Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 20,202 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
/-
Copyright (c) 2019 Reid Barton. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Patrick Massot, Sébastien Gouëzel, Zhouhang Zhou, Reid Barton
-/
import logic.equiv.fin
import topology.dense_embedding
import topology.support
/-!
# Homeomorphisms
This file defines homeomorphisms between two topological spaces. They are bijections with both
directions continuous. We denote homeomorphisms with the notation `≃ₜ`.
# Main definitions
* `homeomorph α β`: The type of homeomorphisms from `α` to `β`.
This type can be denoted using the following notation: `α ≃ₜ β`.
# Main results
* Pretty much every topological property is preserved under homeomorphisms.
* `homeomorph.homeomorph_of_continuous_open`: A continuous bijection that is
an open map is a homeomorphism.
-/
open set filter
open_locale topological_space
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}
/-- Homeomorphism between `α` and `β`, also called topological isomorphism -/
@[nolint has_inhabited_instance] -- not all spaces are homeomorphic to each other
structure homeomorph (α : Type*) (β : Type*) [topological_space α] [topological_space β]
extends α ≃ β :=
(continuous_to_fun : continuous to_fun . tactic.interactive.continuity')
(continuous_inv_fun : continuous inv_fun . tactic.interactive.continuity')
infix ` ≃ₜ `:25 := homeomorph
namespace homeomorph
variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]
instance : has_coe_to_fun (α ≃ₜ β) (λ _, α → β) := ⟨λe, e.to_equiv⟩
@[simp] lemma homeomorph_mk_coe (a : equiv α β) (b c) :
((homeomorph.mk a b c) : α → β) = a :=
rfl
/-- Inverse of a homeomorphism. -/
protected def symm (h : α ≃ₜ β) : β ≃ₜ α :=
{ continuous_to_fun := h.continuous_inv_fun,
continuous_inv_fun := h.continuous_to_fun,
to_equiv := h.to_equiv.symm }
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def simps.apply (h : α ≃ₜ β) : α → β := h
/-- See Note [custom simps projection] -/
def simps.symm_apply (h : α ≃ₜ β) : β → α := h.symm
initialize_simps_projections homeomorph
(to_equiv_to_fun → apply, to_equiv_inv_fun → symm_apply, -to_equiv)
@[simp] lemma coe_to_equiv (h : α ≃ₜ β) : ⇑h.to_equiv = h := rfl
@[simp] lemma coe_symm_to_equiv (h : α ≃ₜ β) : ⇑h.to_equiv.symm = h.symm := rfl
lemma to_equiv_injective : function.injective (to_equiv : α ≃ₜ β → α ≃ β)
| ⟨e, h₁, h₂⟩ ⟨e', h₁', h₂'⟩ rfl := rfl
@[ext] lemma ext {h h' : α ≃ₜ β} (H : ∀ x, h x = h' x) : h = h' :=
to_equiv_injective $ equiv.ext H
/-- Identity map as a homeomorphism. -/
@[simps apply {fully_applied := ff}]
protected def refl (α : Type*) [topological_space α] : α ≃ₜ α :=
{ continuous_to_fun := continuous_id,
continuous_inv_fun := continuous_id,
to_equiv := equiv.refl α }
/-- Composition of two homeomorphisms. -/
protected def trans (h₁ : α ≃ₜ β) (h₂ : β ≃ₜ γ) : α ≃ₜ γ :=
{ continuous_to_fun := h₂.continuous_to_fun.comp h₁.continuous_to_fun,
continuous_inv_fun := h₁.continuous_inv_fun.comp h₂.continuous_inv_fun,
to_equiv := equiv.trans h₁.to_equiv h₂.to_equiv }
