File size: 54,766 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot
-/
import topology.maps
import topology.locally_finite
import order.filter.pi
import data.fin.tuple

/-!
# Constructions of new topological spaces from old ones

This file constructs products, sums, subtypes and quotients of topological spaces
and sets up their basic theory, such as criteria for maps into or out of these
constructions to be continuous; descriptions of the open sets, neighborhood filters,
and generators of these constructions; and their behavior with respect to embeddings
and other specific classes of maps.

## Implementation note

The constructed topologies are defined using induced and coinduced topologies
along with the complete lattice structure on topologies. Their universal properties
(for example, a map `X → Y × Z` is continuous if and only if both projections
`X → Y`, `X → Z` are) follow easily using order-theoretic descriptions of
continuity. With more work we can also extract descriptions of the open sets,
neighborhood filters and so on.

## Tags

product, sum, disjoint union, subspace, quotient space

-/

noncomputable theory

open topological_space set filter
open_locale classical topological_space filter

universes u v
variables {α : Type u} {β : Type v} {γ δ ε ζ : Type*}

section constructions

instance {p : α → Prop} [t : topological_space α] : topological_space (subtype p) :=
induced coe t

instance {r : α → α → Prop} [t : topological_space α] : topological_space (quot r) :=
coinduced (quot.mk r) t

instance {s : setoid α} [t : topological_space α] : topological_space (quotient s) :=
coinduced quotient.mk t

instance [t₁ : topological_space α] [t₂ : topological_space β] : topological_space (α × β) :=
induced prod.fst t₁ ⊓ induced prod.snd t₂

instance [t₁ : topological_space α] [t₂ : topological_space β] : topological_space (α ⊕ β) :=
coinduced sum.inl t₁ ⊔ coinduced sum.inr t₂

instance  : α → Type v} [t₂ : Πa, topological_space (β a)] : topological_space (sigma β) :=
⨆a, coinduced (sigma.mk a) (t₂ a)

instance Pi.topological_space {β : α → Type v} [t₂ : Πa, topological_space (β a)] :
  topological_space (Πa, β a) :=
⨅a, induced (λf, f a) (t₂ a)

instance ulift.topological_space [t : topological_space α] : topological_space (ulift.{v u} α) :=
t.induced ulift.down

lemma quotient.preimage_mem_nhds [topological_space α] [s : setoid α]
  {V : set $ quotient s} {a : α} (hs : V ∈ 𝓝 (quotient.mk a)) : quotient.mk ⁻¹' V ∈ 𝓝 a :=
preimage_nhds_coinduced hs

/-- The image of a dense set under `quotient.mk` is a dense set. -/
lemma dense.quotient [setoid α] [topological_space α] {s : set α} (H : dense s) :
  dense (quotient.mk '' s) :=
(surjective_quotient_mk α).dense_range.dense_image continuous_coinduced_rng H

/-- The composition of `quotient.mk` and a function with dense range has dense range. -/
lemma dense_range.quotient [setoid α] [topological_space α] {f : β → α} (hf : dense_range f) :
  dense_range (quotient.mk ∘ f) :=
(surjective_quotient_mk α).dense_range.comp hf continuous_coinduced_rng

instance {p : α → Prop} [topological_space α] [discrete_topology α] :
  discrete_topology (subtype p) :=
⟨bot_unique $ assume s hs,
  ⟨coe '' s, is_open_discrete _, (set.preimage_image_eq _ subtype.coe_injective)⟩⟩

instance sum.discrete_topology [topological_space α] [topological_space β]
  [hα : discrete_topology α] [hβ : discrete_topology β] : discrete_topology (α ⊕ β) :=
⟨by unfold sum.topological_space; simp [hα.eq_bot, hβ.eq_bot]⟩

instance sigma.discrete_topology {β : α → Type v} [Πa, topological_space (β a)]
  [h : Πa, discrete_topology (β a)] : discrete_topology (sigma β) :=
⟨by { unfold sigma.topological_space, simp [λ a, (h a).eq_bot] }⟩

section topα

variable [topological_space α]

/-
The 𝓝 filter and the subspace topology.
-/

theorem mem_nhds_subtype (s : set α) (a : {x // x ∈ s}) (t : set {x // x ∈ s}) :
  t ∈ 𝓝 a ↔ ∃ u ∈ 𝓝 (a : α), coe ⁻¹' u ⊆ t :=
mem_nhds_induced coe a t

theorem nhds_subtype (s : set α) (a : {x // x ∈ s}) :
  𝓝 a = comap coe (𝓝 (a : α)) :=
nhds_induced coe a

end topα

/-- A type synonym equiped with the topology whose open sets are the empty set and the sets with
finite complements. -/
def cofinite_topology (α : Type*) := α

namespace cofinite_topology

/-- The identity equivalence between `α` and `cofinite_topology α`. -/
def of : α ≃ cofinite_topology α := equiv.refl α
instance [inhabited α] : inhabited (cofinite_topology α) :=
{ default := of default }

instance : topological_space (cofinite_topology α) :=
{ is_open := λ s, s.nonempty → set.finite sᶜ,
  is_open_univ := by simp,
  is_open_inter := λ s t, begin
    rintros hs ht ⟨x, hxs, hxt⟩,
    rw compl_inter,
    exact (hs ⟨x, hxs⟩).union (ht ⟨x, hxt⟩),
  end,
  is_open_sUnion := begin
    rintros s h ⟨x, t, hts, hzt⟩,
    rw set.compl_sUnion,
    exact set.finite.sInter (mem_image_of_mem _ hts) (h t hts ⟨x, hzt⟩),
  end }

lemma is_open_iff {s : set (cofinite_topology α)} :
  is_open s ↔ (s.nonempty → (sᶜ).finite) := iff.rfl

lemma is_open_iff' {s : set (cofinite_topology α)} :
  is_open s ↔ (s = ∅ ∨ (sᶜ).finite) :=
by simp only [is_open_iff, ← ne_empty_iff_nonempty, or_iff_not_imp_left]

lemma is_closed_iff {s : set (cofinite_topology α)} :
  is_closed s ↔ s = univ ∨ s.finite :=
by simp [← is_open_compl_iff, is_open_iff']

lemma nhds_eq (a : cofinite_topology α) : 𝓝 a = pure a ⊔ cofinite :=
begin
  ext U,
  rw mem_nhds_iff,
  split,
  { rintro ⟨V, hVU, V_op, haV⟩,
    exact mem_sup.mpr ⟨hVU haV, mem_of_superset (V_op ⟨_, haV⟩) hVU⟩ },
  { rintros ⟨hU : a ∈ U, hU' : (Uᶜ).finite⟩,
    exact ⟨U, subset.rfl, λ h, hU', hU⟩ }
end

lemma mem_nhds_iff {a : cofinite_topology α} {s : set (cofinite_topology α)} :
  s ∈ 𝓝 a ↔ a ∈ s ∧ sᶜ.finite :=
by simp [nhds_eq]

end cofinite_topology

end constructions

section prod
variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]
  [topological_space ε] [topological_space ζ]

@[continuity] lemma continuous_fst : continuous (@prod.fst α β) :=
continuous_inf_dom_left continuous_induced_dom

/-- Postcomposing `f` with `prod.fst` is continuous -/
lemma continuous.fst {f : α → β × γ} (hf : continuous f) : continuous (λ a : α, (f a).1) :=
continuous_fst.comp hf

/-- Precomposing `f` with `prod.fst` is continuous -/
lemma continuous.fst' {f : α → γ} (hf : continuous f) : continuous (λ x : α × β, f x.fst) :=
hf.comp continuous_fst

lemma continuous_at_fst {p : α × β} : continuous_at prod.fst p :=
continuous_fst.continuous_at

/-- Postcomposing `f` with `prod.fst` is continuous at `x` -/
lemma continuous_at.fst {f : α → β × γ} {x : α} (hf : continuous_at f x) :
  continuous_at (λ a : α, (f a).1) x :=
continuous_at_fst.comp hf

/-- Precomposing `f` with `prod.fst` is continuous at `(x, y)` -/
lemma continuous_at.fst' {f : α → γ} {x : α} {y : β} (hf : continuous_at f x) :
  continuous_at (λ x : α × β, f x.fst) (x, y) :=
continuous_at.comp hf continuous_at_fst

/-- Precomposing `f` with `prod.fst` is continuous at `x : α × β` -/
lemma continuous_at.fst'' {f : α → γ} {x : α × β} (hf : continuous_at f x.fst) :
  continuous_at (λ x : α × β, f x.fst) x :=
hf.comp continuous_at_fst

@[continuity] lemma continuous_snd : continuous (@prod.snd α β) :=
continuous_inf_dom_right continuous_induced_dom

/-- Postcomposing `f` with `prod.snd` is continuous -/
lemma continuous.snd {f : α → β × γ} (hf : continuous f) : continuous (λ a : α, (f a).2) :=
continuous_snd.comp hf

