File size: 17,873 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/-
Copyright (c) 2018 Reid Barton. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Reid Barton
-/
import tactic.tidy
import topology.continuous_function.basic
import topology.homeomorph
import topology.subset_properties
import topology.maps

/-!
# The compact-open topology

In this file, we define the compact-open topology on the set of continuous maps between two
topological spaces.

## Main definitions

* `compact_open` is the compact-open topology on `C(α, β)`. It is declared as an instance.
* `continuous_map.coev` is the coevaluation map `β → C(α, β × α)`. It is always continuous.
* `continuous_map.curry` is the currying map `C(α × β, γ) → C(α, C(β, γ))`. This map always exists
  and it is continuous as long as `α × β` is locally compact.
* `continuous_map.uncurry` is the uncurrying map `C(α, C(β, γ)) → C(α × β, γ)`. For this map to
  exist, we need `β` to be locally compact. If `α` is also locally compact, then this map is
  continuous.
* `homeomorph.curry` combines the currying and uncurrying operations into a homeomorphism
  `C(α × β, γ) ≃ₜ C(α, C(β, γ))`. This homeomorphism exists if `α` and `β` are locally compact.


## Tags

compact-open, curry, function space
-/

open set
open_locale topological_space

namespace continuous_map

section compact_open
variables {α : Type*} {β : Type*} {γ : Type*}
variables [topological_space α] [topological_space β] [topological_space γ]

/-- A generating set for the compact-open topology (when `s` is compact and `u` is open). -/
def compact_open.gen (s : set α) (u : set β) : set C(α,β) := {f | f '' s ⊆ u}

@[simp] lemma gen_empty (u : set β) : compact_open.gen (∅ : set α) u = set.univ :=
set.ext (λ f, iff_true_intro ((congr_arg (⊆ u) (image_empty f)).mpr u.empty_subset))

@[simp] lemma gen_univ (s : set α) : compact_open.gen s (set.univ : set β) = set.univ :=
set.ext (λ f, iff_true_intro (f '' s).subset_univ)

@[simp] lemma gen_inter (s : set α) (u v : set β) :
  compact_open.gen s (u ∩ v) = compact_open.gen s u ∩ compact_open.gen s v :=
set.ext (λ f, subset_inter_iff)

@[simp] lemma gen_union (s t : set α) (u : set β) :
  compact_open.gen (s ∪ t) u = compact_open.gen s u ∩ compact_open.gen t u :=
set.ext (λ f, (iff_of_eq (congr_arg (⊆ u) (image_union f s t))).trans union_subset_iff)

lemma gen_empty_right {s : set α} (h : s.nonempty) : compact_open.gen s (∅ : set β) = ∅ :=
eq_empty_of_forall_not_mem $ λ f, (h.image _).not_subset_empty

-- The compact-open topology on the space of continuous maps α → β.
instance compact_open : topological_space C(α, β) :=
topological_space.generate_from
  {m | ∃ (s : set α) (hs : is_compact s) (u : set β) (hu : is_open u), m = compact_open.gen s u}

protected lemma is_open_gen {s : set α} (hs : is_compact s) {u : set β} (hu : is_open u) :
  is_open (compact_open.gen s u) :=
topological_space.generate_open.basic _ (by dsimp [mem_set_of_eq]; tauto)

section functorial

variables (g : C(β, γ))

private lemma preimage_gen {s : set α} (hs : is_compact s) {u : set γ} (hu : is_open u) :
  continuous_map.comp g ⁻¹' (compact_open.gen s u) = compact_open.gen s (g ⁻¹' u) :=
begin
  ext ⟨f, _⟩,
  change g ∘ f '' s ⊆ u ↔ f '' s ⊆ g ⁻¹' u,
  rw [image_comp, image_subset_iff]
end

/-- C(α, -) is a functor. -/
lemma continuous_comp : continuous (continuous_map.comp g : C(α, β) → C(α, γ)) :=
continuous_generated_from $ assume m ⟨s, hs, u, hu, hm⟩,
  by rw [hm, preimage_gen g hs hu]; exact continuous_map.is_open_gen hs (hu.preimage g.2)

variable (f : C(α, β))

private lemma image_gen {s : set α} (hs : is_compact s) {u : set γ} (hu : is_open u) :
  (λ g : C(β, γ), g.comp f) ⁻¹' compact_open.gen s u = compact_open.gen (f '' s) u :=
begin
  ext ⟨g, _⟩,
  change g ∘ f '' s ⊆ u ↔ g '' (f '' s) ⊆ u,
  rw set.image_comp,
end

/-- C(-, γ) is a functor. -/
lemma continuous_comp_left : continuous (λ g, g.comp f : C(β, γ) → C(α, γ)) :=
continuous_generated_from $ assume m ⟨s, hs, u, hu, hm⟩,
  by { rw [hm, image_gen f hs hu], exact continuous_map.is_open_gen (hs.image f.2) hu }

end functorial

section ev

variables {α β}

/-- The evaluation map `C(α, β) × α → β` is continuous if `α` is locally compact.