@[simp] lemma trans_apply (h₁ : α ≃ₜ β) (h₂ : β ≃ₜ γ) (a : α) : h₁.trans h₂ a = h₂ (h₁ a) := rfl
@[simp] lemma homeomorph_mk_coe_symm (a : equiv α β) (b c) :
((homeomorph.mk a b c).symm : β → α) = a.symm :=
rfl
@[simp] lemma refl_symm : (homeomorph.refl α).symm = homeomorph.refl α := rfl
@[continuity]
protected lemma continuous (h : α ≃ₜ β) : continuous h := h.continuous_to_fun
@[continuity] -- otherwise `by continuity` can't prove continuity of `h.to_equiv.symm`
protected lemma continuous_symm (h : α ≃ₜ β) : continuous (h.symm) := h.continuous_inv_fun
@[simp] lemma apply_symm_apply (h : α ≃ₜ β) (x : β) : h (h.symm x) = x :=
h.to_equiv.apply_symm_apply x
@[simp] lemma symm_apply_apply (h : α ≃ₜ β) (x : α) : h.symm (h x) = x :=
h.to_equiv.symm_apply_apply x
protected lemma bijective (h : α ≃ₜ β) : function.bijective h := h.to_equiv.bijective
protected lemma injective (h : α ≃ₜ β) : function.injective h := h.to_equiv.injective
protected lemma surjective (h : α ≃ₜ β) : function.surjective h := h.to_equiv.surjective
/-- Change the homeomorphism `f` to make the inverse function definitionally equal to `g`. -/
def change_inv (f : α ≃ₜ β) (g : β → α) (hg : function.right_inverse g f) : α ≃ₜ β :=
have g = f.symm, from funext (λ x, calc g x = f.symm (f (g x)) : (f.left_inv (g x)).symm
... = f.symm x : by rw hg x),
{ to_fun := f,
inv_fun := g,
left_inv := by convert f.left_inv,
right_inv := by convert f.right_inv,
continuous_to_fun := f.continuous,
continuous_inv_fun := by convert f.symm.continuous }
@[simp] lemma symm_comp_self (h : α ≃ₜ β) : ⇑h.symm ∘ ⇑h = id :=
funext h.symm_apply_apply
@[simp] lemma self_comp_symm (h : α ≃ₜ β) : ⇑h ∘ ⇑h.symm = id :=
funext h.apply_symm_apply
@[simp] lemma range_coe (h : α ≃ₜ β) : range h = univ :=
h.surjective.range_eq
lemma image_symm (h : α ≃ₜ β) : image h.symm = preimage h :=
funext h.symm.to_equiv.image_eq_preimage
lemma preimage_symm (h : α ≃ₜ β) : preimage h.symm = image h :=
(funext h.to_equiv.image_eq_preimage).symm
@[simp] lemma image_preimage (h : α ≃ₜ β) (s : set β) : h '' (h ⁻¹' s) = s :=
h.to_equiv.image_preimage s
@[simp] lemma preimage_image (h : α ≃ₜ β) (s : set α) : h ⁻¹' (h '' s) = s :=
h.to_equiv.preimage_image s
protected lemma inducing (h : α ≃ₜ β) : inducing h :=
inducing_of_inducing_compose h.continuous h.symm.continuous $
by simp only [symm_comp_self, inducing_id]
lemma induced_eq (h : α ≃ₜ β) : topological_space.induced h ‹_› = ‹_› := h.inducing.1.symm
protected lemma quotient_map (h : α ≃ₜ β) : quotient_map h :=
quotient_map.of_quotient_map_compose h.symm.continuous h.continuous $
by simp only [self_comp_symm, quotient_map.id]
lemma coinduced_eq (h : α ≃ₜ β) : topological_space.coinduced h ‹_› = ‹_› :=
h.quotient_map.2.symm
protected lemma embedding (h : α ≃ₜ β) : embedding h :=
⟨h.inducing, h.injective⟩
/-- Homeomorphism given an embedding. -/
noncomputable def of_embedding (f : α → β) (hf : embedding f) : α ≃ₜ (set.range f) :=
{ continuous_to_fun := continuous_subtype_mk _ hf.continuous,
continuous_inv_fun := by simp [hf.continuous_iff, continuous_subtype_coe],