/-- Precomposing `f` with `prod.snd` is continuous -/
lemma continuous.snd' {f : β → γ} (hf : continuous f) : continuous (λ x : α × β, f x.snd) :=
hf.comp continuous_snd

lemma continuous_at_snd {p : α × β} : continuous_at prod.snd p :=
continuous_snd.continuous_at

/-- Postcomposing `f` with `prod.snd` is continuous at `x` -/
lemma continuous_at.snd {f : α → β × γ} {x : α} (hf : continuous_at f x) :
  continuous_at (λ a : α, (f a).2) x :=
continuous_at_snd.comp hf

/-- Precomposing `f` with `prod.snd` is continuous at `(x, y)` -/
lemma continuous_at.snd' {f : β → γ} {x : α} {y : β} (hf : continuous_at f y) :
  continuous_at (λ x : α × β, f x.snd) (x, y) :=
continuous_at.comp hf continuous_at_snd

/-- Precomposing `f` with `prod.snd` is continuous at `x : α × β` -/
lemma continuous_at.snd'' {f : β → γ} {x : α × β} (hf : continuous_at f x.snd) :
  continuous_at (λ x : α × β, f x.snd) x :=
hf.comp continuous_at_snd

@[continuity] lemma continuous.prod_mk {f : γ → α} {g : γ → β}
  (hf : continuous f) (hg : continuous g) : continuous (λx, (f x, g x)) :=
continuous_inf_rng.2 ⟨continuous_induced_rng.2 hf, continuous_induced_rng.2 hg⟩

@[continuity] lemma continuous.prod.mk (a : α) : continuous (λ b : β, (a, b)) :=
continuous_const.prod_mk continuous_id'

@[continuity] lemma continuous.prod.mk_left (b : β) : continuous (λ a : α, (a, b)) :=
continuous_id'.prod_mk continuous_const

lemma continuous.comp₂ {g : α × β → γ} (hg : continuous g) {e : δ → α} (he : continuous e)
  {f : δ → β} (hf : continuous f) : continuous (λ x, g (e x, f x)) :=
hg.comp $ he.prod_mk hf

lemma continuous.comp₃ {g : α × β × γ → ε} (hg : continuous g)
  {e : δ → α} (he : continuous e) {f : δ → β} (hf : continuous f)
  {k : δ → γ} (hk : continuous k) : continuous (λ x, g (e x, f x, k x)) :=
hg.comp₂ he $ hf.prod_mk hk

lemma continuous.comp₄ {g : α × β × γ × ζ → ε} (hg : continuous g)
  {e : δ → α} (he : continuous e) {f : δ → β} (hf : continuous f)
  {k : δ → γ} (hk : continuous k) {l : δ → ζ} (hl : continuous l) :
  continuous (λ x, g (e x, f x, k x, l x)) :=
hg.comp₃ he hf $ hk.prod_mk hl

lemma continuous.prod_map {f : γ → α} {g : δ → β} (hf : continuous f) (hg : continuous g) :
  continuous (λ x : γ × δ, (f x.1, g x.2)) :=
hf.fst'.prod_mk hg.snd'

/-- A version of `continuous_inf_dom_left` for binary functions -/
lemma continuous_inf_dom_left₂ {α β γ} {f : α → β → γ}
  {ta1 ta2 : topological_space α} {tb1 tb2 : topological_space β} {tc1 : topological_space γ}
  (h : by haveI := ta1; haveI := tb1; exact continuous (λ p : α × β, f p.1 p.2)) :
  by haveI := ta1 ⊓ ta2; haveI := tb1 ⊓ tb2; exact continuous (λ p : α × β, f p.1 p.2) :=
begin
  have ha := @continuous_inf_dom_left _ _ id ta1 ta2 ta1 (@continuous_id _ (id _)),
  have hb := @continuous_inf_dom_left _ _ id tb1 tb2 tb1 (@continuous_id _ (id _)),
  have h_continuous_id := @continuous.prod_map _ _ _ _ ta1 tb1 (ta1 ⊓ ta2) (tb1 ⊓ tb2) _ _ ha hb,
  exact @continuous.comp _ _ _ (id _) (id _) _ _ _ h h_continuous_id,
end

/-- A version of `continuous_inf_dom_right` for binary functions -/
lemma continuous_inf_dom_right₂ {α β γ} {f : α → β → γ}
  {ta1 ta2 : topological_space α} {tb1 tb2 : topological_space β} {tc1 : topological_space γ}
  (h : by haveI := ta2; haveI := tb2; exact continuous (λ p : α × β, f p.1 p.2)) :
  by haveI := ta1 ⊓ ta2; haveI := tb1 ⊓ tb2; exact continuous (λ p : α × β, f p.1 p.2) :=
begin
  have ha := @continuous_inf_dom_right _ _ id ta1 ta2 ta2 (@continuous_id _ (id _)),
  have hb := @continuous_inf_dom_right _ _ id tb1 tb2 tb2 (@continuous_id _ (id _)),
  have h_continuous_id := @continuous.prod_map _ _ _ _ ta2 tb2 (ta1 ⊓ ta2) (tb1 ⊓ tb2) _ _ ha hb,
  exact @continuous.comp _ _ _ (id _) (id _) _ _ _ h h_continuous_id,
end

/-- A version of `continuous_Inf_dom` for binary functions -/
lemma continuous_Inf_dom₂ {α β γ} {f : α → β → γ}
  {tas : set (topological_space α)} {tbs : set (topological_space β)}
  {ta : topological_space α} {tb : topological_space β} {tc : topological_space γ}
  (ha : ta ∈ tas) (hb : tb ∈ tbs)
  (hf : continuous (λ p : α × β, f p.1 p.2)):
  by haveI := Inf tas; haveI := Inf tbs; exact @continuous _ _ _ tc (λ p : α × β, f p.1 p.2) :=
begin
  let t : topological_space (α × β) := prod.topological_space,
  have ha := continuous_Inf_dom ha continuous_id,
  have hb := continuous_Inf_dom hb continuous_id,
  have h_continuous_id := @continuous.prod_map _ _ _ _ ta tb (Inf tas) (Inf tbs) _ _ ha hb,
  exact @continuous.comp _ _ _ (id _) (id _) _ _ _ hf h_continuous_id,
end

lemma filter.eventually.prod_inl_nhds {p : α → Prop} {a : α}  (h : ∀ᶠ x in 𝓝 a, p x) (b : β) :
  ∀ᶠ x in 𝓝 (a, b), p (x : α × β).1 :=
continuous_at_fst h

lemma filter.eventually.prod_inr_nhds {p : β → Prop} {b : β} (h : ∀ᶠ x in 𝓝 b, p x) (a : α) :
  ∀ᶠ x in 𝓝 (a, b), p (x : α × β).2 :=
continuous_at_snd h

lemma filter.eventually.prod_mk_nhds {pa : α → Prop} {a} (ha : ∀ᶠ x in 𝓝 a, pa x)
  {pb : β → Prop} {b} (hb : ∀ᶠ y in 𝓝 b, pb y) :
  ∀ᶠ p in 𝓝 (a, b), pa (p : α × β).1 ∧ pb p.2 :=
(ha.prod_inl_nhds b).and (hb.prod_inr_nhds a)

lemma continuous_swap : continuous (prod.swap : α × β → β × α) :=
continuous_snd.prod_mk continuous_fst

lemma continuous_uncurry_left {f : α → β → γ} (a : α)
  (h : continuous (function.uncurry f)) : continuous (f a) :=
show continuous (function.uncurry f ∘ (λ b, (a, b))), from h.comp (by continuity)

lemma continuous_uncurry_right {f : α → β → γ} (b : β)
  (h : continuous (function.uncurry f)) : continuous (λ a, f a b) :=
show continuous (function.uncurry f ∘ (λ a, (a, b))), from h.comp (by continuity)

lemma continuous_curry {g : α × β → γ} (a : α)
  (h : continuous g) : continuous (function.curry g a) :=
show continuous (g ∘ (λ b, (a, b))), from h.comp (by continuity)

lemma is_open.prod {s : set α} {t : set β} (hs : is_open s) (ht : is_open t) :
  is_open (s ×ˢ t) :=
(hs.preimage continuous_fst).inter (ht.preimage continuous_snd)

lemma nhds_prod_eq {a : α} {b : β} : 𝓝 (a, b) = 𝓝 a ×ᶠ 𝓝 b :=
by rw [filter.prod, prod.topological_space, nhds_inf, nhds_induced, nhds_induced]

