Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 6,765 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import topology.algebra.constructions
import group_theory.group_action.prod
import group_theory.group_action.basic
import topology.algebra.const_mul_action
/-!
# Continuous monoid action
In this file we define class `has_continuous_smul`. We say `has_continuous_smul M X` if `M` acts on
`X` and the map `(c, x) ↦ c • x` is continuous on `M × X`. We reuse this class for topological
(semi)modules, vector spaces and algebras.
## Main definitions
* `has_continuous_smul M X` : typeclass saying that the map `(c, x) ↦ c • x` is continuous
on `M × X`;
* `homeomorph.smul_of_ne_zero`: if a group with zero `G₀` (e.g., a field) acts on `X` and `c : G₀`
is a nonzero element of `G₀`, then scalar multiplication by `c` is a homeomorphism of `X`;
* `homeomorph.smul`: scalar multiplication by an element of a group `G` acting on `X`
is a homeomorphism of `X`.
* `units.has_continuous_smul`: scalar multiplication by `Mˣ` is continuous when scalar
multiplication by `M` is continuous. This allows `homeomorph.smul` to be used with on monoids
with `G = Mˣ`.
## Main results
Besides homeomorphisms mentioned above, in this file we provide lemmas like `continuous.smul`
or `filter.tendsto.smul` that provide dot-syntax access to `continuous_smul`.
-/
open_locale topological_space pointwise
open filter
/-- Class `has_continuous_smul M X` says that the scalar multiplication `(•) : M → X → X`
is continuous in both arguments. We use the same class for all kinds of multiplicative actions,
including (semi)modules and algebras. -/
class has_continuous_smul (M X : Type*) [has_smul M X]
[topological_space M] [topological_space X] : Prop :=
(continuous_smul : continuous (λp : M × X, p.1 • p.2))
export has_continuous_smul (continuous_smul)
/-- Class `has_continuous_vadd M X` says that the additive action `(+ᵥ) : M → X → X`
is continuous in both arguments. We use the same class for all kinds of additive actions,
including (semi)modules and algebras. -/
class has_continuous_vadd (M X : Type*) [has_vadd M X]
[topological_space M] [topological_space X] : Prop :=
(continuous_vadd : continuous (λp : M × X, p.1 +ᵥ p.2))
export has_continuous_vadd (continuous_vadd)
attribute [to_additive] has_continuous_smul
section main
variables {M X Y α : Type*} [topological_space M] [topological_space X] [topological_space Y]
section has_smul
variables [has_smul M X] [has_continuous_smul M X]
@[priority 100, to_additive] instance has_continuous_smul.has_continuous_const_smul :
has_continuous_const_smul M X :=
{ continuous_const_smul := λ _, continuous_smul.comp (continuous_const.prod_mk continuous_id) }
@[to_additive]
lemma filter.tendsto.smul {f : α → M} {g : α → X} {l : filter α} {c : M} {a : X}
(hf : tendsto f l (𝓝 c)) (hg : tendsto g l (𝓝 a)) :
tendsto (λ x, f x • g x) l (𝓝 $ c • a) :=
(continuous_smul.tendsto _).comp (hf.prod_mk_nhds hg)
@[to_additive]
lemma filter.tendsto.smul_const {f : α → M} {l : filter α} {c : M}
(hf : tendsto f l (𝓝 c)) (a : X) :
tendsto (λ x, (f x) • a) l (𝓝 (c • a)) :=
hf.smul tendsto_const_nhds
variables {f : Y → M} {g : Y → X} {b : Y} {s : set Y}
@[to_additive]