.. equiv.of_injective f hf.inj }
protected lemma second_countable_topology [topological_space.second_countable_topology β]
(h : α ≃ₜ β) :
topological_space.second_countable_topology α :=
h.inducing.second_countable_topology
lemma compact_image {s : set α} (h : α ≃ₜ β) : is_compact (h '' s) ↔ is_compact s :=
h.embedding.is_compact_iff_is_compact_image.symm
lemma compact_preimage {s : set β} (h : α ≃ₜ β) : is_compact (h ⁻¹' s) ↔ is_compact s :=
by rw ← image_symm; exact h.symm.compact_image
@[simp] lemma comap_cocompact (h : α ≃ₜ β) : comap h (cocompact β) = cocompact α :=
(comap_cocompact_le h.continuous).antisymm $
(has_basis_cocompact.le_basis_iff (has_basis_cocompact.comap h)).2 $ λ K hK,
⟨h ⁻¹' K, h.compact_preimage.2 hK, subset.rfl⟩
@[simp] lemma map_cocompact (h : α ≃ₜ β) : map h (cocompact α) = cocompact β :=
by rw [← h.comap_cocompact, map_comap_of_surjective h.surjective]
protected lemma compact_space [compact_space α] (h : α ≃ₜ β) : compact_space β :=
{ compact_univ := by { rw [← image_univ_of_surjective h.surjective, h.compact_image],
apply compact_space.compact_univ } }
protected lemma t0_space [t0_space α] (h : α ≃ₜ β) : t0_space β :=
h.symm.embedding.t0_space
protected lemma t1_space [t1_space α] (h : α ≃ₜ β) : t1_space β :=
h.symm.embedding.t1_space
protected lemma t2_space [t2_space α] (h : α ≃ₜ β) : t2_space β :=
h.symm.embedding.t2_space
protected lemma t3_space [t3_space α] (h : α ≃ₜ β) : t3_space β :=
h.symm.embedding.t3_space
protected lemma dense_embedding (h : α ≃ₜ β) : dense_embedding h :=
{ dense := h.surjective.dense_range,
.. h.embedding }
@[simp] lemma is_open_preimage (h : α ≃ₜ β) {s : set β} : is_open (h ⁻¹' s) ↔ is_open s :=
h.quotient_map.is_open_preimage
@[simp] lemma is_open_image (h : α ≃ₜ β) {s : set α} : is_open (h '' s) ↔ is_open s :=
by rw [← preimage_symm, is_open_preimage]
protected lemma is_open_map (h : α ≃ₜ β) : is_open_map h := λ s, h.is_open_image.2
@[simp] lemma is_closed_preimage (h : α ≃ₜ β) {s : set β} : is_closed (h ⁻¹' s) ↔ is_closed s :=
by simp only [← is_open_compl_iff, ← preimage_compl, is_open_preimage]
@[simp] lemma is_closed_image (h : α ≃ₜ β) {s : set α} : is_closed (h '' s) ↔ is_closed s :=
by rw [← preimage_symm, is_closed_preimage]
protected lemma is_closed_map (h : α ≃ₜ β) : is_closed_map h := λ s, h.is_closed_image.2
protected lemma open_embedding (h : α ≃ₜ β) : open_embedding h :=
open_embedding_of_embedding_open h.embedding h.is_open_map
protected lemma closed_embedding (h : α ≃ₜ β) : closed_embedding h :=
closed_embedding_of_embedding_closed h.embedding h.is_closed_map
protected lemma normal_space [normal_space α] (h : α ≃ₜ β) : normal_space β :=
h.symm.closed_embedding.normal_space
lemma preimage_closure (h : α ≃ₜ β) (s : set β) : h ⁻¹' (closure s) = closure (h ⁻¹' s) :=
h.is_open_map.preimage_closure_eq_closure_preimage h.continuous _
lemma image_closure (h : α ≃ₜ β) (s : set α) : h '' (closure s) = closure (h '' s) :=
by rw [← preimage_symm, preimage_closure]
lemma preimage_interior (h : α ≃ₜ β) (s : set β) : h⁻¹' (interior s) = interior (h ⁻¹' s) :=
