Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 20,202 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/-
Copyright (c) 2019 Reid Barton. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Patrick Massot, Sébastien Gouëzel, Zhouhang Zhou, Reid Barton
-/
import logic.equiv.fin
import topology.dense_embedding
import topology.support

/-!
# Homeomorphisms

This file defines homeomorphisms between two topological spaces. They are bijections with both
directions continuous. We denote homeomorphisms with the notation `≃ₜ`.

# Main definitions

* `homeomorph α β`: The type of homeomorphisms from `α` to `β`.
  This type can be denoted using the following notation: `α ≃ₜ β`.

# Main results

* Pretty much every topological property is preserved under homeomorphisms.
* `homeomorph.homeomorph_of_continuous_open`: A continuous bijection that is
  an open map is a homeomorphism.

-/

open set filter
open_locale topological_space

variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}

/-- Homeomorphism between `α` and `β`, also called topological isomorphism -/
@[nolint has_inhabited_instance] -- not all spaces are homeomorphic to each other
structure homeomorph (α : Type*) (β : Type*) [topological_space α] [topological_space β]
  extends α ≃ β :=
(continuous_to_fun  : continuous to_fun . tactic.interactive.continuity')
(continuous_inv_fun : continuous inv_fun . tactic.interactive.continuity')

infix ` ≃ₜ `:25 := homeomorph

namespace homeomorph
variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]

instance : has_coe_to_fun (α ≃ₜ β) (λ _, α → β) := ⟨λe, e.to_equiv⟩

@[simp] lemma homeomorph_mk_coe (a : equiv α β) (b c) :
  ((homeomorph.mk a b c) : α → β) = a :=
rfl

/-- Inverse of a homeomorphism. -/
protected def symm (h : α ≃ₜ β) : β ≃ₜ α :=
{ continuous_to_fun  := h.continuous_inv_fun,
  continuous_inv_fun := h.continuous_to_fun,
  to_equiv := h.to_equiv.symm }

/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
  because it is a composition of multiple projections. -/
def simps.apply (h : α ≃ₜ β) : α → β := h
/-- See Note [custom simps projection] -/
def simps.symm_apply (h : α ≃ₜ β) : β → α := h.symm

initialize_simps_projections homeomorph
  (to_equiv_to_fun → apply, to_equiv_inv_fun → symm_apply, -to_equiv)

@[simp] lemma coe_to_equiv (h : α ≃ₜ β) : ⇑h.to_equiv = h := rfl
@[simp] lemma coe_symm_to_equiv (h : α ≃ₜ β) : ⇑h.to_equiv.symm = h.symm := rfl

lemma to_equiv_injective : function.injective (to_equiv : α ≃ₜ β → α ≃ β)
| ⟨e, h₁, h₂⟩ ⟨e', h₁', h₂'⟩ rfl := rfl

@[ext] lemma ext {h h' : α ≃ₜ β} (H : ∀ x, h x = h' x) : h = h' :=
to_equiv_injective $ equiv.ext H

/-- Identity map as a homeomorphism. -/
@[simps apply {fully_applied := ff}]
protected def refl (α : Type*) [topological_space α] : α ≃ₜ α :=
{ continuous_to_fun := continuous_id,
  continuous_inv_fun := continuous_id,
  to_equiv := equiv.refl α }

/-- Composition of two homeomorphisms. -/
protected def trans (h₁ : α ≃ₜ β) (h₂ : β ≃ₜ γ) : α ≃ₜ γ :=
{ continuous_to_fun  := h₂.continuous_to_fun.comp h₁.continuous_to_fun,
  continuous_inv_fun := h₁.continuous_inv_fun.comp h₂.continuous_inv_fun,
  to_equiv := equiv.trans h₁.to_equiv h₂.to_equiv }

@[simp] lemma trans_apply (h₁ : α ≃ₜ β) (h₂ : β ≃ₜ γ) (a : α) : h₁.trans h₂ a = h₂ (h₁ a) := rfl