/-- If a function `f x y` is such that `y ↦ f x y` is continuous for all `x`, and `x` lives in a
discrete space, then `f` is continuous. -/
lemma continuous_uncurry_of_discrete_topology [discrete_topology α]
  {f : α → β → γ} (hf : ∀ a, continuous (f a)) : continuous (function.uncurry f) :=
begin
  apply continuous_iff_continuous_at.2,
  rintros ⟨a, x⟩,
  change map _ _ ≤ _,
  rw [nhds_prod_eq, nhds_discrete, filter.map_pure_prod],
  exact (hf a).continuous_at
end

lemma mem_nhds_prod_iff {a : α} {b : β} {s : set (α × β)} :
  s ∈ 𝓝 (a, b) ↔ ∃ (u ∈ 𝓝 a) (v ∈ 𝓝 b), u ×ˢ v ⊆ s :=
by rw [nhds_prod_eq, mem_prod_iff]

lemma mem_nhds_prod_iff' {a : α} {b : β} {s : set (α × β)} :
  s ∈ 𝓝 (a, b) ↔ ∃ (u : set α) (v : set β), is_open u ∧ a ∈ u ∧ is_open v ∧ b ∈ v ∧ u ×ˢ v ⊆ s :=
begin
  rw mem_nhds_prod_iff,
  split,
  { rintros ⟨u, Hu, v, Hv, h⟩,
    rcases mem_nhds_iff.1 Hu with ⟨u', u'u, u'_open, Hu'⟩,
    rcases mem_nhds_iff.1 Hv with ⟨v', v'v, v'_open, Hv'⟩,
    exact ⟨u', v', u'_open, Hu', v'_open, Hv', (set.prod_mono u'u v'v).trans h⟩ },
  { rintros ⟨u, v, u_open, au, v_open, bv, huv⟩,
    exact ⟨u, u_open.mem_nhds au, v, v_open.mem_nhds bv, huv⟩ }
end

lemma _root_.prod.tendsto_iff {α} (seq : α → β × γ) {f : filter α} (x : β × γ) :
  tendsto seq f (𝓝 x)
    ↔ tendsto (λ n, (seq n).fst) f (𝓝 x.fst) ∧ tendsto (λ n, (seq n).snd) f (𝓝 x.snd) :=
by { cases x, rw [nhds_prod_eq, filter.tendsto_prod_iff'], }

lemma filter.has_basis.prod_nhds {ιa ιb : Type*} {pa : ιa → Prop} {pb : ιb → Prop}
  {sa : ιa → set α} {sb : ιb → set β} {a : α} {b : β} (ha : (𝓝 a).has_basis pa sa)
  (hb : (𝓝 b).has_basis pb sb) :
  (𝓝 (a, b)).has_basis (λ i : ιa × ιb, pa i.1 ∧ pb i.2) (λ i, sa i.1 ×ˢ sb i.2) :=
by { rw nhds_prod_eq, exact ha.prod hb }

lemma filter.has_basis.prod_nhds' {ιa ιb : Type*} {pa : ιa → Prop} {pb : ιb → Prop}
  {sa : ιa → set α} {sb : ιb → set β} {ab : α × β} (ha : (𝓝 ab.1).has_basis pa sa)
  (hb : (𝓝 ab.2).has_basis pb sb) :
  (𝓝 ab).has_basis (λ i : ιa × ιb, pa i.1 ∧ pb i.2) (λ i, sa i.1 ×ˢ sb i.2) :=
by { cases ab, exact ha.prod_nhds hb }

instance [discrete_topology α] [discrete_topology β] : discrete_topology (α × β) :=
⟨eq_of_nhds_eq_nhds $ assume ⟨a, b⟩,
  by rw [nhds_prod_eq, nhds_discrete α, nhds_discrete β, nhds_bot, filter.prod_pure_pure]⟩

lemma prod_mem_nhds_iff {s : set α} {t : set β} {a : α} {b : β} :
  s ×ˢ t ∈ 𝓝 (a, b) ↔ s ∈ 𝓝 a ∧ t ∈ 𝓝 b :=
by rw [nhds_prod_eq, prod_mem_prod_iff]

lemma prod_mem_nhds {s : set α} {t : set β} {a : α} {b : β}
  (ha : s ∈ 𝓝 a) (hb : t ∈ 𝓝 b) : s ×ˢ t ∈ 𝓝 (a, b) :=
prod_mem_nhds_iff.2 ⟨ha, hb⟩

lemma filter.eventually.prod_nhds {p : α → Prop} {q : β → Prop} {a : α} {b : β}
  (ha : ∀ᶠ x in 𝓝 a, p x) (hb : ∀ᶠ y in 𝓝 b, q y) :
  ∀ᶠ z : α × β in 𝓝 (a, b), p z.1 ∧ q z.2 :=
prod_mem_nhds ha hb

lemma nhds_swap (a : α) (b : β) : 𝓝 (a, b) = (𝓝 (b, a)).map prod.swap :=
by rw [nhds_prod_eq, filter.prod_comm, nhds_prod_eq]; refl

lemma filter.tendsto.prod_mk_nhds {γ} {a : α} {b : β} {f : filter γ} {ma : γ → α} {mb : γ → β}
  (ha : tendsto ma f (𝓝 a)) (hb : tendsto mb f (𝓝 b)) :
  tendsto (λc, (ma c, mb c)) f (𝓝 (a, b)) :=
by rw [nhds_prod_eq]; exact filter.tendsto.prod_mk ha hb

lemma filter.eventually.curry_nhds {p : α × β → Prop} {x : α} {y : β} (h : ∀ᶠ x in 𝓝 (x, y), p x) :
  ∀ᶠ x' in 𝓝 x, ∀ᶠ y' in 𝓝 y, p (x', y') :=
by { rw [nhds_prod_eq] at h, exact h.curry }

lemma continuous_at.prod {f : α → β} {g : α → γ} {x : α}
  (hf : continuous_at f x) (hg : continuous_at g x) : continuous_at (λx, (f x, g x)) x :=
hf.prod_mk_nhds hg

lemma continuous_at.prod_map {f : α → γ} {g : β → δ} {p : α × β}
  (hf : continuous_at f p.fst) (hg : continuous_at g p.snd) :
  continuous_at (λ p : α × β, (f p.1, g p.2)) p :=
hf.fst''.prod hg.snd''

lemma continuous_at.prod_map' {f : α → γ} {g : β → δ} {x : α} {y : β}
  (hf : continuous_at f x) (hg : continuous_at g y) :
  continuous_at (λ p : α × β, (f p.1, g p.2)) (x, y) :=
hf.fst'.prod hg.snd'

lemma prod_generate_from_generate_from_eq {α β : Type*} {s : set (set α)} {t : set (set β)}
  (hs : ⋃₀ s = univ) (ht : ⋃₀ t = univ) :
  @prod.topological_space α β (generate_from s) (generate_from t) =
  generate_from {g | ∃ u ∈ s, ∃ v ∈ t, g = u ×ˢ v} :=
let G := generate_from {g | ∃ u ∈ s, ∃ v ∈ t, g = u ×ˢ v} in
le_antisymm
  (le_generate_from $ λ g ⟨u, hu, v, hv, g_eq⟩, g_eq.symm ▸
    @is_open.prod _ _ (generate_from s) (generate_from t) _ _
      (generate_open.basic _ hu) (generate_open.basic _ hv))
  (le_inf
    (coinduced_le_iff_le_induced.mp $ le_generate_from $ λ u hu,
      have (⋃ v ∈ t, u ×ˢ v) = prod.fst ⁻¹' u,
      by simp_rw [← prod_Union, ← sUnion_eq_bUnion, ht, prod_univ],
      show G.is_open (prod.fst ⁻¹' u),
      by { rw [← this], exactI is_open_Union (λ v, is_open_Union $ λ hv,
        generate_open.basic _ ⟨_, hu, _, hv, rfl⟩) })
    (coinduced_le_iff_le_induced.mp $ le_generate_from $ λ v hv,
      have (⋃ u ∈ s, u ×ˢ v) = prod.snd ⁻¹' v,
      by simp_rw [← Union_prod_const, ← sUnion_eq_bUnion, hs, univ_prod],
      show G.is_open (prod.snd ⁻¹' v),
      by { rw [← this], exactI is_open_Union (λ u, is_open_Union $ λ hu,
          generate_open.basic _ ⟨_, hu, _, hv, rfl⟩) }))

lemma prod_eq_generate_from :
  prod.topological_space =
  generate_from {g | ∃(s:set α) (t:set β), is_open s ∧ is_open t ∧ g = s ×ˢ t} :=
le_antisymm
  (le_generate_from $ λ g ⟨s, t, hs, ht, g_eq⟩, g_eq.symm ▸ hs.prod ht)
  (le_inf
    (ball_image_of_ball $ λt ht, generate_open.basic _ ⟨t, univ, by simpa [set.prod_eq] using ht⟩)
    (ball_image_of_ball $ λt ht, generate_open.basic _ ⟨univ, t, by simpa [set.prod_eq] using ht⟩))

lemma is_open_prod_iff {s : set (α × β)} : is_open s ↔
  (∀a b, (a, b) ∈ s →
    ∃ (u : set α) (v : set β), is_open u ∧ is_open v ∧ a ∈ u ∧ b ∈ v ∧ u ×ˢ v ⊆ s) :=
begin
  rw [is_open_iff_nhds],
  simp_rw [le_principal_iff, prod.forall,
    ((nhds_basis_opens _).prod_nhds (nhds_basis_opens _)).mem_iff, prod.exists, exists_prop],
  simp only [and_assoc, and.left_comm]
end

