File size: 18,569 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import topology.category.Top
import category_theory.glue_data
import category_theory.concrete_category.elementwise

/-!
# Gluing Topological spaces

Given a family of gluing data (see `category_theory/glue_data`), we can then glue them together.

The construction should be "sealed" and considered as a black box, while only using the API
provided.

## Main definitions

* `Top.glue_data`: A structure containing the family of gluing data.
* `category_theory.glue_data.glued`: The glued topological space.
    This is defined as the multicoequalizer of `∐ V i j ⇉ ∐ U i`, so that the general colimit API
    can be used.
* `category_theory.glue_data.ι`: The immersion `ι i : U i ⟶ glued` for each `i : ι`.
* `Top.glue_data.rel`: A relation on `Σ i, D.U i` defined by `⟨i, x⟩ ~ ⟨j, y⟩` iff
    `⟨i, x⟩ = ⟨j, y⟩` or `t i j x = y`. See `Top.glue_data.ι_eq_iff_rel`.
* `Top.glue_data.mk`: A constructor of `glue_data` whose conditions are stated in terms of
  elements rather than subobjects and pullbacks.
* `Top.glue_data.of_open_subsets`: Given a family of open sets, we may glue them into a new
  topological space. This new space embeds into the original space, and is homeomorphic to it if
  the given family is an open cover (`Top.glue_data.open_cover_glue_homeo`).

## Main results

* `Top.glue_data.is_open_iff`: A set in `glued` is open iff its preimage along each `ι i` is
    open.
* `Top.glue_data.ι_jointly_surjective`: The `ι i`s are jointly surjective.
* `Top.glue_data.rel_equiv`: `rel` is an equivalence relation.
* `Top.glue_data.ι_eq_iff_rel`: `ι i x = ι j y ↔ ⟨i, x⟩ ~ ⟨j, y⟩`.
* `Top.glue_data.image_inter`: The intersection of the images of `U i` and `U j` in `glued` is
    `V i j`.
* `Top.glue_data.preimage_range`: The preimage of the image of `U i` in `U j` is `V i j`.
* `Top.glue_data.preimage_image_eq_preimage_f`: The preimage of the image of some `U ⊆ U i` is
    given by the preimage along `f j i`.
* `Top.glue_data.ι_open_embedding`: Each of the `ι i`s are open embeddings.

-/

noncomputable theory

open topological_space category_theory

universes v u
open category_theory.limits
namespace Top

/--
A family of gluing data consists of
1. An index type `J`
2. An object `U i` for each `i : J`.
3. An object `V i j` for each `i j : J`.
  (Note that this is `J × J → Top` rather than `J → J → Top` to connect to the
  limits library easier.)
4. An open embedding `f i j : V i j ⟶ U i` for each `i j : ι`.
5. A transition map `t i j : V i j ⟶ V j i` for each `i j : ι`.
such that
6. `f i i` is an isomorphism.
7. `t i i` is the identity.
8. `V i j ×[U i] V i k ⟶ V i j ⟶ V j i` factors through `V j k ×[U j] V j i ⟶ V j i` via some
    `t' : V i j ×[U i] V i k ⟶ V j k ×[U j] V j i`.
    (This merely means that `V i j ∩ V i k ⊆ t i j ⁻¹' (V j i ∩ V j k)`.)
9. `t' i j k ≫ t' j k i ≫ t' k i j = 𝟙 _`.

We can then glue the topological spaces `U i` together by identifying `V i j` with `V j i`, such
that the `U i`'s are open subspaces of the glued space.

Most of the times it would be easier to use the constructor `Top.glue_data.mk'` where the conditions
are stated in a less categorical way.
-/
@[nolint has_inhabited_instance]
structure glue_data extends glue_data Top :=
  (f_open : ∀ i j, open_embedding (f i j))
  (f_mono := λ i j, (Top.mono_iff_injective _).mpr (f_open i j).to_embedding.inj)

namespace glue_data

variable (D : glue_data.{u})

local notation `𝖣` := D.to_glue_data

lemma π_surjective : function.surjective 𝖣 .π :=
(Top.epi_iff_surjective 𝖣 .π).mp infer_instance