See also `continuous_map.continuous_eval` -/
lemma continuous_eval' [locally_compact_space α] : continuous (λ p : C(α, β) × α, p.1 p.2) :=
continuous_iff_continuous_at.mpr $ assume ⟨f, x⟩ n hn,
  let ⟨v, vn, vo, fxv⟩ := mem_nhds_iff.mp hn in
  have v ∈ 𝓝 (f x), from is_open.mem_nhds vo fxv,
  let ⟨s, hs, sv, sc⟩ :=
    locally_compact_space.local_compact_nhds x (f ⁻¹' v)
      (f.continuous.tendsto x this) in
  let ⟨u, us, uo, xu⟩ := mem_nhds_iff.mp hs in
  show (λ p : C(α, β) × α, p.1 p.2) ⁻¹' n ∈ 𝓝 (f, x), from
  let w := compact_open.gen s v ×ˢ u in
  have w ⊆ (λ p : C(α, β) × α, p.1 p.2) ⁻¹' n, from assume ⟨f', x'⟩ ⟨hf', hx'⟩, calc
    f' x'f' '' s  : mem_image_of_mem f' (us hx')
    ...       ⊆ v            : hf'
    ...       ⊆ n            : vn,
  have is_open w, from (continuous_map.is_open_gen sc vo).prod uo,
  have (f, x) ∈ w, from ⟨image_subset_iff.mpr sv, xu⟩,
  mem_nhds_iff.mpr ⟨w, by assumption, by assumption, by assumption⟩

/-- See also `continuous_map.continuous_eval_const` -/
lemma continuous_eval_const' [locally_compact_space α] (a : α) : continuous (λ f : C(α, β), f a) :=
continuous_eval'.comp (continuous_id.prod_mk continuous_const)

/-- See also `continuous_map.continuous_coe` -/
lemma continuous_coe' [locally_compact_space α] : @continuous (C(α, β)) (α → β) _ _ coe_fn :=
continuous_pi continuous_eval_const'

instance [t2_space β] : t2_space C(α, β) :=
⟨ begin
    intros f₁ f₂ h,
    obtain ⟨x, hx⟩ := not_forall.mp (mt (fun_like.ext f₁ f₂) h),
    obtain ⟨u, v, hu, hv, hxu, hxv, huv⟩ := t2_separation hx,
    refine ⟨compact_open.gen {x} u, compact_open.gen {x} v, continuous_map.is_open_gen
      is_compact_singleton hu, continuous_map.is_open_gen is_compact_singleton hv, _, _, _⟩,
    { rwa [compact_open.gen, mem_set_of_eq, image_singleton, singleton_subset_iff] },
    { rwa [compact_open.gen, mem_set_of_eq, image_singleton, singleton_subset_iff] },
    { rw [disjoint_iff_inter_eq_empty, ←gen_inter, huv.inter_eq,
        gen_empty_right (singleton_nonempty _)] }
  end ⟩

end ev

section Inf_induced

lemma compact_open_le_induced (s : set α) :
  (continuous_map.compact_open : topological_space C(α, β))
  ≤ topological_space.induced (continuous_map.restrict s) continuous_map.compact_open :=
begin
  simp only [induced_generate_from_eq, continuous_map.compact_open],
  apply generate_from_mono,
  rintros b ⟨a, ⟨c, hc, u, hu, rfl⟩, rfl⟩,
  refine ⟨coe '' c, hc.image continuous_subtype_coe, u, hu, _⟩,
  ext f,
  simp only [compact_open.gen, mem_set_of_eq, mem_preimage, continuous_map.coe_restrict],
  rw image_comp f (coe : s → α),
end

