Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,765 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import topology.algebra.constructions
import group_theory.group_action.prod
import group_theory.group_action.basic
import topology.algebra.const_mul_action

/-!
# Continuous monoid action

In this file we define class `has_continuous_smul`. We say `has_continuous_smul M X` if `M` acts on
`X` and the map `(c, x) ↦ c • x` is continuous on `M × X`. We reuse this class for topological
(semi)modules, vector spaces and algebras.

## Main definitions

* `has_continuous_smul M X` : typeclass saying that the map `(c, x) ↦ c • x` is continuous
  on `M × X`;
* `homeomorph.smul_of_ne_zero`: if a group with zero `G₀` (e.g., a field) acts on `X` and `c : G₀`
  is a nonzero element of `G₀`, then scalar multiplication by `c` is a homeomorphism of `X`;
* `homeomorph.smul`: scalar multiplication by an element of a group `G` acting on `X`
  is a homeomorphism of `X`.
* `units.has_continuous_smul`: scalar multiplication by `Mˣ` is continuous when scalar
  multiplication by `M` is continuous. This allows `homeomorph.smul` to be used with on monoids
  with `G = Mˣ`.

## Main results

Besides homeomorphisms mentioned above, in this file we provide lemmas like `continuous.smul`
or `filter.tendsto.smul` that provide dot-syntax access to `continuous_smul`.
-/

open_locale topological_space pointwise
open filter

/-- Class `has_continuous_smul M X` says that the scalar multiplication `(•) : M → X → X`
is continuous in both arguments. We use the same class for all kinds of multiplicative actions,
including (semi)modules and algebras. -/
class has_continuous_smul (M X : Type*) [has_smul M X]
  [topological_space M] [topological_space X] : Prop :=
(continuous_smul : continuous (λp : M × X, p.1 • p.2))

export has_continuous_smul (continuous_smul)

/-- Class `has_continuous_vadd M X` says that the additive action `(+ᵥ) : M → X → X`
is continuous in both arguments. We use the same class for all kinds of additive actions,
including (semi)modules and algebras. -/
class has_continuous_vadd (M X : Type*) [has_vadd M X]
  [topological_space M] [topological_space X] : Prop :=
(continuous_vadd : continuous (λp : M × X, p.1 +ᵥ p.2))

export has_continuous_vadd (continuous_vadd)

attribute [to_additive] has_continuous_smul

section main

variables {M X Y α : Type*} [topological_space M] [topological_space X] [topological_space Y]

section has_smul

variables [has_smul M X] [has_continuous_smul M X]

@[priority 100, to_additive] instance has_continuous_smul.has_continuous_const_smul :
  has_continuous_const_smul M X :=
{ continuous_const_smul := λ _, continuous_smul.comp (continuous_const.prod_mk continuous_id) }

@[to_additive]
lemma filter.tendsto.smul {f : α → M} {g : α → X} {l : filter α} {c : M} {a : X}
  (hf : tendsto f l (𝓝 c)) (hg : tendsto g l (𝓝 a)) :
  tendsto (λ x, f x • g x) l (𝓝 $ c • a) :=
(continuous_smul.tendsto _).comp (hf.prod_mk_nhds hg)

@[to_additive]
lemma filter.tendsto.smul_const {f : α → M} {l : filter α} {c : M}
  (hf : tendsto f l (𝓝 c)) (a : X) :
  tendsto (λ x, (f x) • a) l (𝓝 (c • a)) :=
hf.smul tendsto_const_nhds

variables {f : Y → M} {g : Y → X} {b : Y} {s : set Y}

@[to_additive]
lemma continuous_within_at.smul (hf : continuous_within_at f s b)
  (hg : continuous_within_at g s b) :
  continuous_within_at (λ x, f x • g x) s b :=
hf.smul hg

@[to_additive]
lemma continuous_at.smul (hf : continuous_at f b) (hg : continuous_at g b) :
  continuous_at (λ x, f x • g x) b :=
hf.smul hg