lemma is_open_iff (U : set 𝖣 .glued) : is_open U ↔ ∀ i, is_open (𝖣 .ι i ⁻¹' U) :=
begin
  delta category_theory.glue_data.ι,
  simp_rw ← multicoequalizer.ι_sigma_π 𝖣 .diagram,
  rw ← (homeo_of_iso (multicoequalizer.iso_coequalizer 𝖣 .diagram).symm).is_open_preimage,
  rw [coequalizer_is_open_iff, colimit_is_open_iff.{u}],
  split,
  { intros h j, exact h ⟨j⟩, },
  { intros h j, cases j, exact h j, },
end

lemma ι_jointly_surjective (x : 𝖣 .glued) : ∃ i (y : D.U i), 𝖣 .ι i y = x :=
𝖣 .ι_jointly_surjective (forget Top) x

/--
An equivalence relation on `Σ i, D.U i` that holds iff `𝖣 .ι i x = 𝖣 .ι j y`.
See `Top.glue_data.ι_eq_iff_rel`.
-/
def rel (a b : Σ i, ((D.U i : Top) : Type*)) : Prop :=
  a = b ∨ ∃ (x : D.V (a.1, b.1)) , D.f _ _ x = a.2 ∧ D.f _ _ (D.t _ _ x) = b.2

lemma rel_equiv : equivalence D.rel :=
⟨ λ x, or.inl (refl x),
  begin
    rintros a b (⟨⟨⟩⟩|⟨x,e₁,e₂⟩),
    exacts [or.inl rfl, or.inr ⟨D.t _ _ x, by simp [e₁, e₂]⟩]
  end,
  begin
    rintros ⟨i,a⟩ ⟨j,b⟩ ⟨k,c⟩ (⟨⟨⟩⟩|⟨x,e₁,e₂⟩), exact id,
    rintro (⟨⟨⟩⟩|⟨y,e₃,e₄⟩), exact or.inr ⟨x,e₁,e₂⟩,
    let z := (pullback_iso_prod_subtype (D.f j i) (D.f j k)).inv ⟨⟨_,_⟩, e₂.trans e₃.symm⟩,
    have eq₁ : (D.t j i) ((pullback.fst : _ ⟶ D.V _) z) = x := by simp,
    have eq₂ : (pullback.snd : _ ⟶ D.V _) z = y := pullback_iso_prod_subtype_inv_snd_apply _ _ _,
    clear_value z,
    right,
    use (pullback.fst : _ ⟶ D.V (i, k)) (D.t' _ _ _ z),
    dsimp only at *,
    substs e₁ e₃ e₄ eq₁ eq₂,
    have h₁ : D.t' j i k ≫ pullback.fst ≫ D.f i k = pullback.fst ≫ D.t j i ≫ D.f i j,
    { rw ← 𝖣 .t_fac_assoc, congr' 1, exact pullback.condition },
    have h₂ : D.t' j i k ≫ pullback.fst ≫ D.t i k ≫ D.f k i =
      pullback.snd ≫ D.t j k ≫ D.f k j,
    { rw ← 𝖣 .t_fac_assoc,
      apply @epi.left_cancellation _ _ _ _ (D.t' k j i),
      rw [𝖣 .cocycle_assoc, 𝖣 .t_fac_assoc, 𝖣 .t_inv_assoc],
      exact pullback.condition.symm },
    exact ⟨continuous_map.congr_fun h₁ z, continuous_map.congr_fun h₂ z⟩
  end⟩

open category_theory.limits.walking_parallel_pair

lemma eqv_gen_of_π_eq {x y : ∐ D.U} (h : 𝖣 .π x = 𝖣 .π y) :
  eqv_gen (types.coequalizer_rel 𝖣 .diagram.fst_sigma_map 𝖣 .diagram.snd_sigma_map) x y :=
begin
  delta glue_data.π multicoequalizer.sigma_π at h,
  simp_rw comp_app at h,
  replace h := (Top.mono_iff_injective (multicoequalizer.iso_coequalizer 𝖣 .diagram).inv).mp _ h,
  let diagram := parallel_pair 𝖣 .diagram.fst_sigma_map 𝖣 .diagram.snd_sigma_map ⋙ forget _,
  have : colimit.ι diagram one x = colimit.ι diagram one y,
  { rw ←ι_preserves_colimits_iso_hom,
    simp [h] },
  have :
    (colimit.ι diagram _ ≫ colim.map _ ≫ (colimit.iso_colimit_cocone _).hom) _ =
    (colimit.ι diagram _ ≫ colim.map _ ≫ (colimit.iso_colimit_cocone _).hom) _ :=
    (congr_arg (colim.map (diagram_iso_parallel_pair diagram).hom
    ≫ (colimit.iso_colimit_cocone (types.coequalizer_colimit _ _)).hom) this : _),
  simp only [eq_to_hom_refl, types_comp_apply, colimit.ι_map_assoc,
    diagram_iso_parallel_pair_hom_app, colimit.iso_colimit_cocone_ι_hom, types_id_apply] at this,
  exact quot.eq.1 this,
  apply_instance
end