/-- The compact-open topology on `C(α, β)` is equal to the infimum of the compact-open topologies
on `C(s, β)` for `s` a compact subset of `α`.  The key point of the proof is that the union of the
compact subsets of `α` is equal to the union of compact subsets of the compact subsets of `α`. -/
lemma compact_open_eq_Inf_induced :
  (continuous_map.compact_open : topological_space C(α, β))
  = ⨅ (s : set α) (hs : is_compact s),
    topological_space.induced (continuous_map.restrict s) continuous_map.compact_open :=
begin
  refine le_antisymm _ _,
  { refine le_infi₂ _,
    exact λ s hs, compact_open_le_induced s },
  simp only [← generate_from_Union, induced_generate_from_eq, continuous_map.compact_open],
  apply generate_from_mono,
  rintros _ ⟨s, hs, u, hu, rfl⟩,
  rw mem_Union₂,
  refine ⟨s, hs, _, ⟨univ, is_compact_iff_is_compact_univ.mp hs, u, hu, rfl⟩, _⟩,
  ext f,
  simp only [compact_open.gen, mem_set_of_eq, mem_preimage, continuous_map.coe_restrict],
  rw image_comp f (coe : s → α),
  simp
end

/-- For any subset `s` of `α`, the restriction of continuous functions to `s` is continuous as a
function from `C(α, β)` to `C(s, β)` with their respective compact-open topologies. -/
lemma continuous_restrict (s : set α) : continuous (λ F : C(α, β), F.restrict s) :=
by { rw continuous_iff_le_induced, exact compact_open_le_induced s }

lemma nhds_compact_open_eq_Inf_nhds_induced (f : C(α, β)) :
  𝓝 f = ⨅ s (hs : is_compact s), (𝓝 (f.restrict s)).comap (continuous_map.restrict s) :=
by { rw [compact_open_eq_Inf_induced], simp [nhds_infi, nhds_induced] }

lemma tendsto_compact_open_restrict {ι : Type*} {l : filter ι} {F : ι → C(α, β)} {f : C(α, β)}
  (hFf : filter.tendsto F l (𝓝 f)) (s : set α) :
  filter.tendsto (λ i, (F i).restrict s) l (𝓝 (f.restrict s)) :=
(continuous_restrict s).continuous_at.tendsto.comp hFf

lemma tendsto_compact_open_iff_forall {ι : Type*} {l : filter ι} (F : ι → C(α, β)) (f : C(α, β)) :
  filter.tendsto F l (𝓝 f)
  ↔ ∀ s (hs : is_compact s), filter.tendsto (λ i, (F i).restrict s) l (𝓝 (f.restrict s)) :=
by { rw [compact_open_eq_Inf_induced], simp [nhds_infi, nhds_induced, filter.tendsto_comap_iff] }

/-- A family `F` of functions in `C(α, β)` converges in the compact-open topology, if and only if
it converges in the compact-open topology on each compact subset of `α`. -/
lemma exists_tendsto_compact_open_iff_forall [locally_compact_space α] [t2_space α] [t2_space β]
  {ι : Type*} {l : filter ι} [filter.ne_bot l] (F : ι → C(α, β)) :
  (∃ f, filter.tendsto F l (𝓝 f))
  ↔ ∀ (s : set α) (hs : is_compact s), ∃ f, filter.tendsto (λ i, (F i).restrict s) l (𝓝 f) :=
begin
  split,
  { rintros ⟨f, hf⟩ s hs,
    exact ⟨f.restrict s, tendsto_compact_open_restrict hf s⟩ },
  { intros h,
    choose f hf using h,
    -- By uniqueness of limits in a `t2_space`, since `λ i, F i x` tends to both `f s₁ hs₁ x` and
    -- `f s₂ hs₂ x`, we have `f s₁ hs₁ x = f s₂ hs₂ x`
    have h : ∀ s₁ (hs₁ : is_compact s₁) s₂ (hs₂ : is_compact s₂) (x : α) (hxs₁ : x ∈ s₁)
      (hxs₂ : x ∈ s₂), f s₁ hs₁ ⟨x, hxs₁⟩ = f s₂ hs₂ ⟨x, hxs₂⟩,
    { rintros s₁ hs₁ s₂ hs₂ x hxs₁ hxs₂,
      haveI := is_compact_iff_compact_space.mp hs₁,
      haveI := is_compact_iff_compact_space.mp hs₂,
      have h₁ := (continuous_eval_const' (⟨x, hxs₁⟩ : s₁)).continuous_at.tendsto.comp (hf s₁ hs₁),
      have h₂ := (continuous_eval_const' (⟨x, hxs₂⟩ : s₂)).continuous_at.tendsto.comp (hf s₂ hs₂),
      exact tendsto_nhds_unique h₁ h₂ },
    -- So glue the `f s hs` together and prove that this glued function `f₀` is a limit on each
    -- compact set `s`
    have hs : ∀ x : α, ∃ s (hs : is_compact s), s ∈ 𝓝 x,
    { intros x,
      obtain ⟨s, hs, hs'⟩ := exists_compact_mem_nhds x,
      exact ⟨s, hs, hs'⟩ },
    refine ⟨lift_cover' _ _ h hs, _⟩,
    rw tendsto_compact_open_iff_forall,
    intros s hs,
    rw lift_cover_restrict',
    exact hf s hs }
end