@[simp] lemma homeomorph_mk_coe_symm (a : equiv α β) (b c) :
  ((homeomorph.mk a b c).symm : β → α) = a.symm :=
rfl

@[simp] lemma refl_symm : (homeomorph.refl α).symm = homeomorph.refl α := rfl

@[continuity]
protected lemma continuous (h : α ≃ₜ β) : continuous h := h.continuous_to_fun

@[continuity] -- otherwise `by continuity` can't prove continuity of `h.to_equiv.symm`
protected lemma continuous_symm (h : α ≃ₜ β) : continuous (h.symm) := h.continuous_inv_fun

@[simp] lemma apply_symm_apply (h : α ≃ₜ β) (x : β) : h (h.symm x) = x :=
h.to_equiv.apply_symm_apply x

@[simp] lemma symm_apply_apply (h : α ≃ₜ β) (x : α) : h.symm (h x) = x :=
h.to_equiv.symm_apply_apply x

protected lemma bijective (h : α ≃ₜ β) : function.bijective h := h.to_equiv.bijective
protected lemma injective (h : α ≃ₜ β) : function.injective h := h.to_equiv.injective
protected lemma surjective (h : α ≃ₜ β) : function.surjective h := h.to_equiv.surjective

/-- Change the homeomorphism `f` to make the inverse function definitionally equal to `g`. -/
def change_inv (f : α ≃ₜ β) (g : β → α) (hg : function.right_inverse g f) : α ≃ₜ β :=
have g = f.symm, from funext (λ x, calc g x = f.symm (f (g x)) : (f.left_inv (g x)).symm
                                        ... = f.symm x : by rw hg x),
{ to_fun := f,
  inv_fun := g,
  left_inv := by convert f.left_inv,
  right_inv := by convert f.right_inv,
  continuous_to_fun := f.continuous,
  continuous_inv_fun := by convert f.symm.continuous }

@[simp] lemma symm_comp_self (h : α ≃ₜ β) : ⇑h.symm ∘ ⇑h = id :=
funext h.symm_apply_apply

@[simp] lemma self_comp_symm (h : α ≃ₜ β) : ⇑h ∘ ⇑h.symm = id :=
funext h.apply_symm_apply

@[simp] lemma range_coe (h : α ≃ₜ β) : range h = univ :=
h.surjective.range_eq

lemma image_symm (h : α ≃ₜ β) : image h.symm = preimage h :=
funext h.symm.to_equiv.image_eq_preimage

lemma preimage_symm (h : α ≃ₜ β) : preimage h.symm = image h :=
(funext h.to_equiv.image_eq_preimage).symm

@[simp] lemma image_preimage (h : α ≃ₜ β) (s : set β) : h '' (h ⁻¹' s) = s :=
h.to_equiv.image_preimage s

@[simp] lemma preimage_image (h : α ≃ₜ β) (s : set α) : h ⁻¹' (h '' s) = s :=
h.to_equiv.preimage_image s

protected lemma inducing (h : α ≃ₜ β) : inducing h :=
inducing_of_inducing_compose h.continuous h.symm.continuous $
  by simp only [symm_comp_self, inducing_id]

lemma induced_eq (h : α ≃ₜ β) : topological_space.induced h ‹_› = ‹_› := h.inducing.1.symm

protected lemma quotient_map (h : α ≃ₜ β) : quotient_map h :=
quotient_map.of_quotient_map_compose h.symm.continuous h.continuous $
  by simp only [self_comp_symm, quotient_map.id]

lemma coinduced_eq (h : α ≃ₜ β) : topological_space.coinduced h ‹_› = ‹_› :=
h.quotient_map.2.symm

protected lemma embedding (h : α ≃ₜ β) : embedding h :=
⟨h.inducing, h.injective⟩