lemma ι_eq_iff_rel (i j : D.J) (x : D.U i) (y : D.U j) :
  𝖣 .ι i x = 𝖣 .ι j y ↔ D.rel ⟨i, x⟩ ⟨j, y⟩ :=
begin
  split,
  { delta glue_data.ι,
    simp_rw ← multicoequalizer.ι_sigma_π,
    intro h,
    rw ← (show _ = sigma.mk i x,
      from concrete_category.congr_hom (sigma_iso_sigma.{u} D.U).inv_hom_id _),
    rw ← (show _ = sigma.mk j y,
      from concrete_category.congr_hom (sigma_iso_sigma.{u} D.U).inv_hom_id _),
    change inv_image D.rel (sigma_iso_sigma.{u} D.U).hom _ _,
    simp only [Top.sigma_iso_sigma_inv_apply],
    rw ← (inv_image.equivalence _ _ D.rel_equiv).eqv_gen_iff,
    refine eqv_gen.mono _ (D.eqv_gen_of_π_eq h : _),
    rintros _ _ ⟨x⟩,
    rw ← (show (sigma_iso_sigma.{u} _).inv _ = x,
      from concrete_category.congr_hom (sigma_iso_sigma.{u} _).hom_inv_id x),
    generalize : (sigma_iso_sigma.{u} D.V).hom x = x',
    obtain ⟨⟨i,j⟩,y⟩ := x',
    unfold inv_image multispan_index.fst_sigma_map multispan_index.snd_sigma_map,
    simp only [opens.inclusion_apply, Top.comp_app, sigma_iso_sigma_inv_apply,
      category_theory.limits.colimit.ι_desc_apply, cofan.mk_ι_app,
      sigma_iso_sigma_hom_ι_apply, continuous_map.to_fun_eq_coe],
    erw [sigma_iso_sigma_hom_ι_apply, sigma_iso_sigma_hom_ι_apply],
    exact or.inr ⟨y, by { dsimp [glue_data.diagram], simp }⟩ },
  { rintro (⟨⟨⟩⟩|⟨z,e₁,e₂⟩),
    refl, dsimp only at *, subst e₁, subst e₂, simp }
end

lemma ι_injective (i : D.J) : function.injective (𝖣 .ι i) :=
begin
  intros x y h,
  rcases (D.ι_eq_iff_rel _ _ _ _).mp h with (⟨⟨⟩⟩|⟨_,e₁,e₂⟩),
  { refl },
  { dsimp only at *, cases e₁, cases e₂, simp }
end

instance ι_mono (i : D.J) : mono (𝖣 .ι i) :=
(Top.mono_iff_injective _).mpr (D.ι_injective _)

lemma image_inter (i j : D.J) :
  set.range (𝖣 .ι i) ∩ set.range (𝖣 .ι j) = set.range (D.f i j ≫ 𝖣 .ι _) :=
begin
  ext x,
  split,
  { rintro ⟨⟨x₁, eq₁⟩, ⟨x₂, eq₂⟩⟩,
    obtain (⟨⟨⟩⟩|⟨y,e₁,e₂⟩) := (D.ι_eq_iff_rel _ _ _ _).mp (eq₁.trans eq₂.symm),
    { exact ⟨inv (D.f i i) x₁, by simp [eq₁]⟩ },
    { dsimp only at *, substs e₁ eq₁, exact ⟨y, by simp⟩ } },
  { rintro ⟨x, hx⟩,
    exact ⟨⟨D.f i j x, hx⟩, ⟨D.f j i (D.t _ _ x), by simp [← hx]⟩⟩ }
end

