Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 8,718 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
/-
Copyright (c) 2018 Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Johannes Hölzl
-/
import topology.algebra.group_completion
import topology.algebra.ring
/-!
# Completion of topological rings:
This files endows the completion of a topological ring with a ring structure.
More precisely the instance `uniform_space.completion.ring` builds a ring structure
on the completion of a ring endowed with a compatible uniform structure in the sense of
`uniform_add_group`. There is also a commutative version when the original ring is commutative.
The last part of the file builds a ring structure on the biggest separated quotient of a ring.
## Main declarations:
Beyond the instances explained above (that don't have to be explicitly invoked),
the main constructions deal with continuous ring morphisms.
* `uniform_space.completion.extension_hom`: extends a continuous ring morphism from `R`
to a complete separated group `S` to `completion R`.
* `uniform_space.completion.map_ring_hom` : promotes a continuous ring morphism
from `R` to `S` into a continuous ring morphism from `completion R` to `completion S`.
-/
open classical set filter topological_space add_comm_group
open_locale classical
noncomputable theory
universes u
namespace uniform_space.completion
open dense_inducing uniform_space function
variables (α : Type*) [ring α] [uniform_space α]
instance : has_one (completion α) := ⟨(1:α)⟩
instance : has_mul (completion α) :=
⟨curry $ (dense_inducing_coe.prod dense_inducing_coe).extend (coe ∘ uncurry (*))⟩
@[norm_cast] lemma coe_one : ((1 : α) : completion α) = 1 := rfl
variables {α} [topological_ring α]
@[norm_cast]
lemma coe_mul (a b : α) : ((a * b : α) : completion α) = a * b :=
((dense_inducing_coe.prod dense_inducing_coe).extend_eq
((continuous_coe α).comp (@continuous_mul α _ _ _)) (a, b)).symm
variables [uniform_add_group α]
lemma continuous_mul : continuous (λ p : completion α × completion α, p.1 * p.2) :=
begin
let m := (add_monoid_hom.mul : α →+ α →+ α).compr₂ to_compl,
have : continuous (λ p : α × α, m p.1 p.2),
from (continuous_coe α).comp continuous_mul,
have di : dense_inducing (to_compl : α → completion α),
from dense_inducing_coe,
convert di.extend_Z_bilin di this,
ext ⟨x, y⟩,
refl
end
lemma continuous.mul {β : Type*} [topological_space β] {f g : β → completion α}
(hf : continuous f) (hg : continuous g) : continuous (λb, f b * g b) :=
continuous_mul.comp (hf.prod_mk hg : _)
instance : ring (completion α) :=
{ one_mul := assume a, completion.induction_on a
(is_closed_eq (continuous.mul continuous_const continuous_id) continuous_id)
(assume a, by rw [← coe_one, ← coe_mul, one_mul]),
mul_one := assume a, completion.induction_on a
(is_closed_eq (continuous.mul continuous_id continuous_const) continuous_id)
(assume a, by rw [← coe_one, ← coe_mul, mul_one]),
mul_assoc := assume a b c, completion.induction_on₃ a b c
(is_closed_eq
(continuous.mul (continuous.mul continuous_fst (continuous_fst.comp continuous_snd))
(continuous_snd.comp continuous_snd))
(continuous.mul continuous_fst
(continuous.mul (continuous_fst.comp continuous_snd) (continuous_snd.comp continuous_snd))))
(assume a b c, by rw [← coe_mul, ← coe_mul, ← coe_mul, ← coe_mul, mul_assoc]),
left_distrib := assume a b c, completion.induction_on₃ a b c
(is_closed_eq
(continuous.mul continuous_fst (continuous.add
(continuous_fst.comp continuous_snd)
(continuous_snd.comp continuous_snd)))
(continuous.add
(continuous.mul continuous_fst (continuous_fst.comp continuous_snd))
(continuous.mul continuous_fst (continuous_snd.comp continuous_snd))))
(assume a b c, by rw [← coe_add, ← coe_mul, ← coe_mul, ← coe_mul, ←coe_add, mul_add]),
right_distrib := assume a b c, completion.induction_on₃ a b c
(is_closed_eq
(continuous.mul (continuous.add continuous_fst
(continuous_fst.comp continuous_snd)) (continuous_snd.comp continuous_snd))
(continuous.add
(continuous.mul continuous_fst (continuous_snd.comp continuous_snd))