@[to_additive]
lemma continuous_on.smul (hf : continuous_on f s) (hg : continuous_on g s) :
  continuous_on (λ x, f x • g x) s :=
λ x hx, (hf x hx).smul (hg x hx)

@[continuity, to_additive]
lemma continuous.smul (hf : continuous f) (hg : continuous g) :
  continuous (λ x, f x • g x) :=
continuous_smul.comp (hf.prod_mk hg)

/-- If a scalar is central, then its right action is continuous when its left action is. -/
instance has_continuous_smul.op [has_smul Mᵐᵒᵖ X] [is_central_scalar M X] :
  has_continuous_smul Mᵐᵒᵖ X :=
⟨ suffices continuous (λ p : M × X, mul_opposite.op p.fst • p.snd),
  from this.comp (mul_opposite.continuous_unop.prod_map continuous_id),
  by simpa only [op_smul_eq_smul] using (continuous_smul : continuous (λ p : M × X, _)) ⟩

@[to_additive] instance mul_opposite.has_continuous_smul : has_continuous_smul M Xᵐᵒᵖ :=
⟨mul_opposite.continuous_op.comp $ continuous_smul.comp $
  continuous_id.prod_map mul_opposite.continuous_unop⟩

end has_smul

section monoid

variables [monoid M] [mul_action M X] [has_continuous_smul M X]

@[to_additive] instance units.has_continuous_smul : has_continuous_smul Mˣ X :=
{ continuous_smul :=
    show continuous ((λ p : M × X, p.fst • p.snd) ∘ (λ p : Mˣ × X, (p.1, p.2))),
    from continuous_smul.comp ((units.continuous_coe.comp continuous_fst).prod_mk continuous_snd) }

end monoid

@[to_additive]
instance [has_smul M X] [has_smul M Y] [has_continuous_smul M X]
  [has_continuous_smul M Y] :
  has_continuous_smul M (X × Y) :=
⟨(continuous_fst.smul (continuous_fst.comp continuous_snd)).prod_mk
  (continuous_fst.smul (continuous_snd.comp continuous_snd))⟩

@[to_additive]
instance {ι : Type*} {γ : ι → Type*}
  [∀ i, topological_space (γ i)] [Π i, has_smul M (γ i)] [∀ i, has_continuous_smul M (γ i)] :
  has_continuous_smul M (Π i, γ i) :=
⟨continuous_pi $ λ i,
  (continuous_fst.smul continuous_snd).comp $
    continuous_fst.prod_mk ((continuous_apply i).comp continuous_snd)⟩

end main

section lattice_ops

variables {ι : Sort*} {M X : Type*} [topological_space M] [has_smul M X]

@[to_additive] lemma has_continuous_smul_Inf {ts : set (topological_space X)}
  (h : Π t ∈ ts, @has_continuous_smul M X _ _ t) :
  @has_continuous_smul M X _ _ (Inf ts) :=
{ continuous_smul :=
  begin
    rw ← @Inf_singleton _ _ ‹topological_space M›,
    exact continuous_Inf_rng.2 (λ t ht, continuous_Inf_dom₂ (eq.refl _) ht
      (@has_continuous_smul.continuous_smul _ _ _ _ t (h t ht)))
  end }

@[to_additive] lemma has_continuous_smul_infi {ts' : ι → topological_space X}
  (h : Π i, @has_continuous_smul M X _ _ (ts' i)) :
  @has_continuous_smul M X _ _ (⨅ i, ts' i) :=
has_continuous_smul_Inf $ set.forall_range_iff.mpr h

@[to_additive] lemma has_continuous_smul_inf {t₁ t₂ : topological_space X}
  [@has_continuous_smul M X _ _ t₁] [@has_continuous_smul M X _ _ t₂] :
  @has_continuous_smul M X _ _ (t₁ ⊓ t₂) :=
by { rw inf_eq_infi, refine has_continuous_smul_infi (λ b, _), cases b; assumption }

end lattice_ops