lemma preimage_range (i j : D.J) :
  𝖣 .ι j ⁻¹' (set.range (𝖣 .ι i)) = set.range (D.f j i) :=
by rw [← set.preimage_image_eq (set.range (D.f j i)) (D.ι_injective j), ← set.image_univ,
      ← set.image_univ, ←set.image_comp, ←coe_comp, set.image_univ,set.image_univ,
      ← image_inter, set.preimage_range_inter]

lemma preimage_image_eq_image (i j : D.J) (U : set (𝖣 .U i)) :
  𝖣 .ι j ⁻¹' (𝖣 .ι i '' U) = D.f _ _ '' ((D.t j i ≫ D.f _ _) ⁻¹' U) :=
begin
  have : D.f _ _ ⁻¹' (𝖣 .ι j ⁻¹' (𝖣 .ι i '' U)) = (D.t j i ≫ D.f _ _) ⁻¹' U,
  { ext x,
    conv_rhs { rw ← set.preimage_image_eq U (D.ι_injective _) },
    generalize : 𝖣 .ι i '' U = U',
    simp },
  rw [← this, set.image_preimage_eq_inter_range],
  symmetry,
  apply set.inter_eq_self_of_subset_left,
  rw ← D.preimage_range i j,
  exact set.preimage_mono (set.image_subset_range _ _),
end

lemma preimage_image_eq_image' (i j : D.J) (U : set (𝖣 .U i)) :
𝖣 .ι j ⁻¹' (𝖣 .ι i '' U) = (D.t i j ≫ D.f _ _) '' ((D.f _ _) ⁻¹' U) :=
begin
  convert D.preimage_image_eq_image i j U using 1,
  rw [coe_comp, coe_comp, ← set.image_image],
  congr' 1,
  rw [← set.eq_preimage_iff_image_eq, set.preimage_preimage],
  change _ = (D.t i j ≫ D.t j i ≫ _) ⁻¹' _,
  rw 𝖣 .t_inv_assoc,
  rw ← is_iso_iff_bijective,
  apply (forget Top).map_is_iso
end

lemma open_image_open (i : D.J) (U : opens (𝖣 .U i)) : is_open (𝖣 .ι i '' U) :=
begin
  rw is_open_iff,
  intro j,
  rw preimage_image_eq_image,
  apply (D.f_open _ _).is_open_map,
  apply (D.t j i ≫ D.f i j).continuous_to_fun.is_open_preimage,
  exact U.property
end

lemma ι_open_embedding (i : D.J) : open_embedding (𝖣 .ι i) :=
open_embedding_of_continuous_injective_open
  (𝖣 .ι i).continuous_to_fun (D.ι_injective i) (λ U h, D.open_image_open i ⟨U, h⟩)

/--
A family of gluing data consists of
1. An index type `J`
2. A bundled topological space `U i` for each `i : J`.
3. An open set `V i j ⊆ U i` for each `i j : J`.
4. A transition map `t i j : V i j ⟶ V j i` for each `i j : ι`.
such that
6. `V i i = U i`.
7. `t i i` is the identity.
8. For each `x ∈ V i j ∩ V i k`, `t i j x ∈ V j k`.
9. `t j k (t i j x) = t i k x`.

We can then glue the topological spaces `U i` together by identifying `V i j` with `V j i`.
-/
@[nolint has_inhabited_instance]
structure mk_core :=
{J : Type u}
(U : J → Top.{u})
(V : Π i, J → opens (U i))
(t : Π i j, (opens.to_Top _).obj (V i j) ⟶ (opens.to_Top _).obj (V j i))
(V_id : ∀ i, V i i = ⊤)
(t_id : ∀ i, ⇑(t i i) = id)
(t_inter : ∀ ⦃i j⦄ k (x : V i j), ↑x ∈ V i k → @coe (V j i) (U j) _ (t i j x) ∈ V j k)
(cocycle : ∀ i j k (x : V i j) (h : ↑x ∈ V i k),
  @coe (V k j) (U k) _ (t j k ⟨↑(t i j x), t_inter k x h⟩) = @coe (V k i) (U k) _ (t i k ⟨x, h⟩))

lemma mk_core.t_inv (h : mk_core) (i j : h.J) (x : h.V j i) : h.t i j ((h.t j i) x) = x :=
begin
  have := h.cocycle j i j x _,
  rw h.t_id at this,
  convert subtype.eq this,
  { ext, refl },
  all_goals { rw h.V_id, trivial }
end

instance (h : mk_core.{u}) (i j : h.J) : is_iso (h.t i j) :=
by { use h.t j i, split; ext1, exacts [h.t_inv _ _ _, h.t_inv _ _ _] }

