Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 12,478 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
/-
Copyright (c) 2021 Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot
-/
import topology.algebra.nonarchimedean.basic
import topology.algebra.filter_basis
import algebra.module.submodule.pointwise
/-!
# Neighborhood bases for non-archimedean rings and modules
This files contains special families of filter bases on rings and modules that give rise to
non-archimedean topologies.
The main definition is `ring_subgroups_basis` which is a predicate on a family of
additive subgroups of a ring. The predicate ensures there is a topology
`ring_subgroups_basis.topology` which is compatible with a ring structure and admits the given
family as a basis of neighborhoods of zero. In particular the given subgroups become open subgroups
(bundled in `ring_subgroups_basis.open_add_subgroup`) and we get a non-archimedean topological ring
(`ring_subgroups_basis.nonarchimedean`).
A special case of this construction is given by `submodules_basis` where the subgroups are
sub-modules in a commutative algebra. This important example gives rises to the adic topology
(studied in its own file).
-/
open set filter function lattice add_group_with_zero_nhd
open_locale topological_space filter pointwise
/-- A family of additive subgroups on a ring `A` is a subgroups basis if it satisfies some
axioms ensuring there is a topology on `A` which is compatible with the ring structure and
admits this family as a basis of neighborhoods of zero. -/
structure ring_subgroups_basis {A ι : Type*} [ring A] (B : ι → add_subgroup A) : Prop :=
(inter : ∀ i j, ∃ k, B k ≤ B i ⊓ B j)
(mul : ∀ i, ∃ j, (B j : set A) * B j ⊆ B i)
(left_mul : ∀ x : A, ∀ i, ∃ j, (B j : set A) ⊆ (λ y : A, x*y) ⁻¹' (B i))
(right_mul : ∀ x : A, ∀ i, ∃ j, (B j : set A) ⊆ (λ y : A, y*x) ⁻¹' (B i))
namespace ring_subgroups_basis
variables {A ι : Type*} [ring A]
lemma of_comm {A ι : Type*} [comm_ring A] (B : ι → add_subgroup A)
(inter : ∀ i j, ∃ k, B k ≤ B i ⊓ B j)
(mul : ∀ i, ∃ j, (B j : set A) * B j ⊆ B i)
(left_mul : ∀ x : A, ∀ i, ∃ j, (B j : set A) ⊆ (λ y : A, x*y) ⁻¹' (B i)) :
ring_subgroups_basis B :=
{ inter := inter,
mul := mul,
left_mul := left_mul,
right_mul := begin
intros x i,
cases left_mul x i with j hj,
use j,
simpa [mul_comm] using hj
end }
/-- Every subgroups basis on a ring leads to a ring filter basis. -/
def to_ring_filter_basis [nonempty ι] {B : ι → add_subgroup A}
(hB : ring_subgroups_basis B) : ring_filter_basis A :=
{ sets := {U | ∃ i, U = B i},
nonempty := by { inhabit ι, exact ⟨B default, default, rfl⟩ },
inter_sets := begin
rintros _ _ ⟨i, rfl⟩ ⟨j, rfl⟩,
cases hB.inter i j with k hk,
use [B k, k, rfl, hk]
end,
zero' := by { rintros _ ⟨i, rfl⟩, exact (B i).zero_mem },
add' := begin
rintros _ ⟨i, rfl⟩,
use [B i, i, rfl],
rintros x ⟨y, z, y_in, z_in, rfl⟩,
exact (B i).add_mem y_in z_in
end,
neg' := begin
rintros _ ⟨i, rfl⟩,
use [B i, i, rfl],
intros x x_in,
exact (B i).neg_mem x_in
end,
conj' := begin
rintros x₀ _ ⟨i, rfl⟩,
use [B i, i, rfl],
simp
end,
mul' := begin
rintros _ ⟨i, rfl⟩,
cases hB.mul i with k hk,
use [B k, k, rfl, hk]
end,
mul_left' := begin
rintros x₀ _ ⟨i, rfl⟩,
cases hB.left_mul x₀ i with k hk,
use [B k, k, rfl, hk]
end,
mul_right' := begin
rintros x₀ _ ⟨i, rfl⟩,
cases hB.right_mul x₀ i with k hk,
use [B k, k, rfl, hk]
end }
variables [nonempty ι] {B : ι → add_subgroup A} (hB : ring_subgroups_basis B)
lemma mem_add_group_filter_basis_iff {V : set A} :
V ∈ hB.to_ring_filter_basis.to_add_group_filter_basis ↔ ∃ i, V = B i :=
iff.rfl
lemma mem_add_group_filter_basis (i) :
(B i : set A) ∈ hB.to_ring_filter_basis.to_add_group_filter_basis :=
⟨i, rfl⟩
/-- The topology defined from a subgroups basis, admitting the given subgroups as a basis
of neighborhoods of zero. -/
def topology : topological_space A :=
