Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 8,718 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/-
Copyright (c) 2018 Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Johannes Hölzl
-/
import topology.algebra.group_completion
import topology.algebra.ring

/-!
# Completion of topological rings:

This files endows the completion of a topological ring with a ring structure.
More precisely the instance `uniform_space.completion.ring` builds a ring structure
on the completion of a ring endowed with a compatible uniform structure in the sense of
`uniform_add_group`. There is also a commutative version when the original ring is commutative.

The last part of the file builds a ring structure on the biggest separated quotient of a ring.

## Main declarations:

Beyond the instances explained above (that don't have to be explicitly invoked),
the main constructions deal with continuous ring morphisms.

* `uniform_space.completion.extension_hom`: extends a continuous ring morphism from `R`
  to a complete separated group `S` to `completion R`.
* `uniform_space.completion.map_ring_hom` : promotes a continuous ring morphism
  from `R` to `S` into a continuous ring morphism from `completion R` to `completion S`.
-/
open classical set filter topological_space add_comm_group
open_locale classical
noncomputable theory
universes u

namespace uniform_space.completion
open dense_inducing uniform_space function
variables (α : Type*) [ring α] [uniform_space α]

instance : has_one (completion α) := ⟨(1:α)⟩

instance : has_mul (completion α) :=
⟨curry $ (dense_inducing_coe.prod dense_inducing_coe).extend (coe ∘ uncurry (*))⟩

@[norm_cast] lemma coe_one : ((1 : α) : completion α) = 1 := rfl

variables {α} [topological_ring α]

@[norm_cast]
lemma coe_mul (a b : α) : ((a * b : α) : completion α) = a * b :=
((dense_inducing_coe.prod dense_inducing_coe).extend_eq
  ((continuous_coe α).comp (@continuous_mul α _ _ _)) (a, b)).symm

variables [uniform_add_group α]

lemma continuous_mul : continuous (λ p : completion α × completion α, p.1 * p.2) :=
begin
  let m := (add_monoid_hom.mul : α →+ α →+ α).compr₂ to_compl,
  have : continuous (λ p : α × α, m p.1 p.2),
  from (continuous_coe α).comp continuous_mul,
  have di : dense_inducing (to_compl : α → completion α),
  from dense_inducing_coe,
  convert di.extend_Z_bilin di this,
  ext ⟨x, y⟩,
  refl
end

lemma continuous.mul {β : Type*} [topological_space β] {f g : β → completion α}
  (hf : continuous f) (hg : continuous g) : continuous (λb, f b * g b) :=
continuous_mul.comp (hf.prod_mk hg : _)

instance : ring (completion α) :=
{ one_mul       := assume a, completion.induction_on a
    (is_closed_eq (continuous.mul continuous_const continuous_id) continuous_id)
    (assume a, by rw [← coe_one, ← coe_mul, one_mul]),
  mul_one       := assume a, completion.induction_on a
    (is_closed_eq (continuous.mul continuous_id continuous_const) continuous_id)
    (assume a, by rw [← coe_one, ← coe_mul, mul_one]),
  mul_assoc     := assume a b c, completion.induction_on₃ a b c
    (is_closed_eq
      (continuous.mul (continuous.mul continuous_fst (continuous_fst.comp continuous_snd))
        (continuous_snd.comp continuous_snd))
      (continuous.mul continuous_fst
        (continuous.mul (continuous_fst.comp continuous_snd) (continuous_snd.comp continuous_snd))))
    (assume a b c, by rw [← coe_mul, ← coe_mul, ← coe_mul, ← coe_mul, mul_assoc]),
  left_distrib  := assume a b c, completion.induction_on₃ a b c
    (is_closed_eq
      (continuous.mul continuous_fst (continuous.add
        (continuous_fst.comp continuous_snd)
        (continuous_snd.comp continuous_snd)))
      (continuous.add
        (continuous.mul continuous_fst (continuous_fst.comp continuous_snd))
        (continuous.mul continuous_fst (continuous_snd.comp continuous_snd))))
    (assume a b c, by rw [← coe_add, ← coe_mul, ← coe_mul, ← coe_mul, ←coe_add, mul_add]),
  right_distrib := assume a b c, completion.induction_on₃ a b c
    (is_closed_eq
      (continuous.mul (continuous.add continuous_fst
        (continuous_fst.comp continuous_snd)) (continuous_snd.comp continuous_snd))
      (continuous.add
        (continuous.mul continuous_fst (continuous_snd.comp continuous_snd))
        (continuous.mul (continuous_fst.comp continuous_snd) (continuous_snd.comp continuous_snd))))
    (assume a b c, by rw [← coe_add, ← coe_mul, ← coe_mul, ← coe_mul, ←coe_add, add_mul]),
  .. add_monoid_with_one.unary,
  ..completion.add_comm_group, ..completion.has_mul α, ..completion.has_one α }