h.is_open_map.preimage_interior_eq_interior_preimage h.continuous _
lemma image_interior (h : α ≃ₜ β) (s : set α) : h '' (interior s) = interior (h '' s) :=
by rw [← preimage_symm, preimage_interior]
lemma preimage_frontier (h : α ≃ₜ β) (s : set β) : h ⁻¹' (frontier s) = frontier (h ⁻¹' s) :=
h.is_open_map.preimage_frontier_eq_frontier_preimage h.continuous _
@[to_additive]
lemma _root_.has_compact_mul_support.comp_homeomorph {M} [has_one M] {f : β → M}
(hf : has_compact_mul_support f) (φ : α ≃ₜ β) : has_compact_mul_support (f ∘ φ) :=
hf.comp_closed_embedding φ.closed_embedding
@[simp] lemma map_nhds_eq (h : α ≃ₜ β) (x : α) : map h (𝓝 x) = 𝓝 (h x) :=
h.embedding.map_nhds_of_mem _ (by simp)
lemma symm_map_nhds_eq (h : α ≃ₜ β) (x : α) : map h.symm (𝓝 (h x)) = 𝓝 x :=
by rw [h.symm.map_nhds_eq, h.symm_apply_apply]
lemma nhds_eq_comap (h : α ≃ₜ β) (x : α) : 𝓝 x = comap h (𝓝 (h x)) :=
h.embedding.to_inducing.nhds_eq_comap x
@[simp] lemma comap_nhds_eq (h : α ≃ₜ β) (y : β) : comap h (𝓝 y) = 𝓝 (h.symm y) :=
by rw [h.nhds_eq_comap, h.apply_symm_apply]
/-- If an bijective map `e : α ≃ β` is continuous and open, then it is a homeomorphism. -/
def homeomorph_of_continuous_open (e : α ≃ β) (h₁ : continuous e) (h₂ : is_open_map e) :
α ≃ₜ β :=
{ continuous_to_fun := h₁,
continuous_inv_fun := begin
rw continuous_def,
intros s hs,
convert ← h₂ s hs using 1,
apply e.image_eq_preimage
end,
to_equiv := e }
@[simp] lemma comp_continuous_on_iff (h : α ≃ₜ β) (f : γ → α) (s : set γ) :
continuous_on (h ∘ f) s ↔ continuous_on f s :=
h.inducing.continuous_on_iff.symm
@[simp] lemma comp_continuous_iff (h : α ≃ₜ β) {f : γ → α} :
continuous (h ∘ f) ↔ continuous f :=
h.inducing.continuous_iff.symm
@[simp] lemma comp_continuous_iff' (h : α ≃ₜ β) {f : β → γ} :
continuous (f ∘ h) ↔ continuous f :=
h.quotient_map.continuous_iff.symm
lemma comp_continuous_at_iff (h : α ≃ₜ β) (f : γ → α) (x : γ) :
continuous_at (h ∘ f) x ↔ continuous_at f x :=
h.inducing.continuous_at_iff.symm
lemma comp_continuous_at_iff' (h : α ≃ₜ β) (f : β → γ) (x : α) :
continuous_at (f ∘ h) x ↔ continuous_at f (h x) :=
h.inducing.continuous_at_iff' (by simp)
lemma comp_continuous_within_at_iff (h : α ≃ₜ β) (f : γ → α) (s : set γ) (x : γ) :
continuous_within_at f s x ↔ continuous_within_at (h ∘ f) s x :=
h.inducing.continuous_within_at_iff
@[simp] lemma comp_is_open_map_iff (h : α ≃ₜ β) {f : γ → α} :
is_open_map (h ∘ f) ↔ is_open_map f :=
begin
refine ⟨_, λ hf, h.is_open_map.comp hf⟩,
intros hf,
rw [← function.comp.left_id f, ← h.symm_comp_self, function.comp.assoc],
exact h.symm.is_open_map.comp hf,
end
@[simp] lemma comp_is_open_map_iff' (h : α ≃ₜ β) {f : β → γ} :
is_open_map (f ∘ h) ↔ is_open_map f :=
begin
refine ⟨_, λ hf, hf.comp h.is_open_map⟩,
intros hf,
rw [← function.comp.right_id f, ← h.self_comp_symm, ← function.comp.assoc],
exact hf.comp h.symm.is_open_map,
end
/-- If two sets are equal, then they are homeomorphic. -/
def set_congr {s t : set α} (h : s = t) : s ≃ₜ t :=
{ continuous_to_fun := continuous_subtype_mk _ continuous_subtype_val,