lemma continuous_within_at.smul (hf : continuous_within_at f s b)
(hg : continuous_within_at g s b) :
continuous_within_at (λ x, f x • g x) s b :=
hf.smul hg
@[to_additive]
lemma continuous_at.smul (hf : continuous_at f b) (hg : continuous_at g b) :
continuous_at (λ x, f x • g x) b :=
hf.smul hg
@[to_additive]
lemma continuous_on.smul (hf : continuous_on f s) (hg : continuous_on g s) :
continuous_on (λ x, f x • g x) s :=
λ x hx, (hf x hx).smul (hg x hx)
@[continuity, to_additive]
lemma continuous.smul (hf : continuous f) (hg : continuous g) :
continuous (λ x, f x • g x) :=
continuous_smul.comp (hf.prod_mk hg)
/-- If a scalar is central, then its right action is continuous when its left action is. -/
instance has_continuous_smul.op [has_smul Mᵐᵒᵖ X] [is_central_scalar M X] :
has_continuous_smul Mᵐᵒᵖ X :=
⟨ suffices continuous (λ p : M × X, mul_opposite.op p.fst • p.snd),
from this.comp (mul_opposite.continuous_unop.prod_map continuous_id),
by simpa only [op_smul_eq_smul] using (continuous_smul : continuous (λ p : M × X, _)) ⟩
@[to_additive] instance mul_opposite.has_continuous_smul : has_continuous_smul M Xᵐᵒᵖ :=
⟨mul_opposite.continuous_op.comp $ continuous_smul.comp $
continuous_id.prod_map mul_opposite.continuous_unop⟩
end has_smul
section monoid
variables [monoid M] [mul_action M X] [has_continuous_smul M X]
@[to_additive] instance units.has_continuous_smul : has_continuous_smul Mˣ X :=
{ continuous_smul :=
show continuous ((λ p : M × X, p.fst • p.snd) ∘ (λ p : Mˣ × X, (p.1, p.2))),
from continuous_smul.comp ((units.continuous_coe.comp continuous_fst).prod_mk continuous_snd) }
end monoid
@[to_additive]
instance [has_smul M X] [has_smul M Y] [has_continuous_smul M X]
[has_continuous_smul M Y] :
has_continuous_smul M (X × Y) :=
⟨(continuous_fst.smul (continuous_fst.comp continuous_snd)).prod_mk
(continuous_fst.smul (continuous_snd.comp continuous_snd))⟩
@[to_additive]
instance {ι : Type*} {γ : ι → Type*}
[∀ i, topological_space (γ i)] [Π i, has_smul M (γ i)] [∀ i, has_continuous_smul M (γ i)] :
has_continuous_smul M (Π i, γ i) :=
⟨continuous_pi $ λ i,
(continuous_fst.smul continuous_snd).comp $
continuous_fst.prod_mk ((continuous_apply i).comp continuous_snd)⟩
end main
section lattice_ops
variables {ι : Sort*} {M X : Type*} [topological_space M] [has_smul M X]
@[to_additive] lemma has_continuous_smul_Inf {ts : set (topological_space X)}
(h : Π t ∈ ts, @has_continuous_smul M X _ _ t) :
@has_continuous_smul M X _ _ (Inf ts) :=
{ continuous_smul :=
begin
rw ← @Inf_singleton _ _ ‹topological_space M›,
exact continuous_Inf_rng.2 (λ t ht, continuous_Inf_dom₂ (eq.refl _) ht
(@has_continuous_smul.continuous_smul _ _ _ _ t (h t ht)))
end }
@[to_additive] lemma has_continuous_smul_infi {ts' : ι → topological_space X}
(h : Π i, @has_continuous_smul M X _ _ (ts' i)) :
@has_continuous_smul M X _ _ (⨅ i, ts' i) :=
has_continuous_smul_Inf $ set.forall_range_iff.mpr h
@[to_additive] lemma has_continuous_smul_inf {t₁ t₂ : topological_space X}
[@has_continuous_smul M X _ _ t₁] [@has_continuous_smul M X _ _ t₂] :
@has_continuous_smul M X _ _ (t₁ ⊓ t₂) :=
by { rw inf_eq_infi, refine has_continuous_smul_infi (λ b, _), cases b; assumption }
end lattice_ops
|