(continuous.mul (continuous_fst.comp continuous_snd) (continuous_snd.comp continuous_snd))))
(assume a b c, by rw [← coe_add, ← coe_mul, ← coe_mul, ← coe_mul, ←coe_add, add_mul]),
.. add_monoid_with_one.unary,
..completion.add_comm_group, ..completion.has_mul α, ..completion.has_one α }
/-- The map from a uniform ring to its completion, as a ring homomorphism. -/
def coe_ring_hom : α →+* completion α :=
⟨coe, coe_one α, assume a b, coe_mul a b, coe_zero, assume a b, coe_add a b⟩
lemma continuous_coe_ring_hom : continuous (coe_ring_hom : α → completion α) :=
continuous_coe α
variables {β : Type u} [uniform_space β] [ring β] [uniform_add_group β] [topological_ring β]
(f : α →+* β) (hf : continuous f)
/-- The completion extension as a ring morphism. -/
def extension_hom [complete_space β] [separated_space β] :
completion α →+* β :=
have hf' : continuous (f : α →+ β), from hf, -- helping the elaborator
have hf : uniform_continuous f, from uniform_continuous_add_monoid_hom_of_continuous hf',
{ to_fun := completion.extension f,
map_zero' := by rw [← coe_zero, extension_coe hf, f.map_zero],
map_add' := assume a b, completion.induction_on₂ a b
(is_closed_eq
(continuous_extension.comp continuous_add)
((continuous_extension.comp continuous_fst).add
(continuous_extension.comp continuous_snd)))
(assume a b,
by rw [← coe_add, extension_coe hf, extension_coe hf, extension_coe hf,
f.map_add]),
map_one' := by rw [← coe_one, extension_coe hf, f.map_one],
map_mul' := assume a b, completion.induction_on₂ a b
(is_closed_eq
(continuous_extension.comp continuous_mul)
((continuous_extension.comp continuous_fst).mul (continuous_extension.comp continuous_snd)))
(assume a b,
by rw [← coe_mul, extension_coe hf, extension_coe hf, extension_coe hf, f.map_mul]) }
instance top_ring_compl : topological_ring (completion α) :=
{ continuous_add := continuous_add,
continuous_mul := continuous_mul }
/-- The completion map as a ring morphism. -/
def map_ring_hom (hf : continuous f) : completion α →+* completion β :=
extension_hom (coe_ring_hom.comp f) (continuous_coe_ring_hom.comp hf)
variables (R : Type*) [comm_ring R] [uniform_space R] [uniform_add_group R] [topological_ring R]
instance : comm_ring (completion R) :=
{ mul_comm := assume a b, completion.induction_on₂ a b
(is_closed_eq (continuous_fst.mul continuous_snd)
(continuous_snd.mul continuous_fst))
(assume a b, by rw [← coe_mul, ← coe_mul, mul_comm]),
..completion.ring }
end uniform_space.completion
namespace uniform_space
variables {α : Type*}
lemma ring_sep_rel (α) [comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] :
separation_setoid α = submodule.quotient_rel (ideal.closure ⊥) :=
setoid.ext $ λ x y, (add_group_separation_rel x y).trans $
iff.trans (by refl) (submodule.quotient_rel_r_def _).symm
lemma ring_sep_quot
(α : Type u) [r : comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] :
quotient (separation_setoid α) = (α ⧸ (⊥ : ideal α).closure) :=
by rw [@ring_sep_rel α r]; refl
/-- Given a topological ring `α` equipped with a uniform structure that makes subtraction uniformly
continuous, get an equivalence between the separated quotient of `α` and the quotient ring
corresponding to the closure of zero. -/
def sep_quot_equiv_ring_quot (α)
[r : comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] :
quotient (separation_setoid α) ≃ (α ⧸ (⊥ : ideal α).closure) :=
quotient.congr_right $ λ x y, (add_group_separation_rel x y).trans $
iff.trans (by refl) (submodule.quotient_rel_r_def _).symm
/- TODO: use a form of transport a.k.a. lift definition a.k.a. transfer -/
instance comm_ring [comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] :
comm_ring (quotient (separation_setoid α)) :=
by rw ring_sep_quot α; apply_instance
instance topological_ring
[comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] :
topological_ring (quotient (separation_setoid α)) :=
begin
convert topological_ring_quotient (⊥ : ideal α).closure; try {apply ring_sep_rel},
simp [uniform_space.comm_ring]
end
end uniform_space
|