/-- A product of induced topologies is induced by the product map -/
lemma prod_induced_induced {α γ : Type*} (f : α → β) (g : γ → δ) :
  @prod.topological_space α γ (induced f ‹_›) (induced g ‹_›) =
  induced (λ p, (f p.1, g p.2)) prod.topological_space :=
by simp_rw [prod.topological_space, induced_inf, induced_compose]

lemma continuous_uncurry_of_discrete_topology_left [discrete_topology α]
  {f : α → β → γ} (h : ∀ a, continuous (f a)) : continuous (function.uncurry f) :=
continuous_iff_continuous_at.2 $ λ ⟨a, b⟩,
  by simp only [continuous_at, nhds_prod_eq, nhds_discrete α, pure_prod, tendsto_map'_iff, (∘),
    function.uncurry, (h a).tendsto]

/-- Given a neighborhood `s` of `(x, x)`, then `(x, x)` has a square open neighborhood
  that is a subset of `s`. -/
lemma exists_nhds_square {s : set (α × α)} {x : α} (hx : s ∈ 𝓝 (x, x)) :
  ∃ U : set α, is_open U ∧ x ∈ U ∧ U ×ˢ U ⊆ s :=
by simpa [nhds_prod_eq, (nhds_basis_opens x).prod_self.mem_iff, and.assoc, and.left_comm] using hx

/-- `prod.fst` maps neighborhood of `x : α × β` within the section `prod.snd ⁻¹' {x.2}`
to `𝓝 x.1`. -/
lemma map_fst_nhds_within (x : α × β) : map prod.fst (𝓝[prod.snd ⁻¹' {x.2}] x) = 𝓝 x.1 :=
begin
  refine le_antisymm (continuous_at_fst.mono_left inf_le_left) (λ s hs, _),
  rcases x with ⟨x, y⟩,
  rw [mem_map, nhds_within, mem_inf_principal, mem_nhds_prod_iff] at hs,
  rcases hs with ⟨u, hu, v, hv, H⟩,
  simp only [prod_subset_iff, mem_singleton_iff, mem_set_of_eq, mem_preimage] at H,
  exact mem_of_superset hu (λ z hz, H _ hz _ (mem_of_mem_nhds hv) rfl)
end

@[simp] lemma map_fst_nhds (x : α × β) : map prod.fst (𝓝 x) = 𝓝 x.1 :=
le_antisymm continuous_at_fst $ (map_fst_nhds_within x).symm.trans_le (map_mono inf_le_left)

/-- The first projection in a product of topological spaces sends open sets to open sets. -/
lemma is_open_map_fst : is_open_map (@prod.fst α β) :=
is_open_map_iff_nhds_le.2 $ λ x, (map_fst_nhds x).ge

/-- `prod.snd` maps neighborhood of `x : α × β` within the section `prod.fst ⁻¹' {x.1}`
to `𝓝 x.2`. -/
lemma map_snd_nhds_within (x : α × β) : map prod.snd (𝓝[prod.fst ⁻¹' {x.1}] x) = 𝓝 x.2 :=
begin
  refine le_antisymm (continuous_at_snd.mono_left inf_le_left) (λ s hs, _),
  rcases x with ⟨x, y⟩,
  rw [mem_map, nhds_within, mem_inf_principal, mem_nhds_prod_iff] at hs,
  rcases hs with ⟨u, hu, v, hv, H⟩,
  simp only [prod_subset_iff, mem_singleton_iff, mem_set_of_eq, mem_preimage] at H,
  exact mem_of_superset hv (λ z hz, H _ (mem_of_mem_nhds hu) _ hz rfl)
end

@[simp] lemma map_snd_nhds (x : α × β) : map prod.snd (𝓝 x) = 𝓝 x.2 :=
le_antisymm continuous_at_snd $ (map_snd_nhds_within x).symm.trans_le (map_mono inf_le_left)

/-- The second projection in a product of topological spaces sends open sets to open sets. -/
lemma is_open_map_snd : is_open_map (@prod.snd α β) :=
is_open_map_iff_nhds_le.2 $ λ x, (map_snd_nhds x).ge

/-- A product set is open in a product space if and only if each factor is open, or one of them is
empty -/
lemma is_open_prod_iff' {s : set α} {t : set β} :
  is_open (s ×ˢ t) ↔ (is_open s ∧ is_open t) ∨ (s = ∅) ∨ (t = ∅) :=
begin
  cases (s ×ˢ t : set _).eq_empty_or_nonempty with h h,
  { simp [h, prod_eq_empty_iff.1 h] },
  { have st : s.nonempty ∧ t.nonempty, from prod_nonempty_iff.1 h,
    split,
    { assume H : is_open (s ×ˢ t),
      refine or.inl ⟨_, _⟩,
      show is_open s,
      { rw ← fst_image_prod s st.2,
        exact is_open_map_fst _ H },
      show is_open t,
      { rw ← snd_image_prod st.1 t,
        exact is_open_map_snd _ H } },
    { assume H,
      simp only [st.1.ne_empty, st.2.ne_empty, not_false_iff, or_false] at H,
      exact H.1.prod H.2 } }
end

lemma closure_prod_eq {s : set α} {t : set β} :
  closure (s ×ˢ t) = closure s ×ˢ closure t :=
set.ext $ assume ⟨a, b⟩,
have (𝓝 a ×ᶠ 𝓝 b) ⊓ 𝓟 (s ×ˢ t) = (𝓝 a ⊓ 𝓟 s) ×ᶠ (𝓝 b ⊓ 𝓟 t),
  by rw [←prod_inf_prod, prod_principal_principal],
by simp [closure_eq_cluster_pts, cluster_pt, nhds_prod_eq, this]; exact prod_ne_bot

lemma interior_prod_eq (s : set α) (t : set β) :
  interior (s ×ˢ t) = interior s ×ˢ interior t :=
set.ext $ λ ⟨a, b⟩, by simp only [mem_interior_iff_mem_nhds, mem_prod, prod_mem_nhds_iff]

lemma frontier_prod_eq (s : set α) (t : set β) :
  frontier (s ×ˢ t) = closure s ×ˢ frontier t ∪ frontier s ×ˢ closure t :=
by simp only [frontier, closure_prod_eq, interior_prod_eq, prod_diff_prod]

@[simp] lemma frontier_prod_univ_eq (s : set α) :
  frontier (s ×ˢ (univ : set β)) = frontier s ×ˢ (univ : set β) :=
by simp [frontier_prod_eq]

@[simp] lemma frontier_univ_prod_eq (s : set β) :
  frontier ((univ : set α) ×ˢ s) = (univ : set α) ×ˢ (frontier s) :=
by simp [frontier_prod_eq]

lemma map_mem_closure2 {s : set α} {t : set β} {u : set γ} {f : α → β → γ} {a : α} {b : β}
  (hf : continuous (λp:α×β, f p.1 p.2)) (ha : a ∈ closure s) (hb : b ∈ closure t)
  (hu : ∀a b, a ∈ s → b ∈ t → f a b ∈ u) :
  f a b ∈ closure u :=
have (a, b) ∈ closure (s ×ˢ t), by rw [closure_prod_eq]; from ⟨ha, hb⟩,
show (λp:α×β, f p.1 p.2) (a, b) ∈ closure u, from
  map_mem_closure hf this $ assume ⟨a, b⟩ ⟨ha, hb⟩, hu a b ha hb

lemma is_closed.prod {s₁ : set α} {s₂ : set β} (h₁ : is_closed s₁) (h₂ : is_closed s₂) :
  is_closed (s₁ ×ˢ s₂) :=
closure_eq_iff_is_closed.mp $ by simp only [h₁.closure_eq, h₂.closure_eq, closure_prod_eq]

/-- The product of two dense sets is a dense set. -/
lemma dense.prod {s : set α} {t : set β} (hs : dense s) (ht : dense t) :
  dense (s ×ˢ t) :=
λ x, by { rw closure_prod_eq, exact ⟨hs x.1, ht x.2⟩ }