continuous_inv_fun := continuous_subtype_mk _ continuous_subtype_val,
to_equiv := equiv.set_congr h }
/-- Sum of two homeomorphisms. -/
def sum_congr (h₁ : α ≃ₜ β) (h₂ : γ ≃ₜ δ) : α ⊕ γ ≃ₜ β ⊕ δ :=
{ continuous_to_fun := h₁.continuous.sum_map h₂.continuous,
continuous_inv_fun := h₁.symm.continuous.sum_map h₂.symm.continuous,
to_equiv := h₁.to_equiv.sum_congr h₂.to_equiv }
/-- Product of two homeomorphisms. -/
def prod_congr (h₁ : α ≃ₜ β) (h₂ : γ ≃ₜ δ) : α × γ ≃ₜ β × δ :=
{ continuous_to_fun := (h₁.continuous.comp continuous_fst).prod_mk
(h₂.continuous.comp continuous_snd),
continuous_inv_fun := (h₁.symm.continuous.comp continuous_fst).prod_mk
(h₂.symm.continuous.comp continuous_snd),
to_equiv := h₁.to_equiv.prod_congr h₂.to_equiv }
@[simp] lemma prod_congr_symm (h₁ : α ≃ₜ β) (h₂ : γ ≃ₜ δ) :
(h₁.prod_congr h₂).symm = h₁.symm.prod_congr h₂.symm := rfl
@[simp] lemma coe_prod_congr (h₁ : α ≃ₜ β) (h₂ : γ ≃ₜ δ) :
⇑(h₁.prod_congr h₂) = prod.map h₁ h₂ := rfl
section
variables (α β γ)
/-- `α × β` is homeomorphic to `β × α`. -/
def prod_comm : α × β ≃ₜ β × α :=
{ continuous_to_fun := continuous_snd.prod_mk continuous_fst,
continuous_inv_fun := continuous_snd.prod_mk continuous_fst,
to_equiv := equiv.prod_comm α β }
@[simp] lemma prod_comm_symm : (prod_comm α β).symm = prod_comm β α := rfl
@[simp] lemma coe_prod_comm : ⇑(prod_comm α β) = prod.swap := rfl
/-- `(α × β) × γ` is homeomorphic to `α × (β × γ)`. -/
def prod_assoc : (α × β) × γ ≃ₜ α × (β × γ) :=
{ continuous_to_fun := (continuous_fst.comp continuous_fst).prod_mk
((continuous_snd.comp continuous_fst).prod_mk continuous_snd),
continuous_inv_fun := (continuous_fst.prod_mk (continuous_fst.comp continuous_snd)).prod_mk
(continuous_snd.comp continuous_snd),
to_equiv := equiv.prod_assoc α β γ }
/-- `α × {*}` is homeomorphic to `α`. -/
@[simps apply {fully_applied := ff}]
def prod_punit : α × punit ≃ₜ α :=
{ to_equiv := equiv.prod_punit α,
continuous_to_fun := continuous_fst,
continuous_inv_fun := continuous_id.prod_mk continuous_const }
/-- `{*} × α` is homeomorphic to `α`. -/
def punit_prod : punit × α ≃ₜ α :=
(prod_comm _ _).trans (prod_punit _)
@[simp] lemma coe_punit_prod : ⇑(punit_prod α) = prod.snd := rfl
end
/-- `ulift α` is homeomorphic to `α`. -/
def {u v} ulift {α : Type u} [topological_space α] : ulift.{v u} α ≃ₜ α :=
{ continuous_to_fun := continuous_ulift_down,
continuous_inv_fun := continuous_ulift_up,
to_equiv := equiv.ulift }
section distrib
/-- `(α ⊕ β) × γ` is homeomorphic to `α × γ ⊕ β × γ`. -/
def sum_prod_distrib : (α ⊕ β) × γ ≃ₜ α × γ ⊕ β × γ :=
homeomorph.symm $ homeomorph_of_continuous_open (equiv.sum_prod_distrib α β γ).symm
((continuous_inl.prod_map continuous_id).sum_elim (continuous_inr.prod_map continuous_id)) $
is_open_map_sum (open_embedding_inl.is_open_map.prod is_open_map.id)
(open_embedding_inr.is_open_map.prod is_open_map.id)
/-- `α × (β ⊕ γ)` is homeomorphic to `α × β ⊕ α × γ`. -/
def prod_sum_distrib : α × (β ⊕ γ) ≃ₜ α × β ⊕ α × γ :=
(prod_comm _ _).trans $
sum_prod_distrib.trans $
sum_congr (prod_comm _ _) (prod_comm _ _)