hB.to_ring_filter_basis.to_add_group_filter_basis.topology
lemma has_basis_nhds_zero : has_basis (@nhds A hB.topology 0) (λ _, true) (λ i, B i) :=
⟨begin
intros s,
rw hB.to_ring_filter_basis.to_add_group_filter_basis.nhds_zero_has_basis.mem_iff,
split,
{ rintro ⟨-, ⟨i, rfl⟩, hi⟩,
exact ⟨i, trivial, hi⟩ },
{ rintro ⟨i, -, hi⟩,
exact ⟨B i, ⟨i, rfl⟩, hi⟩ }
end⟩
lemma has_basis_nhds (a : A) :
has_basis (@nhds A hB.topology a) (λ _, true) (λ i, {b | b - a ∈ B i}) :=
⟨begin
intros s,
rw (hB.to_ring_filter_basis.to_add_group_filter_basis.nhds_has_basis a).mem_iff,
simp only [exists_prop, exists_true_left],
split,
{ rintro ⟨-, ⟨i, rfl⟩, hi⟩,
use i,
convert hi,
ext b,
split,
{ intros h,
use [b - a, h],
abel },
{ rintros ⟨c, hc, rfl⟩,
simpa using hc } },
{ rintros ⟨i, hi⟩,
use [B i, i, rfl],
rw image_subset_iff,
rintro b b_in,
apply hi,
simpa using b_in }
end⟩
/-- Given a subgroups basis, the basis elements as open additive subgroups in the associated
topology. -/
def open_add_subgroup (i : ι) : @open_add_subgroup A _ hB.topology:=
{ is_open' := begin
letI := hB.topology,
rw is_open_iff_mem_nhds,
intros a a_in,
rw (hB.has_basis_nhds a).mem_iff,
use [i, trivial],
rintros b b_in,
simpa using (B i).add_mem a_in b_in
end,
..B i }
-- see Note [nonarchimedean non instances]
lemma nonarchimedean : @nonarchimedean_ring A _ hB.topology :=
begin
letI := hB.topology,
constructor,
intros U hU,
obtain ⟨i, -, hi : (B i : set A) ⊆ U⟩ := hB.has_basis_nhds_zero.mem_iff.mp hU,
exact ⟨hB.open_add_subgroup i, hi⟩
end
end ring_subgroups_basis
variables {ι R A : Type*} [comm_ring R] [comm_ring A] [algebra R A]
/-- A family of submodules in a commutative `R`-algebra `A` is a submodules basis if it satisfies
some axioms ensuring there is a topology on `A` which is compatible with the ring structure and
admits this family as a basis of neighborhoods of zero. -/
structure submodules_ring_basis (B : ι → submodule R A) : Prop :=
(inter : ∀ i j, ∃ k, B k ≤ B i ⊓ B j)
(left_mul : ∀ (a : A) i, ∃ j, a • B j ≤ B i)
(mul : ∀ i, ∃ j, (B j : set A) * B j ⊆ B i)
namespace submodules_ring_basis
variables {B : ι → submodule R A} (hB : submodules_ring_basis B)
lemma to_ring_subgroups_basis (hB : submodules_ring_basis B) :
ring_subgroups_basis (λ i, (B i).to_add_subgroup) :=
begin
apply ring_subgroups_basis.of_comm (λ i, (B i).to_add_subgroup) hB.inter hB.mul,
intros a i,
rcases hB.left_mul a i with ⟨j, hj⟩,
use j,
rintros b (b_in : b ∈ B j),
exact hj ⟨b, b_in, rfl⟩
end
/-- The topology associated to a basis of submodules in an algebra. -/
def topology [nonempty ι] (hB : submodules_ring_basis B) : topological_space A :=
hB.to_ring_subgroups_basis.topology
end submodules_ring_basis
variables {M : Type*} [add_comm_group M] [module R M]
/-- A family of submodules in an `R`-module `M` is a submodules basis if it satisfies
some axioms ensuring there is a topology on `M` which is compatible with the module structure and
admits this family as a basis of neighborhoods of zero. -/
structure submodules_basis [topological_space R]
(B : ι → submodule R M) : Prop :=
(inter : ∀ i j, ∃ k, B k ≤ B i ⊓ B j)
(smul : ∀ (m : M) (i : ι), ∀ᶠ a in 𝓝 (0 : R), a • m ∈ B i)
namespace submodules_basis
variables [topological_space R] [nonempty ι] {B : ι → submodule R M}
(hB : submodules_basis B)
include hB
/-- The image of a submodules basis is a module filter basis. -/
def to_module_filter_basis : module_filter_basis R M :=
{ sets := {U | ∃ i, U = B i},
nonempty := by { inhabit ι, exact ⟨B default, default, rfl⟩ },
inter_sets := begin
rintros _ _ ⟨i, rfl⟩ ⟨j, rfl⟩,
cases hB.inter i j with k hk,
use [B k, k, rfl, hk]
end,
zero' := by { rintros _ ⟨i, rfl⟩, exact (B i).zero_mem },
add' := begin
rintros _ ⟨i, rfl⟩,
use [B i, i, rfl],
rintros x ⟨y, z, y_in, z_in, rfl⟩,
exact (B i).add_mem y_in z_in
end,
neg' := begin
rintros _ ⟨i, rfl⟩,