/-- If `f` and `g` are maps with dense range, then `prod.map f g` has dense range. -/
lemma dense_range.prod_map {ι : Type*} {κ : Type*} {f : ι → β} {g : κ → γ}
  (hf : dense_range f) (hg : dense_range g) : dense_range (prod.map f g) :=
by simpa only [dense_range, prod_range_range_eq] using hf.prod hg

lemma inducing.prod_mk {f : α → β} {g : γ → δ} (hf : inducing f) (hg : inducing g) :
  inducing (λx:α×γ, (f x.1, g x.2)) :=
⟨by rw [prod.topological_space, prod.topological_space, hf.induced, hg.induced,
         induced_compose, induced_compose, induced_inf, induced_compose, induced_compose]⟩

lemma embedding.prod_mk {f : α → β} {g : γ → δ} (hf : embedding f) (hg : embedding g) :
  embedding (λx:α×γ, (f x.1, g x.2)) :=
{ inj := assume ⟨x₁, x₂⟩ ⟨y₁, y₂⟩, by simp; exact assume h₁ h₂, ⟨hf.inj h₁, hg.inj h₂⟩,
  ..hf.to_inducing.prod_mk hg.to_inducing }

protected lemma is_open_map.prod {f : α → β} {g : γ → δ} (hf : is_open_map f) (hg : is_open_map g) :
  is_open_map (λ p : α × γ, (f p.1, g p.2)) :=
begin
  rw [is_open_map_iff_nhds_le],
  rintros ⟨a, b⟩,
  rw [nhds_prod_eq, nhds_prod_eq, ← filter.prod_map_map_eq],
  exact filter.prod_mono (is_open_map_iff_nhds_le.1 hf a) (is_open_map_iff_nhds_le.1 hg b)
end

protected lemma open_embedding.prod {f : α → β} {g : γ → δ}
  (hf : open_embedding f) (hg : open_embedding g) : open_embedding (λ x : α × γ, (f x.1, g x.2)) :=
open_embedding_of_embedding_open (hf.1.prod_mk hg.1)
  (hf.is_open_map.prod hg.is_open_map)

lemma embedding_graph {f : α → β} (hf : continuous f) : embedding (λ x, (x, f x)) :=
embedding_of_embedding_compose (continuous_id.prod_mk hf) continuous_fst embedding_id

end prod

section sum
open sum
variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]

@[continuity] lemma continuous_inl : continuous (@inl α β) :=
continuous_sup_rng_left continuous_coinduced_rng

@[continuity] lemma continuous_inr : continuous (@inr α β) :=
continuous_sup_rng_right continuous_coinduced_rng

@[continuity] lemma continuous.sum_elim {f : α → γ} {g : β → γ}
  (hf : continuous f) (hg : continuous g) : continuous (sum.elim f g) :=
by simp only [continuous_sup_dom, continuous_coinduced_dom, sum.elim_comp_inl, sum.elim_comp_inr,
  true_and, *]

@[continuity] lemma continuous.sum_map {f : α → β} {g : γ → δ}
  (hf : continuous f) (hg : continuous g) : continuous (sum.map f g) :=
(continuous_inl.comp hf).sum_elim (continuous_inr.comp hg)

lemma is_open_sum_iff {s : set (α ⊕ β)} :
  is_open s ↔ is_open (inl ⁻¹' s) ∧ is_open (inr ⁻¹' s) :=
iff.rfl

lemma is_open_map_sum {f : α ⊕ β → γ}
  (h₁ : is_open_map (λ a, f (inl a))) (h₂ : is_open_map (λ b, f (inr b))) :
  is_open_map f :=
begin
  intros u hu,
  rw is_open_sum_iff at hu,
  cases hu with hu₁ hu₂,
  have : u = inl '' (inl ⁻¹' u) ∪ inr '' (inr ⁻¹' u),
  { ext (_|_); simp },
  rw [this, set.image_union, set.image_image, set.image_image],
  exact is_open.union (h₁ _ hu₁) (h₂ _ hu₂)
end

lemma embedding_inl : embedding (@inl α β) :=
{ induced := begin
    unfold sum.topological_space,
    apply le_antisymm,
    { rw ← coinduced_le_iff_le_induced, exact le_sup_left },
    { intros u hu, existsi (inl '' u),
      change
        (is_open (inl ⁻¹' (@inl α β '' u)) ∧
         is_open (inr ⁻¹' (@inl α β '' u))) ∧
        inl ⁻¹' (inl '' u) = u,
      rw [preimage_image_eq u sum.inl_injective, preimage_inr_image_inl],
      exact ⟨⟨hu, is_open_empty⟩, rfl⟩ }
  end,
  inj := λ _ _, inl.inj_iff.mp }

lemma embedding_inr : embedding (@inr α β) :=
{ induced := begin
    unfold sum.topological_space,
    apply le_antisymm,
    { rw ← coinduced_le_iff_le_induced, exact le_sup_right },
    { intros u hu, existsi (inr '' u),
      change
        (is_open (inl ⁻¹' (@inr α β '' u)) ∧
         is_open (inr ⁻¹' (@inr α β '' u))) ∧
        inr ⁻¹' (inr '' u) = u,
      rw [preimage_inl_image_inr, preimage_image_eq u sum.inr_injective],
      exact ⟨⟨is_open_empty, hu⟩, rfl⟩ }
  end,
  inj := λ _ _, inr.inj_iff.mp }

lemma is_open_range_inl : is_open (range (inl : α → α ⊕ β)) :=
is_open_sum_iff.2 $ by simp

lemma is_open_range_inr : is_open (range (inr : β → α ⊕ β)) :=
is_open_sum_iff.2 $ by simp

lemma is_closed_range_inl : is_closed (range (inl : α → α ⊕ β)) :=
by { rw [← is_open_compl_iff, compl_range_inl], exact is_open_range_inr }

lemma is_closed_range_inr : is_closed (range (inr : β → α ⊕ β)) :=
by { rw [← is_open_compl_iff, compl_range_inr], exact is_open_range_inl }

lemma open_embedding_inl : open_embedding (inl : α → α ⊕ β) :=
{ open_range := is_open_range_inl,
  .. embedding_inl }

lemma open_embedding_inr : open_embedding (inr : β → α ⊕ β) :=
{ open_range := is_open_range_inr,
  .. embedding_inr }

lemma closed_embedding_inl : closed_embedding (inl : α → α ⊕ β) :=
{ closed_range := is_closed_range_inl,
  .. embedding_inl }

lemma closed_embedding_inr : closed_embedding (inr : β → α ⊕ β) :=
{ closed_range := is_closed_range_inr,
  .. embedding_inr }

end sum

section subtype
variables [topological_space α] [topological_space β] [topological_space γ] {p : α → Prop}

lemma inducing_coe {b : set β} : inducing (coe : b → β) := ⟨rfl⟩

lemma inducing.of_cod_restrict {f : α → β} {b : set β} (hb : ∀ a, f a ∈ b)
  (h : inducing (b.cod_restrict f hb)) : inducing f := inducing_coe.comp h

lemma embedding_subtype_coe : embedding (coe : subtype p → α) :=
⟨⟨rfl⟩, subtype.coe_injective⟩

lemma closed_embedding_subtype_coe (h : is_closed {a | p a}) :
  closed_embedding (coe : subtype p → α) :=
⟨embedding_subtype_coe, by rwa [subtype.range_coe_subtype]⟩

@[continuity] lemma continuous_subtype_val : continuous (@subtype.val α p) :=
continuous_induced_dom

lemma continuous_subtype_coe : continuous (coe : subtype p → α) :=
continuous_subtype_val

lemma continuous.subtype_coe {f : β → subtype p} (hf : continuous f) :
  continuous (λ x, (f x : α)) :=
continuous_subtype_coe.comp hf

lemma is_open.open_embedding_subtype_coe {s : set α} (hs : is_open s) :
  open_embedding (coe : s → α) :=
{ induced := rfl,
  inj := subtype.coe_injective,
  open_range := (subtype.range_coe : range coe = s).symm ▸  hs }

lemma is_open.is_open_map_subtype_coe {s : set α} (hs : is_open s) :
  is_open_map (coe : s → α) :=
hs.open_embedding_subtype_coe.is_open_map

lemma is_open_map.restrict {f : α → β} (hf : is_open_map f) {s : set α} (hs : is_open s) :
  is_open_map (s.restrict f) :=
hf.comp hs.is_open_map_subtype_coe

lemma is_closed.closed_embedding_subtype_coe {s : set α} (hs : is_closed s) :
  closed_embedding (coe : {x // x ∈ s} → α) :=
{ induced := rfl,
  inj := subtype.coe_injective,
  closed_range := (subtype.range_coe : range coe = s).symm ▸ hs }