variables {ι : Type*} {σ : ι → Type*} [Π i, topological_space (σ i)]
/-- `(Σ i, σ i) × β` is homeomorphic to `Σ i, (σ i × β)`. -/
def sigma_prod_distrib : ((Σ i, σ i) × β) ≃ₜ (Σ i, (σ i × β)) :=
homeomorph.symm $
homeomorph_of_continuous_open (equiv.sigma_prod_distrib σ β).symm
(continuous_sigma $ λ i,
(continuous_sigma_mk.comp continuous_fst).prod_mk continuous_snd)
(is_open_map_sigma $ λ i,
(open_embedding_sigma_mk.prod open_embedding_id).is_open_map)
end distrib
/-- If `ι` has a unique element, then `ι → α` is homeomorphic to `α`. -/
@[simps { fully_applied := ff }]
def fun_unique (ι α : Type*) [unique ι] [topological_space α] : (ι → α) ≃ₜ α :=
{ to_equiv := equiv.fun_unique ι α,
continuous_to_fun := continuous_apply _,
continuous_inv_fun := continuous_pi (λ _, continuous_id) }
/-- Homeomorphism between dependent functions `Π i : fin 2, α i` and `α 0 × α 1`. -/
@[simps { fully_applied := ff }]
def {u} pi_fin_two (α : fin 2 → Type u) [Π i, topological_space (α i)] : (Π i, α i) ≃ₜ α 0 × α 1 :=
{ to_equiv := pi_fin_two_equiv α,
continuous_to_fun := (continuous_apply 0).prod_mk (continuous_apply 1),
continuous_inv_fun := continuous_pi $ fin.forall_fin_two.2 ⟨continuous_fst, continuous_snd⟩ }
/-- Homeomorphism between `α² = fin 2 → α` and `α × α`. -/
@[simps { fully_applied := ff }] def fin_two_arrow : (fin 2 → α) ≃ₜ α × α :=
{ to_equiv := fin_two_arrow_equiv α, .. pi_fin_two (λ _, α) }
/--
A subset of a topological space is homeomorphic to its image under a homeomorphism.
-/
@[simps] def image (e : α ≃ₜ β) (s : set α) : s ≃ₜ e '' s :=
{ continuous_to_fun := by continuity!,
continuous_inv_fun := by continuity!,
to_equiv := e.to_equiv.image s, }
/-- `set.univ α` is homeomorphic to `α`. -/
@[simps { fully_applied := ff }]
def set.univ (α : Type*) [topological_space α] : (univ : set α) ≃ₜ α :=
{ to_equiv := equiv.set.univ α,
continuous_to_fun := continuous_subtype_coe,
continuous_inv_fun := continuous_subtype_mk _ continuous_id }
end homeomorph
/-- An inducing equiv between topological spaces is a homeomorphism. -/
@[simps] def equiv.to_homeomorph_of_inducing [topological_space α] [topological_space β] (f : α ≃ β)
(hf : inducing f) :
α ≃ₜ β :=
{ continuous_to_fun := hf.continuous,
continuous_inv_fun := hf.continuous_iff.2 $ by simpa using continuous_id,
.. f }
namespace continuous
variables [topological_space α] [topological_space β]
lemma continuous_symm_of_equiv_compact_to_t2 [compact_space α] [t2_space β]
{f : α ≃ β} (hf : continuous f) : continuous f.symm :=
begin
rw continuous_iff_is_closed,
intros C hC,
have hC' : is_closed (f '' C) := (hC.is_compact.image hf).is_closed,
rwa equiv.image_eq_preimage at hC',
end
/-- Continuous equivalences from a compact space to a T2 space are homeomorphisms.
This is not true when T2 is weakened to T1
(see `continuous.homeo_of_equiv_compact_to_t2.t1_counterexample`). -/
@[simps]
def homeo_of_equiv_compact_to_t2 [compact_space α] [t2_space β]
{f : α ≃ β} (hf : continuous f) : α ≃ₜ β :=
{ continuous_to_fun := hf,
continuous_inv_fun := hf.continuous_symm_of_equiv_compact_to_t2,
..f }
end continuous
|