥,
  continuous_mul       := by continuity,
  continuous_inv       := continuous_bot}⟩

@[simp, to_additive] lemma to_topological_space_bot :
  (⊥ : group_topology α).to_topological_space = ⊥ := rfl

@[to_additive]
instance : bounded_order (group_topology α) :=
{ top := ⊤,
  le_top := λ x, show x.to_topological_space ≤ ⊤, from le_top,
  bot := ⊥,
  bot_le := λ x, show ⊥ ≤ x.to_topological_space, from bot_le }

@[to_additive]
instance : has_inf (group_topology α) :=
{ inf := λ x y, ⟨x.1 ⊓ y.1, topological_group_inf x.2 y.2⟩ }

@[simp, to_additive]
lemma to_topological_space_inf (x y : group_topology α) :
  (x ⊓ y).to_topological_space = x.to_topological_space ⊓ y.to_topological_space := rfl

@[to_additive]
instance : semilattice_inf (group_topology α) :=
to_topological_space_injective.semilattice_inf _ to_topological_space_inf

@[to_additive]
instance : inhabited (group_topology α) := ⟨⊤⟩

local notation `cont` := @continuous _ _
@[to_additive "Infimum of a collection of additive group topologies"]
instance : has_Inf (group_topology α) :=
{ Inf := λ S,
  ⟨Inf (to_topological_space '' S), topological_group_Inf $ ball_image_iff.2 $ λ t ht, t.2⟩ }

@[simp, to_additive]
lemma to_topological_space_Inf (s : set (group_topology α)) :
  (Inf s).to_topological_space = Inf (to_topological_space '' s) := rfl

@[simp, to_additive]
lemma to_topological_space_infi {ι} (s : ι → group_topology α) :
  (⨅ i, s i).to_topological_space = ⨅ i, (s i).to_topological_space :=
congr_arg Inf (range_comp _ _).symm

/-- Group topologies on `γ` form a complete lattice, with `⊥` the discrete topology and `⊤` the
indiscrete topology.

The infimum of a collection of group topologies is the topology generated by all their open sets
(which is a group topology).

The supremum of two group topologies `s` and `t` is the infimum of the family of all group
topologies contained in the intersection of `s` and `t`. -/
@[to_additive]
instance : complete_semilattice_Inf (group_topology α) :=
{ Inf_le := λ S a haS, to_topological_space_le.1 $ Inf_le ⟨a, haS, rfl⟩,
  le_Inf :=
  begin
    intros S a hab,
    apply topological_space.complete_lattice.le_Inf,
    rintros _ ⟨b, hbS, rfl⟩,
    exact hab b hbS,
  end,
  ..group_topology.has_Inf,
  ..group_topology.partial_order }

@[to_additive]
instance : complete_lattice (group_topology α) :=
{ inf := (⊓),
  top := ⊤,
  bot := ⊥,
  ..group_topology.bounded_order,
  ..group_topology.semilattice_inf,
  ..complete_lattice_of_complete_semilattice_Inf _ }

/--  Given `f : α → β` and a topology on `α`, the coinduced group topology on `β` is the finest
topology such that `f` is continuous and `β` is a topological group. -/
@[to_additive "Given `f : α → β` and a topology on `α`, the coinduced additive group topology on `β`
is the finest topology such that `f` is continuous and `β` is a topological additive group."]
def coinduced {α β : Type*} [t : topological_space α] [group β] (f : α → β) :
  group_topology β :=
Inf {b : group_topology β | (topological_space.coinduced f t) ≤ b.to_topological_space}

@[to_additive]
lemma coinduced_continuous {α β : Type*} [t : topological_space α] [group β]
  (f : α → β) : cont t (coinduced f).to_topological_space f :=
begin
  rw continuous_iff_coinduced_le,
  refine le_Inf _,
  rintros _ ⟨t', ht', rfl⟩,
  exact ht',
end

end group_topology