@[continuity] lemma continuous_subtype_mk {f : β → α}
  (hp : ∀x, p (f x)) (h : continuous f) : continuous (λx, (⟨f x, hp x⟩ : subtype p)) :=
continuous_induced_rng.2 h

lemma continuous_inclusion {s t : set α} (h : s ⊆ t) : continuous (inclusion h) :=
continuous_subtype_mk _ continuous_subtype_coe

lemma continuous_at_subtype_coe {p : α → Prop} {a : subtype p} :
  continuous_at (coe : subtype p → α) a :=
continuous_iff_continuous_at.mp continuous_subtype_coe _

lemma subtype.dense_iff {s : set α} {t : set s} : dense t ↔ s ⊆ closure (coe '' t) :=
by { rw [inducing_coe.dense_iff, set_coe.forall], refl }

lemma map_nhds_subtype_coe_eq {a : α} (ha : p a) (h : {a | p a} ∈ 𝓝 a) :
  map (coe : subtype p → α) (𝓝 ⟨a, ha⟩) = 𝓝 a :=
map_nhds_induced_of_mem $ by simpa only [subtype.coe_mk, subtype.range_coe] using h

lemma nhds_subtype_eq_comap {a : α} {h : p a} :
  𝓝 (⟨a, h⟩ : subtype p) = comap coe (𝓝 a) :=
nhds_induced _ _

lemma tendsto_subtype_rng {β : Type*} {p : α → Prop} {b : filter β} {f : β → subtype p} :
  ∀{a:subtype p}, tendsto f b (𝓝 a) ↔ tendsto (λx, (f x : α)) b (𝓝 (a : α))
| ⟨a, ha⟩ := by rw [nhds_subtype_eq_comap, tendsto_comap_iff, subtype.coe_mk]

lemma continuous_subtype_nhds_cover {ι : Sort*} {f : α → β} {c : ι → α → Prop}
  (c_cover : ∀x:α, ∃i, {x | c i x} ∈ 𝓝 x)
  (f_cont  : ∀i, continuous (λ(x : subtype (c i)), f x)) :
  continuous f :=
continuous_iff_continuous_at.mpr $ assume x,
  let ⟨i, (c_sets : {x | c i x} ∈ 𝓝 x)⟩ := c_cover x in
  let x' : subtype (c i) := ⟨x, mem_of_mem_nhds c_sets⟩ in
  calc map f (𝓝 x) = map f (map coe (𝓝 x')) :
      congr_arg (map f) (map_nhds_subtype_coe_eq _ $ c_sets).symm
    ... = map (λx:subtype (c i), f x) (𝓝 x') : rfl
    ... ≤ 𝓝 (f x) : continuous_iff_continuous_at.mp (f_cont i) x'

lemma continuous_subtype_is_closed_cover {ι : Sort*} {f : α → β} (c : ι → α → Prop)
  (h_lf : locally_finite (λi, {x | c i x}))
  (h_is_closed : ∀i, is_closed {x | c i x})
  (h_cover : ∀x, ∃i, c i x)
  (f_cont  : ∀i, continuous (λ(x : subtype (c i)), f x)) :
  continuous f :=
continuous_iff_is_closed.mpr $
  assume s hs,
  have ∀i, is_closed ((coe : {x | c i x} → α) '' (f ∘ coe ⁻¹' s)),
    from assume i,
    (closed_embedding_subtype_coe (h_is_closed _)).is_closed_map _ (hs.preimage (f_cont i)),
  have is_closed (⋃i, (coe : {x | c i x} → α) '' (f ∘ coe ⁻¹' s)),
    from locally_finite.is_closed_Union
      (h_lf.subset $ assume i x ⟨⟨x', hx'⟩, _, heq⟩, heq ▸ hx')
      this,
  have f ⁻¹' s = (⋃i, (coe : {x | c i x} → α) '' (f ∘ coe ⁻¹' s)),
  begin
    apply set.ext,
    have : ∀ (x : α), f x ∈ s ↔ ∃ (i : ι), c i x ∧ f x ∈ s :=
      λ x, ⟨λ hx, let ⟨i, hi⟩ := h_cover x in ⟨i, hi, hx⟩,
            λ ⟨i, hi, hx⟩, hx⟩,
    simpa [and.comm, @and.left_comm (c _ _), ← exists_and_distrib_right],
  end,
  by rwa [this]

lemma closure_subtype {x : {a // p a}} {s : set {a // p a}}:
  x ∈ closure s ↔ (x : α) ∈ closure ((coe : _ → α) '' s) :=
closure_induced

@[continuity] lemma continuous.cod_restrict {f : α → β} {s : set β} (hf : continuous f)
  (hs : ∀ a, f a ∈ s) : continuous (s.cod_restrict f hs) := continuous_subtype_mk hs hf

lemma inducing.cod_restrict {e : α → β} (he : inducing e) {s : set β} (hs : ∀ x, e x ∈ s) :
  inducing (cod_restrict e s hs) :=
inducing_of_inducing_compose (he.continuous.cod_restrict hs) continuous_subtype_coe he

lemma embedding.cod_restrict {e : α → β} (he : embedding e) (s : set β) (hs : ∀ x, e x ∈ s) :
  embedding (cod_restrict e s hs) :=
embedding_of_embedding_compose (he.continuous.cod_restrict hs) continuous_subtype_coe he

end subtype

section quotient
variables [topological_space α] [topological_space β] [topological_space γ]
variables {r : α → α → Prop} {s : setoid α}

lemma quotient_map_quot_mk : quotient_map (@quot.mk α r) :=
⟨quot.exists_rep, rfl⟩

@[continuity] lemma continuous_quot_mk : continuous (@quot.mk α r) :=
continuous_coinduced_rng

@[continuity] lemma continuous_quot_lift {f : α → β} (hr : ∀ a b, r a b → f a = f b)
  (h : continuous f) : continuous (quot.lift f hr : quot r → β) :=
continuous_coinduced_dom.2 h

lemma quotient_map_quotient_mk : quotient_map (@quotient.mk α s) :=
quotient_map_quot_mk

lemma continuous_quotient_mk : continuous (@quotient.mk α s) :=
continuous_coinduced_rng

lemma continuous_quotient_lift {f : α → β} (hs : ∀ a b, a ≈ b → f a = f b)
  (h : continuous f) : continuous (quotient.lift f hs : quotient s → β) :=
continuous_coinduced_dom.2 h

lemma continuous_quotient_lift_on' {f : α → β} (hs : ∀ a b, a ≈ b → f a = f b)
  (h : continuous f) : continuous (λ x, quotient.lift_on' x f hs : quotient s → β) :=
continuous_coinduced_dom.2 h

end quotient

section pi
variables {ι : Type*} {π : ι → Type*}

@[continuity]
lemma continuous_pi [topological_space α] [∀i, topological_space (π i)] {f : α → Πi:ι, π i}
  (h : ∀i, continuous (λa, f a i)) : continuous f :=
continuous_infi_rng.2 $ assume i, continuous_induced_rng.2 $ h i

@[continuity]
lemma continuous_apply [∀i, topological_space (π i)] (i : ι) :
  continuous (λp:Πi, π i, p i) :=
continuous_infi_dom continuous_induced_dom

@[continuity]
lemma continuous_apply_apply {κ : Type*} {ρ : κ → ι → Type*}
  [∀ j i, topological_space (ρ j i)] (j : κ) (i : ι) :
  continuous (λ p : (Π j, Π i, ρ j i), p j i) :=
(continuous_apply i).comp (continuous_apply j)

lemma continuous_at_apply [∀i, topological_space (π i)] (i : ι) (x : Π i, π i) :
  continuous_at (λ p : Π i, π i, p i) x :=
(continuous_apply i).continuous_at

lemma filter.tendsto.apply [∀i, topological_space (π i)] {l : filter α} {f : α → Π i, π i}
  {x : Π i, π i} (h : tendsto f l (𝓝 x)) (i : ι) :
  tendsto (λ a, f a i) l (𝓝 $ x i) :=
(continuous_at_apply i _).tendsto.comp h

lemma continuous_pi_iff [topological_space α] [∀ i, topological_space (π i)] {f : α → Π i, π i} :
  continuous f ↔ ∀ i, continuous (λ y, f y i) :=
iff.intro (λ h i, (continuous_apply i).comp h) continuous_pi

lemma nhds_pi [t : ∀i, topological_space (π i)] {a : Πi, π i} :
  𝓝 a = pi (λ i, 𝓝 (a i)) :=
calc 𝓝 a = (⨅i, @nhds _ (@topological_space.induced _ _ (λx:Πi, π i, x i) (t i)) a) : nhds_infi
  ... = (⨅i, comap (λx, x i) (𝓝 (a i))) : by simp [nhds_induced]

lemma tendsto_pi_nhds [t : ∀i, topological_space (π i)] {f : α → Πi, π i} {g : Πi, π i}
  {u : filter α} :
  tendsto f u (𝓝 g) ↔ ∀ x, tendsto (λ i, f i x) u (𝓝 (g x)) :=
by rw [nhds_pi, filter.tendsto_pi]

lemma continuous_at_pi [∀ i, topological_space (π i)] [topological_space α] {f : α → Π i, π i}
  {x : α} :
  continuous_at f x ↔ ∀ i, continuous_at (λ y, f y i) x :=
tendsto_pi_nhds

lemma filter.tendsto.update [∀i, topological_space (π i)] [decidable_eq ι]
  {l : filter α} {f : α → Π i, π i} {x : Π i, π i} (hf : tendsto f l (𝓝 x)) (i : ι)
  {g : α → π i} {xi : π i} (hg : tendsto g l (𝓝 xi)) :
  tendsto (λ a, function.update (f a) i (g a)) l (𝓝 $ function.update x i xi) :=
tendsto_pi_nhds.2 $ λ j, by { rcases em (j = i) with rfl|hj; simp [*, hf.apply] }

lemma continuous_at.update [∀i, topological_space (π i)] [topological_space α] [decidable_eq ι]
  {f : α → Π i, π i} {a : α} (hf : continuous_at f a) (i : ι) {g : α → π i}
  (hg : continuous_at g a) :
  continuous_at (λ a, function.update (f a) i (g a)) a :=
hf.update i hg

lemma continuous.update [∀i, topological_space (π i)] [topological_space α] [decidable_eq ι]
  {f : α → Π i, π i} (hf : continuous f) (i : ι) {g : α → π i} (hg : continuous g) :
  continuous (λ a, function.update (f a) i (g a)) :=
continuous_iff_continuous_at.2 $ λ x, hf.continuous_at.update i hg.continuous_at