/-- The map from a uniform ring to its completion, as a ring homomorphism. -/
def coe_ring_hom : α →+* completion α :=
⟨coe, coe_one α, assume a b, coe_mul a b, coe_zero, assume a b, coe_add a b⟩

lemma continuous_coe_ring_hom : continuous (coe_ring_hom : α → completion α) :=
continuous_coe α

variables {β : Type u} [uniform_space β] [ring β] [uniform_add_group β] [topological_ring β]
          (f : α →+* β) (hf : continuous f)

/-- The completion extension as a ring morphism. -/
def extension_hom [complete_space β] [separated_space β] :
  completion α →+* β :=
have hf' : continuous (f : α →+ β), from hf, -- helping the elaborator
have hf : uniform_continuous f, from uniform_continuous_add_monoid_hom_of_continuous hf',
{ to_fun := completion.extension f,
  map_zero' := by rw [← coe_zero, extension_coe hf, f.map_zero],
  map_add' := assume a b, completion.induction_on₂ a b
    (is_closed_eq
      (continuous_extension.comp continuous_add)
      ((continuous_extension.comp continuous_fst).add
                      (continuous_extension.comp continuous_snd)))
    (assume a b,
      by rw [← coe_add, extension_coe hf, extension_coe hf, extension_coe hf,
             f.map_add]),
  map_one' := by rw [← coe_one, extension_coe hf, f.map_one],
  map_mul' := assume a b, completion.induction_on₂ a b
    (is_closed_eq
      (continuous_extension.comp continuous_mul)
      ((continuous_extension.comp continuous_fst).mul (continuous_extension.comp continuous_snd)))
    (assume a b,
      by rw [← coe_mul, extension_coe hf, extension_coe hf, extension_coe hf, f.map_mul]) }

instance top_ring_compl : topological_ring (completion α) :=
{ continuous_add := continuous_add,
  continuous_mul := continuous_mul }

/-- The completion map as a ring morphism. -/
def map_ring_hom (hf : continuous f) : completion α →+* completion β :=
extension_hom (coe_ring_hom.comp f) (continuous_coe_ring_hom.comp  hf)

variables (R : Type*) [comm_ring R] [uniform_space R] [uniform_add_group R] [topological_ring R]

instance : comm_ring (completion R) :=
{ mul_comm := assume a b, completion.induction_on₂ a b
      (is_closed_eq (continuous_fst.mul continuous_snd)
                    (continuous_snd.mul continuous_fst))
      (assume a b, by rw [← coe_mul, ← coe_mul, mul_comm]),
 ..completion.ring }

end uniform_space.completion


namespace uniform_space
variables {α : Type*}
lemma ring_sep_rel (α) [comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] :
  separation_setoid α = submodule.quotient_rel (ideal.closure ⊥) :=
setoid.ext $ λ x y, (add_group_separation_rel x y).trans $
  iff.trans (by refl) (submodule.quotient_rel_r_def _).symm

lemma ring_sep_quot
  (α : Type u) [r : comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] :
  quotient (separation_setoid α) = (α ⧸ (⊥ : ideal α).closure) :=
by rw [@ring_sep_rel α r]; refl

/-- Given a topological ring `α` equipped with a uniform structure that makes subtraction uniformly
continuous, get an equivalence between the separated quotient of `α` and the quotient ring
corresponding to the closure of zero. -/
def sep_quot_equiv_ring_quot (α)
  [r : comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] :
  quotient (separation_setoid α) ≃ (α ⧸ (⊥ : ideal α).closure) :=
quotient.congr_right $ λ x y, (add_group_separation_rel x y).trans $
  iff.trans (by refl) (submodule.quotient_rel_r_def _).symm

/- TODO: use a form of transport a.k.a. lift definition a.k.a. transfer -/
instance comm_ring [comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] :
  comm_ring (quotient (separation_setoid α)) :=
by rw ring_sep_quot α; apply_instance

instance topological_ring
  [comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] :
  topological_ring (quotient (separation_setoid α)) :=
begin
  convert topological_ring_quotient (⊥ : ideal α).closure; try {apply ring_sep_rel},
  simp [uniform_space.comm_ring]
end

end uniform_space