end Inf_induced

section coev

variables (α β)

/-- The coevaluation map `β → C(α, β × α)` sending a point `x : β` to the continuous function
on `α` sending `y` to `(x, y)`. -/
def coev (b : β) : C(α, β × α) := ⟨prod.mk b, continuous_const.prod_mk continuous_id⟩

variables {α β}
lemma image_coev {y : β} (s : set α) : (coev α β y) '' s = ({y} : set β) ×ˢ s := by tidy

-- The coevaluation map β → C(α, β × α) is continuous (always).
lemma continuous_coev : continuous (coev α β) :=
continuous_generated_from $ begin
  rintros _ ⟨s, sc, u, uo, rfl⟩,
  rw is_open_iff_forall_mem_open,
  intros y hy,
  change (coev α β y) '' s ⊆ u at hy,
  rw image_coev s at hy,
  rcases generalized_tube_lemma is_compact_singleton sc uo hy
    with ⟨v, w, vo, wo, yv, sw, vwu⟩,
  refine ⟨v, _, vo, singleton_subset_iff.mp yv⟩,
  intros y' hy',
  change (coev α β y') '' s ⊆ u,
  rw image_coev s,
  exact subset.trans (prod_mono (singleton_subset_iff.mpr hy') sw) vwu
end

end coev

section curry

/-- Auxiliary definition, see `continuous_map.curry` and `homeomorph.curry`. -/
def curry' (f : C(α × β, γ)) (a : α) : C(β, γ) := ⟨function.curry f a⟩

/-- If a map `α × β → γ` is continuous, then its curried form `α → C(β, γ)` is continuous. -/
lemma continuous_curry' (f : C(α × β, γ)) : continuous (curry' f) :=
have hf : curry' f = continuous_map.comp f ∘ coev _ _, by { ext, refl },
hf ▸ continuous.comp (continuous_comp f) continuous_coev

/-- To show continuity of a map `α → C(β, γ)`, it suffices to show that its uncurried form
    `α × β → γ` is continuous. -/
lemma continuous_of_continuous_uncurry (f : α → C(β, γ))
  (h : continuous (function.uncurry (λ x y, f x y))) : continuous f :=
by { convert continuous_curry' ⟨_, h⟩, ext, refl }

/-- The curried form of a continuous map `α × β → γ` as a continuous map `α → C(β, γ)`.
    If `a × β` is locally compact, this is continuous. If `α` and `β` are both locally
    compact, then this is a homeomorphism, see `homeomorph.curry`. -/
def curry (f : C(α × β, γ)) : C(α, C(β, γ)) :=
⟨_, continuous_curry' f⟩

/-- The currying process is a continuous map between function spaces. -/
lemma continuous_curry [locally_compact_space (α × β)] :
  continuous (curry : C(α × β, γ) → C(α, C(β, γ))) :=
begin
  apply continuous_of_continuous_uncurry,
  apply continuous_of_continuous_uncurry,
  rw ←homeomorph.comp_continuous_iff' (homeomorph.prod_assoc _ _ _).symm,
  convert continuous_eval';
  tidy
end

@[simp]
lemma curry_apply (f : C(α × β, γ)) (a : α) (b : β) : f.curry a b = f (a, b) := rfl

/-- The uncurried form of a continuous map `α → C(β, γ)` is a continuous map `α × β → γ`. -/
lemma continuous_uncurry_of_continuous [locally_compact_space β] (f : C(α, C(β, γ))) :
  continuous (function.uncurry (λ x y, f x y)) :=
continuous_eval'.comp $ f.continuous.prod_map continuous_id

