Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 4,657 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
/-
Copyright © 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Shing Tak Lam
-/
import topology.algebra.order.proj_Icc
import topology.continuous_function.basic
/-!
# Bundled continuous maps into orders, with order-compatible topology
-/
variables {α : Type*} {β : Type*} {γ : Type*}
variables [topological_space α] [topological_space β] [topological_space γ]
namespace continuous_map
section
variables [linear_ordered_add_comm_group β] [order_topology β]
/-- The pointwise absolute value of a continuous function as a continuous function. -/
def abs (f : C(α, β)) : C(α, β) :=
{ to_fun := λ x, |f x|, }
@[priority 100] -- see Note [lower instance priority]
instance : has_abs C(α, β) := ⟨λf, abs f⟩
@[simp] lemma abs_apply (f : C(α, β)) (x : α) : |f| x = |f x| :=
rfl
end
/-!
We now set up the partial order and lattice structure (given by pointwise min and max)
on continuous functions.
-/
section lattice
instance partial_order [partial_order β] :
partial_order C(α, β) :=
partial_order.lift (λ f, f.to_fun) (by tidy)
lemma le_def [partial_order β] {f g : C(α, β)} : f ≤ g ↔ ∀ a, f a ≤ g a :=
pi.le_def
lemma lt_def [partial_order β] {f g : C(α, β)} :
f < g ↔ (∀ a, f a ≤ g a) ∧ (∃ a, f a < g a) :=
pi.lt_def
instance has_sup [linear_order β] [order_closed_topology β] : has_sup C(α, β) :=
{ sup := λ f g, { to_fun := λ a, max (f a) (g a), } }
@[simp, norm_cast] lemma sup_coe [linear_order β] [order_closed_topology β] (f g : C(α, β)) :
((f ⊔ g : C(α, β)) : α → β) = (f ⊔ g : α → β) :=
rfl
@[simp] lemma sup_apply [linear_order β] [order_closed_topology β] (f g : C(α, β)) (a : α) :
(f ⊔ g) a = max (f a) (g a) :=
rfl
instance [linear_order β] [order_closed_topology β] : semilattice_sup C(α, β) :=
{ le_sup_left := λ f g, le_def.mpr (by simp [le_refl]),
le_sup_right := λ f g, le_def.mpr (by simp [le_refl]),
sup_le := λ f₁ f₂ g w₁ w₂, le_def.mpr (λ a, by simp [le_def.mp w₁ a, le_def.mp w₂ a]),
..continuous_map.partial_order,
..continuous_map.has_sup, }
instance has_inf [linear_order β] [order_closed_topology β] : has_inf C(α, β) :=
{ inf := λ f g, { to_fun := λ a, min (f a) (g a), } }
@[simp, norm_cast] lemma inf_coe [linear_order β] [order_closed_topology β] (f g : C(α, β)) :
((f ⊓ g : C(α, β)) : α → β) = (f ⊓ g : α → β) :=
rfl
@[simp] lemma inf_apply [linear_order β] [order_closed_topology β] (f g : C(α, β)) (a : α) :
(f ⊓ g) a = min (f a) (g a) :=
rfl
instance [linear_order β] [order_closed_topology β] : semilattice_inf C(α, β) :=
{ inf_le_left := λ f g, le_def.mpr (by simp [le_refl]),
inf_le_right := λ f g, le_def.mpr (by simp [le_refl]),
le_inf := λ f₁ f₂ g w₁ w₂, le_def.mpr (λ a, by simp [le_def.mp w₁ a, le_def.mp w₂ a]),
..continuous_map.partial_order,
..continuous_map.has_inf, }
instance [linear_order β] [order_closed_topology β] : lattice C(α, β) :=
{ ..continuous_map.semilattice_inf,
..continuous_map.semilattice_sup }
-- TODO transfer this lattice structure to `bounded_continuous_function`
section sup'
variables [linear_order γ] [order_closed_topology γ]
lemma sup'_apply {ι : Type*} {s : finset ι} (H : s.nonempty) (f : ι → C(β, γ)) (b : β) :
s.sup' H f b = s.sup' H (λ a, f a b) :=
finset.comp_sup'_eq_sup'_comp H (λ f : C(β, γ), f b) (λ i j, rfl)
@[simp, norm_cast]
lemma sup'_coe {ι : Type*} {s : finset ι} (H : s.nonempty) (f : ι → C(β, γ)) :
((s.sup' H f : C(β, γ)) : ι → β) = s.sup' H (λ a, (f a : β → γ)) :=
by { ext, simp [sup'_apply], }
end sup'
section inf'
variables [linear_order γ] [order_closed_topology γ]
lemma inf'_apply {ι : Type*} {s : finset ι} (H : s.nonempty) (f : ι → C(β, γ)) (b : β) :
s.inf' H f b = s.inf' H (λ a, f a b) :=
@sup'_apply _ γᵒᵈ _ _ _ _ _ _ H f b
@[simp, norm_cast]
lemma inf'_coe {ι : Type*} {s : finset ι} (H : s.nonempty) (f : ι → C(β, γ)) :
((s.inf' H f : C(β, γ)) : ι → β) = s.inf' H (λ a, (f a : β → γ)) :=
@sup'_coe _ γᵒᵈ _ _ _ _ _ _ H f
end inf'
end lattice
section extend
variables [linear_order α] [order_topology α] {a b : α} (h : a ≤ b)
/--
Extend a continuous function `f : C(set.Icc a b, β)` to a function `f : C(α, β)`.
-/
def Icc_extend (f : C(set.Icc a b, β)) : C(α, β) := ⟨set.Icc_extend h f⟩
@[simp] lemma coe_Icc_extend (f : C(set.Icc a b, β)) :
((Icc_extend h f : C(α, β)) : α → β) = set.Icc_extend h f := rfl
end extend
end continuous_map
|