/-- `function.update f i x` is continuous in `(f, x)`. -/
@[continuity] lemma continuous_update [∀i, topological_space (π i)] [decidable_eq ι] (i : ι) :
  continuous (λ f : (Π j, π j) × π i, function.update f.1 i f.2) :=
continuous_fst.update i continuous_snd

lemma filter.tendsto.fin_insert_nth {n} {π : fin (n + 1) → Type*} [Π i, topological_space (π i)]
  (i : fin (n + 1)) {f : α → π i} {l : filter α} {x : π i} (hf : tendsto f l (𝓝 x))
  {g : α → Π j : fin n, π (i.succ_above j)} {y : Π j, π (i.succ_above j)} (hg : tendsto g l (𝓝 y)) :
  tendsto (λ a, i.insert_nth (f a) (g a)) l (𝓝 $ i.insert_nth x y) :=
tendsto_pi_nhds.2 (λ j, fin.succ_above_cases i (by simpa) (by simpa using tendsto_pi_nhds.1 hg) j)

lemma continuous_at.fin_insert_nth {n} {π : fin (n + 1) → Type*} [Π i, topological_space (π i)]
  [topological_space α] (i : fin (n + 1)) {f : α → π i} {a : α} (hf : continuous_at f a)
  {g : α → Π j : fin n, π (i.succ_above j)} (hg : continuous_at g a) :
  continuous_at (λ a, i.insert_nth (f a) (g a)) a :=
hf.fin_insert_nth i hg

lemma continuous.fin_insert_nth {n} {π : fin (n + 1) → Type*} [Π i, topological_space (π i)]
  [topological_space α] (i : fin (n + 1)) {f : α → π i} (hf : continuous f)
  {g : α → Π j : fin n, π (i.succ_above j)} (hg : continuous g) :
  continuous (λ a, i.insert_nth (f a) (g a)) :=
continuous_iff_continuous_at.2 $ λ a, hf.continuous_at.fin_insert_nth i hg.continuous_at

lemma is_open_set_pi [∀a, topological_space (π a)] {i : set ι} {s : Πa, set (π a)}
  (hi : i.finite) (hs : ∀a∈i, is_open (s a)) : is_open (pi i s) :=
by rw [pi_def]; exact (is_open_bInter hi $ assume a ha, (hs _ ha).preimage (continuous_apply _))

lemma is_closed_set_pi [∀a, topological_space (π a)] {i : set ι} {s : Πa, set (π a)}
  (hs : ∀a∈i, is_closed (s a)) : is_closed (pi i s) :=
by rw [pi_def];
  exact (is_closed_Inter $ λ a, is_closed_Inter $ λ ha, (hs _ ha).preimage (continuous_apply _))

lemma mem_nhds_of_pi_mem_nhds {ι : Type*} {α : ι → Type*} [Π (i : ι), topological_space (α i)]
  {I : set ι} {s : Π i, set (α i)} (a : Π i, α i) (hs : I.pi s ∈ 𝓝 a) {i : ι} (hi : i ∈ I) :
  s i ∈ 𝓝 (a i) :=
by { rw nhds_pi at hs, exact mem_of_pi_mem_pi hs hi }

lemma set_pi_mem_nhds [Π a, topological_space (π a)] {i : set ι} {s : Π a, set (π a)}
  {x : Π a, π a} (hi : i.finite) (hs : ∀ a ∈ i, s a ∈ 𝓝 (x a)) :
  pi i s ∈ 𝓝 x :=
by { rw [pi_def, bInter_mem hi], exact λ a ha, (continuous_apply a).continuous_at (hs a ha) }

lemma set_pi_mem_nhds_iff {α : ι → Type*} [Π (i : ι), topological_space (α i)]
  {I : set ι} (hI : I.finite) {s : Π i, set (α i)} (a : Π i, α i) :
  I.pi s ∈ 𝓝 a ↔ ∀ (i : ι), i ∈ I → s i ∈ 𝓝 (a i) :=
by { rw [nhds_pi, pi_mem_pi_iff hI], apply_instance }

lemma interior_pi_set {α : ι → Type*} [Π i, topological_space (α i)]
  {I : set ι} (hI : I.finite) {s : Π i, set (α i)} :
  interior (pi I s) = I.pi (λ i, interior (s i)) :=
by { ext a, simp only [set.mem_pi, mem_interior_iff_mem_nhds, set_pi_mem_nhds_iff hI] }

lemma exists_finset_piecewise_mem_of_mem_nhds [decidable_eq ι] [Π i, topological_space (π i)]
  {s : set (Π a, π a)} {x : Π a, π a} (hs : s ∈ 𝓝 x) (y : Π a, π a) :
  ∃ I : finset ι, I.piecewise x y ∈ s :=
begin
  simp only [nhds_pi, filter.mem_pi'] at hs,
  rcases hs with ⟨I, t, htx, hts⟩,
  refine ⟨I, hts $ λ i hi, _⟩,
  simpa [finset.mem_coe.1 hi] using mem_of_mem_nhds (htx i)
end

lemma pi_eq_generate_from [∀a, topological_space (π a)] :
  Pi.topological_space =
  generate_from {g | ∃(s:Πa, set (π a)) (i : finset ι), (∀a∈i, is_open (s a)) ∧ g = pi ↑i s} :=
le_antisymm
  (le_generate_from $ assume g ⟨s, i, hi, eq⟩, eq.symm ▸ is_open_set_pi (finset.finite_to_set _) hi)
  (le_infi $ assume a s ⟨t, ht, s_eq⟩, generate_open.basic _ $
    ⟨function.update (λa, univ) a t, {a}, by simpa using ht, s_eq ▸ by ext f; simp [set.pi]⟩)

lemma pi_generate_from_eq {g : Πa, set (set (π a))} :
  @Pi.topological_space ι π (λa, generate_from (g a)) =
  generate_from {t | ∃(s:Πa, set (π a)) (i : finset ι), (∀a∈i, s a ∈ g a) ∧ t = pi ↑i s} :=
let G := {t | ∃(s:Πa, set (π a)) (i : finset ι), (∀a∈i, s a ∈ g a) ∧ t = pi ↑i s} in
begin
  rw [pi_eq_generate_from],
  refine le_antisymm (generate_from_mono _) (le_generate_from _),
  exact assume s ⟨t, i, ht, eq⟩, ⟨t, i, assume a ha, generate_open.basic _ (ht a ha), eq⟩,
  { rintros s ⟨t, i, hi, rfl⟩,
    rw [pi_def],
    apply is_open_bInter (finset.finite_to_set _),
    assume a ha, show ((generate_from G).coinduced (λf:Πa, π a, f a)).is_open (t a),
    refine le_generate_from _ _ (hi a ha),
    exact assume s hs, generate_open.basic _ ⟨function.update (λa, univ) a s, {a}, by simp [hs]⟩ }
end

lemma pi_generate_from_eq_fintype {g : Πa, set (set (π a))} [fintype ι] (hg : ∀a, ⋃₀ g a = univ) :
  @Pi.topological_space ι π (λa, generate_from (g a)) =
  generate_from {t | ∃(s:Πa, set (π a)), (∀a, s a ∈ g a) ∧ t = pi univ s} :=
begin
  rw [pi_generate_from_eq],
  refine le_antisymm (generate_from_mono _) (le_generate_from _),
  exact assume s ⟨t, ht, eq⟩, ⟨t, finset.univ, by simp [ht, eq]⟩,
  { rintros s ⟨t, i, ht, rfl⟩,
    apply is_open_iff_forall_mem_open.2 _,
    assume f hf,
    choose c hc using show ∀a, ∃s, s ∈ g a ∧ f a ∈ s,
    { assume a, have : f a ∈ ⋃₀ g a, { rw [hg], apply mem_univ }, simpa },
    refine ⟨pi univ (λa, if a ∈ i then t a else (c : Πa, set (π a)) a), _, _, _⟩,
    { simp [pi_if] },
    { refine generate_open.basic _ ⟨_, assume a, _, rfl⟩,
      by_cases a ∈ i; simp [*, set.pi] at * },
    { have : f ∈ pi {a | a ∉ i} c, { simp [*, set.pi] at * },
      simpa [pi_if, hf] } }
end