/-- (Implementation) the restricted transition map to be fed into `glue_data`. -/
def mk_core.t' (h : mk_core.{u}) (i j k : h.J) : pullback (h.V i j).inclusion (h.V i k).inclusion ⟶
  pullback (h.V j k).inclusion (h.V j i).inclusion :=
begin
  refine (pullback_iso_prod_subtype _ _).hom ≫ ⟨_, _⟩ ≫ (pullback_iso_prod_subtype _ _).inv,
  { intro x,
    refine ⟨⟨⟨(h.t i j x.1.1).1, _⟩, h.t i j x.1.1⟩, rfl⟩,
    rcases x with ⟨⟨⟨x, hx⟩, ⟨x', hx'⟩⟩, (rfl : x = x')⟩,
    exact h.t_inter _ ⟨x, hx⟩ hx' },
  continuity,
end

/-- This is a constructor of `Top.glue_data` whose arguments are in terms of elements and
intersections rather than subobjects and pullbacks. Please refer to `Top.glue_data.mk_core` for
details. -/
def mk' (h : mk_core.{u}) : Top.glue_data :=
{ J := h.J,
  U := h.U,
  V := λ i, (opens.to_Top _).obj (h.V i.1 i.2),
  f := λ i j, (h.V i j).inclusion ,
  f_id := λ i, (h.V_id i).symm ▸ is_iso.of_iso (opens.inclusion_top_iso (h.U i)),
  f_open := λ (i j : h.J), (h.V i j).open_embedding,
  t := h.t,
  t_id := λ i, by { ext, rw h.t_id, refl },
  t' := h.t',
  t_fac := λ i j k,
  begin
    delta mk_core.t',
    rw [category.assoc, category.assoc, pullback_iso_prod_subtype_inv_snd, ← iso.eq_inv_comp,
      pullback_iso_prod_subtype_inv_fst_assoc],
    ext ⟨⟨⟨x, hx⟩, ⟨x', hx'⟩⟩, (rfl : x = x')⟩,
    refl,
  end,
  cocycle := λ i j k,
  begin
    delta mk_core.t',
    simp_rw ← category.assoc,
    rw iso.comp_inv_eq,
    simp only [iso.inv_hom_id_assoc, category.assoc, category.id_comp],
    rw [← iso.eq_inv_comp, iso.inv_hom_id],
    ext1 ⟨⟨⟨x, hx⟩, ⟨x', hx'⟩⟩, (rfl : x = x')⟩,
    simp only [Top.comp_app, continuous_map.coe_mk, prod.mk.inj_iff,
      Top.id_app, subtype.mk_eq_mk, subtype.coe_mk],
    rw [← subtype.coe_injective.eq_iff, subtype.val_eq_coe, subtype.coe_mk, and_self],
    convert congr_arg coe (h.t_inv k i ⟨x, hx'⟩) using 3,
    ext,
    exact h.cocycle i j k ⟨x, hx⟩ hx',
  end }
.

variables {α : Type u} [topological_space α] {J : Type u} (U : J → opens α)

include U

/-- We may construct a glue data from a family of open sets. -/
@[simps to_glue_data_J to_glue_data_U to_glue_data_V to_glue_data_t to_glue_data_f]
def of_open_subsets : Top.glue_data.{u} := mk'.{u}
{ J := J,
  U := λ i, (opens.to_Top $ Top.of α).obj (U i),
  V := λ i j, (opens.map $ opens.inclusion _).obj (U j),
  t := λ i j, ⟨λ x, ⟨⟨x.1.1, x.2⟩, x.1.2⟩, by continuity⟩,
  V_id := λ i, by { ext, cases U i, simp },
  t_id := λ i, by { ext, refl },
  t_inter := λ i j k x hx, hx,
  cocycle := λ i j k x h, rfl }