use [B i, i, rfl],
intros x x_in,
exact (B i).neg_mem x_in
end,
conj' := begin
rintros x₀ _ ⟨i, rfl⟩,
use [B i, i, rfl],
simp
end,
smul' := begin
rintros _ ⟨i, rfl⟩,
use [univ, univ_mem, B i, i, rfl],
rintros _ ⟨a, m, -, hm, rfl⟩,
exact (B i).smul_mem _ hm
end,
smul_left' := begin
rintros x₀ _ ⟨i, rfl⟩,
use [B i, i, rfl],
intros m,
exact (B i).smul_mem _
end,
smul_right' := begin
rintros m₀ _ ⟨i, rfl⟩,
exact hB.smul m₀ i
end }
/-- The topology associated to a basis of submodules in a module. -/
def topology : topological_space M :=
hB.to_module_filter_basis.to_add_group_filter_basis.topology
/-- Given a submodules basis, the basis elements as open additive subgroups in the associated
topology. -/
def open_add_subgroup (i : ι) : @open_add_subgroup M _ hB.topology :=
{ is_open' := begin
letI := hB.topology,
rw is_open_iff_mem_nhds,
intros a a_in,
rw (hB.to_module_filter_basis.to_add_group_filter_basis.nhds_has_basis a).mem_iff,
use [B i, i, rfl],
rintros - ⟨b, b_in, rfl⟩,
exact (B i).add_mem a_in b_in
end,
..(B i).to_add_subgroup }
-- see Note [nonarchimedean non instances]
lemma nonarchimedean (hB : submodules_basis B) : @nonarchimedean_add_group M _ hB.topology:=
begin
letI := hB.topology,
constructor,
intros U hU,
obtain ⟨-, ⟨i, rfl⟩, hi : (B i : set M) ⊆ U⟩ :=
hB.to_module_filter_basis.to_add_group_filter_basis.nhds_zero_has_basis.mem_iff.mp hU,
exact ⟨hB.open_add_subgroup i, hi⟩
end
/-- The non archimedean subgroup basis lemmas cannot be instances because some instances
(such as `measure_theory.ae_eq_fun.add_monoid ` or `topological_add_group.to_has_continuous_add`)
cause the search for `@topological_add_group β ?m1 ?m2`, i.e. a search for a topological group where
the topology/group structure are unknown. -/
library_note "nonarchimedean non instances"
end submodules_basis
section
/-
In this section, we check that, in a `R`-algebra `A` over a ring equipped with a topology,
a basis of `R`-submodules which is compatible with the topology on `R` is also a submodule basis
in the sense of `R`-modules (forgetting about the ring structure on `A`) and those two points of
view definitionaly gives the same topology on `A`.
-/
variables [topological_space R] {B : ι → submodule R A} (hB : submodules_ring_basis B)
(hsmul : ∀ (m : A) (i : ι), ∀ᶠ (a : R) in 𝓝 0, a • m ∈ B i)
lemma submodules_ring_basis.to_submodules_basis : submodules_basis B :=
{ inter := hB.inter,
smul := hsmul }
example [nonempty ι] : hB.topology = (hB.to_submodules_basis hsmul).topology := rfl
end
/-- Given a ring filter basis on a commutative ring `R`, define a compatibility condition
on a family of submodules of a `R`-module `M`. This compatibility condition allows to get
a topological module structure. -/
structure ring_filter_basis.submodules_basis (BR : ring_filter_basis R)
(B : ι → submodule R M) : Prop :=
(inter : ∀ i j, ∃ k, B k ≤ B i ⊓ B j)
(smul : ∀ (m : M) (i : ι), ∃ U ∈ BR, U ⊆ (λ a, a • m) ⁻¹' B i)
lemma ring_filter_basis.submodules_basis_is_basis (BR : ring_filter_basis R) {B : ι → submodule R M}
(hB : BR.submodules_basis B) : @submodules_basis ι R _ M _ _ BR.topology B :=
{ inter := hB.inter,
smul := begin
letI := BR.topology,
intros m i,
rcases hB.smul m i with ⟨V, V_in, hV⟩,
exact mem_of_superset (BR.to_add_group_filter_basis.mem_nhds_zero V_in) hV
end }
/-- The module filter basis associated to a ring filter basis and a compatible submodule basis.
This allows to build a topological module structure compatible with the given module structure
and the topology associated to the given ring filter basis. -/
def ring_filter_basis.module_filter_basis [nonempty ι] (BR : ring_filter_basis R)
{B : ι → submodule R M} (hB : BR.submodules_basis B) :
@module_filter_basis R M _ BR.topology _ _ :=
@submodules_basis.to_module_filter_basis ι R _ M _ _ BR.topology _ _
(BR.submodules_basis_is_basis hB)
|