/-- The uncurried form of a continuous map `α → C(β, γ)` as a continuous map `α × β → γ` (if `β` is
    locally compact). If `α` is also locally compact, then this is a homeomorphism between the two
    function spaces, see `homeomorph.curry`. -/
@[simps] def uncurry [locally_compact_space β] (f : C(α, C(β, γ))) : C(α × β, γ) :=
⟨_, continuous_uncurry_of_continuous f⟩

/-- The uncurrying process is a continuous map between function spaces. -/
lemma continuous_uncurry [locally_compact_space α] [locally_compact_space β] :
  continuous (uncurry : C(α, C(β, γ)) → C(α × β, γ)) :=
begin
  apply continuous_of_continuous_uncurry,
  rw ←homeomorph.comp_continuous_iff' (homeomorph.prod_assoc _ _ _),
  apply continuous.comp continuous_eval' (continuous.prod_map continuous_eval' continuous_id);
  apply_instance
end

/-- The family of constant maps: `β → C(α, β)` as a continuous map. -/
def const' : C(β, C(α, β)) := curry ⟨prod.fst, continuous_fst⟩

@[simp] lemma coe_const' : (const' : β → C(α, β)) = const α := rfl

lemma continuous_const' : continuous (const α : β → C(α, β)) := const'.continuous

end curry

end compact_open

end continuous_map

open continuous_map

namespace homeomorph
variables {α : Type*} {β : Type*} {γ : Type*}
variables [topological_space α] [topological_space β] [topological_space γ]

/-- Currying as a homeomorphism between the function spaces `C(α × β, γ)` and `C(α, C(β, γ))`. -/
def curry [locally_compact_space α] [locally_compact_space β] : C(α × β, γ) ≃ₜ C(α, C(β, γ)) :=
⟨⟨curry, uncurry, by tidy, by tidy⟩, continuous_curry, continuous_uncurry⟩

/-- If `α` has a single element, then `β` is homeomorphic to `C(α, β)`. -/
def continuous_map_of_unique [unique α] : β ≃ₜ C(α, β) :=
{ to_fun := const α,
  inv_fun := λ f, f default,
  left_inv := λ a, rfl,
  right_inv := λ f, by { ext, rw unique.eq_default a, refl },
  continuous_to_fun := continuous_const',
  continuous_inv_fun := continuous_eval'.comp (continuous_id.prod_mk continuous_const) }

@[simp] lemma continuous_map_of_unique_apply [unique α] (b : β) (a : α) :
  continuous_map_of_unique b a = b :=
rfl

@[simp] lemma continuous_map_of_unique_symm_apply [unique α] (f : C(α, β)) :
  continuous_map_of_unique.symm f = f default :=
rfl

end homeomorph

section quotient_map

variables {X₀ X Y Z : Type*} [topological_space X₀] [topological_space X]
  [topological_space Y] [topological_space Z] [locally_compact_space Y] {f : X₀ → X}

lemma quotient_map.continuous_lift_prod_left (hf : quotient_map f) {g : X × Y → Z}
  (hg : continuous (λ p : X₀ × Y, g (f p.1, p.2))) : continuous g :=
begin
  let Gf : C(X₀, C(Y, Z)) := continuous_map.curry ⟨_, hg⟩,
  have h : ∀ x : X, continuous (λ y, g (x, y)),
  { intros x,
    obtain ⟨x₀, rfl⟩ := hf.surjective x,
    exact (Gf x₀).continuous },
  let G : X → C(Y, Z) := λ x, ⟨_, h x⟩,
  have : continuous G,
  { rw hf.continuous_iff,
    exact Gf.continuous },
  convert continuous_map.continuous_uncurry_of_continuous ⟨G, this⟩,
  ext x,
  cases x,
  refl,
end

lemma quotient_map.continuous_lift_prod_right (hf : quotient_map f) {g : Y × X → Z}
  (hg : continuous (λ p : Y × X₀, g (p.1, f p.2))) : continuous g :=
begin
  have : continuous (λ p : X₀ × Y, g ((prod.swap p).1, f (prod.swap p).2)),
  { exact hg.comp continuous_swap },
  have : continuous (λ p : X₀ × Y, (g ∘ prod.swap) (f p.1, p.2)) := this,
  convert (hf.continuous_lift_prod_left this).comp continuous_swap,
  ext x,
  simp,
end

end quotient_map