/--
The canonical map from the glue of a family of open subsets `α` into `α`.
This map is an open embedding (`from_open_subsets_glue_open_embedding`),
and its range is `⋃ i, (U i : set α)` (`range_from_open_subsets_glue`).
-/
def from_open_subsets_glue : (of_open_subsets U).to_glue_data.glued ⟶ Top.of α :=
multicoequalizer.desc _ _ (λ x, opens.inclusion _) (by { rintro ⟨i, j⟩, ext x, refl })

@[simp, elementwise]
lemma ι_from_open_subsets_glue (i : J) :
  (of_open_subsets U).to_glue_data.ι i ≫ from_open_subsets_glue U = opens.inclusion _ :=
multicoequalizer.π_desc _ _ _ _ _

lemma from_open_subsets_glue_injective : function.injective (from_open_subsets_glue U) :=
begin
  intros x y e,
  obtain ⟨i, ⟨x, hx⟩, rfl⟩ := (of_open_subsets U).ι_jointly_surjective x,
  obtain ⟨j, ⟨y, hy⟩, rfl⟩ := (of_open_subsets U).ι_jointly_surjective y,
  rw [ι_from_open_subsets_glue_apply, ι_from_open_subsets_glue_apply] at e,
  change x = y at e,
  subst e,
  rw (of_open_subsets U).ι_eq_iff_rel,
  right,
  exact ⟨⟨⟨x, hx⟩, hy⟩, rfl, rfl⟩,
end

lemma from_open_subsets_glue_is_open_map : is_open_map (from_open_subsets_glue U) :=
begin
  intros s hs,
  rw (of_open_subsets U).is_open_iff at hs,
  rw is_open_iff_forall_mem_open,
  rintros _ ⟨x, hx, rfl⟩,
  obtain ⟨i, ⟨x, hx'⟩, rfl⟩ := (of_open_subsets U).ι_jointly_surjective x,
  use from_open_subsets_glue U '' s ∩ set.range (@opens.inclusion (Top.of α) (U i)),
  use set.inter_subset_left _ _,
  split,
  { erw ← set.image_preimage_eq_inter_range,
    apply (@opens.open_embedding (Top.of α) (U i)).is_open_map,
    convert hs i using 1,
    rw [← ι_from_open_subsets_glue, coe_comp, set.preimage_comp],
    congr' 1,
    refine set.preimage_image_eq _ (from_open_subsets_glue_injective U) },
  { refine ⟨set.mem_image_of_mem _ hx, _⟩,
    rw ι_from_open_subsets_glue_apply,
    exact set.mem_range_self _ },
end

lemma from_open_subsets_glue_open_embedding : open_embedding (from_open_subsets_glue U) :=
open_embedding_of_continuous_injective_open (continuous_map.continuous_to_fun _)
  (from_open_subsets_glue_injective U) (from_open_subsets_glue_is_open_map U)

lemma range_from_open_subsets_glue : set.range (from_open_subsets_glue U) = ⋃ i, (U i : set α) :=
begin
  ext,
  split,
  { rintro ⟨x, rfl⟩,
    obtain ⟨i, ⟨x, hx'⟩, rfl⟩ := (of_open_subsets U).ι_jointly_surjective x,
    rw ι_from_open_subsets_glue_apply,
    exact set.subset_Union _ i hx' },
  { rintro ⟨_, ⟨i, rfl⟩, hx⟩,
    refine ⟨(of_open_subsets U).to_glue_data.ι i ⟨x, hx⟩, ι_from_open_subsets_glue_apply _ _ _⟩ }
end

/-- The gluing of an open cover is homeomomorphic to the original space. -/
def open_cover_glue_homeo (h : (⋃ i, (U i : set α)) = set.univ) :
  (of_open_subsets U).to_glue_data.glued ≃ₜ α :=
homeomorph.homeomorph_of_continuous_open
  (equiv.of_bijective (from_open_subsets_glue U)
    ⟨from_open_subsets_glue_injective U,
      set.range_iff_surjective.mp ((range_from_open_subsets_glue U).symm ▸ h)⟩)
  (from_open_subsets_glue U).2 (from_open_subsets_glue_is_open_map U)

end glue_data

end Top