/-- Suppose `π i` is a family of topological spaces indexed by `i : ι`, and `X` is a type
endowed with a family of maps `f i : X → π i` for every `i : ι`, hence inducing a
map `g : X → Π i, π i`. This lemma shows that infimum of the topologies on `X` induced by
the `f i` as `i : ι` varies is simply the topology on `X` induced by `g : X → Π i, π i`
where `Π i, π i` is endowed with the usual product topology. -/
lemma inducing_infi_to_pi {X : Type*} [∀ i, topological_space (π i)] (f : Π i, X → π i) :
  @inducing X (Π i, π i) (⨅ i, induced (f i) infer_instance) _ (λ x i, f i x) :=
begin
  constructor,
  erw induced_infi,
  congr' 1,
  funext,
  erw induced_compose,
end

variables [fintype ι] [∀ i, topological_space (π i)] [∀ i, discrete_topology (π i)]

/-- A finite product of discrete spaces is discrete. -/
instance Pi.discrete_topology : discrete_topology (Π i, π i) :=
singletons_open_iff_discrete.mp (λ x,
begin
  rw show {x} = ⋂ i, {y : Π i, π i | y i = x i},
  { ext, simp only [function.funext_iff, set.mem_singleton_iff, set.mem_Inter, set.mem_set_of_eq] },
  exact is_open_Inter (λ i, (continuous_apply i).is_open_preimage {x i} (is_open_discrete {x i}))
end)

end pi

section sigma
variables {ι : Type*} {σ : ι → Type*} [Π i, topological_space (σ i)]

@[continuity]
lemma continuous_sigma_mk {i : ι} : continuous (@sigma.mk ι σ i) :=
continuous_supr_rng continuous_coinduced_rng

lemma is_open_sigma_iff {s : set (sigma σ)} : is_open s ↔ ∀ i, is_open (sigma.mk i ⁻¹' s) :=
by simp only [is_open_supr_iff, is_open_coinduced]

lemma is_closed_sigma_iff {s : set (sigma σ)} : is_closed s ↔ ∀ i, is_closed (sigma.mk i ⁻¹' s) :=
by simp only [← is_open_compl_iff, is_open_sigma_iff, preimage_compl]

lemma is_open_map_sigma_mk {i : ι} : is_open_map (@sigma.mk ι σ i) :=
begin
  intros s hs,
  rw is_open_sigma_iff,
  intro j,
  rcases eq_or_ne i j with (rfl|hne),
  { rwa set.preimage_image_eq _ sigma_mk_injective },
  { convert is_open_empty,
    apply set.eq_empty_of_subset_empty,
    rintro x ⟨y, _, hy⟩,
    have : i = j, by cc,
    contradiction }
end

lemma is_open_range_sigma_mk {i : ι} : is_open (set.range (@sigma.mk ι σ i)) :=
is_open_map_sigma_mk.is_open_range

lemma is_closed_map_sigma_mk {i : ι} : is_closed_map (@sigma.mk ι σ i) :=
begin
  intros s hs,
  rw is_closed_sigma_iff,
  intro j,
  rcases eq_or_ne i j with (rfl|hne),
  { rwa set.preimage_image_eq _ sigma_mk_injective },
  { convert is_closed_empty,
    apply set.eq_empty_of_subset_empty,
    rintro x ⟨y, _, hy⟩,
    have : i = j, by cc,
    contradiction }
end

lemma is_closed_sigma_mk {i : ι} : is_closed (set.range (@sigma.mk ι σ i)) :=
by { rw ←set.image_univ, exact is_closed_map_sigma_mk _ is_closed_univ }

lemma open_embedding_sigma_mk {i : ι} : open_embedding (@sigma.mk ι σ i) :=
open_embedding_of_continuous_injective_open
  continuous_sigma_mk sigma_mk_injective is_open_map_sigma_mk

lemma closed_embedding_sigma_mk {i : ι} : closed_embedding (@sigma.mk ι σ i) :=
closed_embedding_of_continuous_injective_closed
  continuous_sigma_mk sigma_mk_injective is_closed_map_sigma_mk

lemma embedding_sigma_mk {i : ι} : embedding (@sigma.mk ι σ i) :=
closed_embedding_sigma_mk.1

lemma is_open_sigma_fst_preimage (s : set ι) :  is_open (sigma.fst ⁻¹' s : set (Σ a, σ a)) :=
begin
  rw [← bUnion_of_singleton s, preimage_Union₂],
  simp only [← range_sigma_mk],
  exact is_open_bUnion (λ _ _, is_open_range_sigma_mk)
end

/-- A map out of a sum type is continuous if its restriction to each summand is. -/
@[continuity]
lemma continuous_sigma [topological_space β] {f : sigma σ → β}
  (h : ∀ i, continuous (λ a, f ⟨i, a⟩)) : continuous f :=
continuous_supr_dom.2 (λ i, continuous_coinduced_dom.2 (h i))

@[continuity]
lemma continuous_sigma_map {κ : Type*} {τ : κ → Type*} [Π k, topological_space (τ k)]
  {f₁ : ι → κ} {f₂ : Π i, σ i → τ (f₁ i)} (hf : ∀ i, continuous (f₂ i)) :
  continuous (sigma.map f₁ f₂) :=
continuous_sigma $ λ i,
  show continuous (λ a, sigma.mk (f₁ i) (f₂ i a)),
  from continuous_sigma_mk.comp (hf i)

lemma is_open_map_sigma [topological_space β] {f : sigma σ → β}
  (h : ∀ i, is_open_map (λ a, f ⟨i, a⟩)) : is_open_map f :=
begin
  intros s hs,
  rw is_open_sigma_iff at hs,
  rw [← Union_image_preimage_sigma_mk_eq_self s, image_Union],
  apply is_open_Union,
  intro i,
  rw [image_image],
  exact h i _ (hs i)
end

/-- The sum of embeddings is an embedding. -/
lemma embedding_sigma_map {τ : ι → Type*} [Π i, topological_space (τ i)]
  {f : Π i, σ i → τ i} (hf : ∀ i, embedding (f i)) : embedding (sigma.map id f) :=
begin
  refine ⟨⟨_⟩, function.injective_id.sigma_map (λ i, (hf i).inj)⟩,
  refine le_antisymm
    (continuous_iff_le_induced.mp (continuous_sigma_map (λ i, (hf i).continuous))) _,
  intros s hs,
  replace hs := is_open_sigma_iff.mp hs,
  have : ∀ i, ∃ t, is_open t ∧ f i ⁻¹' t = sigma.mk i ⁻¹' s,
  { intro i,
    apply is_open_induced_iff.mp,
    convert hs i,
    exact (hf i).induced.symm },
  choose t ht using this,
  apply is_open_induced_iff.mpr,
  refine ⟨⋃ i, sigma.mk i '' t i, is_open_Union (λ i, is_open_map_sigma_mk _ (ht i).1), _⟩,
  ext ⟨i, x⟩,
  change (sigma.mk i (f i x) ∈ ⋃ (i : ι), sigma.mk i '' t i) ↔ x ∈ sigma.mk i ⁻¹' s,
  rw [←(ht i).2, mem_Union],
  split,
  { rintro ⟨j, hj⟩,
    rw mem_image at hj,
    rcases hj with ⟨y, hy₁, hy₂⟩,
    rcases sigma.mk.inj_iff.mp hy₂ with ⟨rfl, hy⟩,
    replace hy := eq_of_heq hy,
    subst y,
    exact hy₁ },
  { intro hx,
    use i,
    rw mem_image,
    exact ⟨f i x, hx, rfl⟩ }
end

end sigma

section ulift

@[continuity] lemma continuous_ulift_down [topological_space α] :
  continuous (ulift.down : ulift.{v u} α → α) :=
continuous_induced_dom

@[continuity] lemma continuous_ulift_up [topological_space α] :
  continuous (ulift.up : α → ulift.{v u} α) :=
continuous_induced_rng.2 continuous_id

end ulift

lemma mem_closure_of_continuous [topological_space α] [topological_space β]
  {f : α → β} {a : α} {s : set α} {t : set β}
  (hf : continuous f) (ha : a ∈ closure s) (h : maps_to f s (closure t)) :
  f a ∈ closure t :=
calc f a ∈ f '' closure s : mem_image_of_mem _ ha
  ... ⊆ closure (f '' s) : image_closure_subset_closure_image hf
  ... ⊆ closure t : closure_minimal h.image_subset is_closed_closure

lemma mem_closure_of_continuous2 [topological_space α] [topological_space β] [topological_space γ]
  {f : α → β → γ} {a : α} {b : β} {s : set α} {t : set β} {u : set γ}
  (hf : continuous (λp:α×β, f p.1 p.2)) (ha : a ∈ closure s) (hb : b ∈ closure t)
  (h : ∀a∈s, ∀b∈t, f a b ∈ closure u) :
  f a b ∈ closure u :=
have (a,b) ∈ closure (s ×ˢ t),
  by simp [closure_prod_eq, ha, hb],
show f (a, b).1 (a, b).2 ∈ closure u,
  from @mem_closure_of_continuous (α×β) _ _ _ (λp:α×β, f p.1 p.2) (a,b) _ u hf this $
    assume ⟨p₁, p₂⟩ ⟨h₁, h₂⟩, h p₁ h₁ p₂ h₂