/-- Homeomorphism given an embedding. -/
noncomputable def of_embedding (f : α → β) (hf : embedding f) : α ≃ₜ (set.range f) :=
{ continuous_to_fun := continuous_subtype_mk _ hf.continuous,
  continuous_inv_fun := by simp [hf.continuous_iff, continuous_subtype_coe],
  .. equiv.of_injective f hf.inj }

protected lemma second_countable_topology [topological_space.second_countable_topology β]
  (h : α ≃ₜ β) :
  topological_space.second_countable_topology α :=
h.inducing.second_countable_topology

lemma compact_image {s : set α} (h : α ≃ₜ β) : is_compact (h '' s) ↔ is_compact s :=
h.embedding.is_compact_iff_is_compact_image.symm

lemma compact_preimage {s : set β} (h : α ≃ₜ β) : is_compact (h ⁻¹' s) ↔ is_compact s :=
by rw ← image_symm; exact h.symm.compact_image

@[simp] lemma comap_cocompact (h : α ≃ₜ β) : comap h (cocompact β) = cocompact α :=
(comap_cocompact_le h.continuous).antisymm $
  (has_basis_cocompact.le_basis_iff (has_basis_cocompact.comap h)).2 $ λ K hK,
    ⟨h ⁻¹' K, h.compact_preimage.2 hK, subset.rfl⟩

@[simp] lemma map_cocompact (h : α ≃ₜ β) : map h (cocompact α) = cocompact β :=
by rw [← h.comap_cocompact, map_comap_of_surjective h.surjective]

protected lemma compact_space [compact_space α] (h : α ≃ₜ β) : compact_space β :=
{ compact_univ := by { rw [← image_univ_of_surjective h.surjective, h.compact_image],
    apply compact_space.compact_univ } }

protected lemma t0_space [t0_space α] (h : α ≃ₜ β) : t0_space β :=
h.symm.embedding.t0_space

protected lemma t1_space [t1_space α] (h : α ≃ₜ β) : t1_space β :=
h.symm.embedding.t1_space

protected lemma t2_space [t2_space α] (h : α ≃ₜ β) : t2_space β :=
h.symm.embedding.t2_space

protected lemma t3_space [t3_space α] (h : α ≃ₜ β) : t3_space β :=
h.symm.embedding.t3_space

protected lemma dense_embedding (h : α ≃ₜ β) : dense_embedding h :=
{ dense   := h.surjective.dense_range,
  .. h.embedding }

@[simp] lemma is_open_preimage (h : α ≃ₜ β) {s : set β} : is_open (h ⁻¹' s) ↔ is_open s :=
h.quotient_map.is_open_preimage

@[simp] lemma is_open_image (h : α ≃ₜ β) {s : set α} : is_open (h '' s) ↔ is_open s :=
by rw [← preimage_symm, is_open_preimage]

protected lemma is_open_map (h : α ≃ₜ β) : is_open_map h := λ s, h.is_open_image.2

@[simp] lemma is_closed_preimage (h : α ≃ₜ β) {s : set β} : is_closed (h ⁻¹' s) ↔ is_closed s :=
by simp only [← is_open_compl_iff, ← preimage_compl, is_open_preimage]

@[simp] lemma is_closed_image (h : α ≃ₜ β) {s : set α} : is_closed (h '' s) ↔ is_closed s :=
by rw [← preimage_symm, is_closed_preimage]

protected lemma is_closed_map (h : α ≃ₜ β) : is_closed_map h := λ s, h.is_closed_image.2

protected lemma open_embedding (h : α ≃ₜ β) : open_embedding h :=
open_embedding_of_embedding_open h.embedding h.is_open_map

protected lemma closed_embedding (h : α ≃ₜ β) : closed_embedding h :=
closed_embedding_of_embedding_closed h.embedding h.is_closed_map

protected lemma normal_space [normal_space α] (h : α ≃ₜ β) : normal_space β :=
h.symm.closed_embedding.normal_space

lemma preimage_closure (h : α ≃ₜ β) (s : set β) : h ⁻¹' (closure s) = closure (h ⁻¹' s) :=
h.is_open_map.preimage_closure_eq_closure_preimage h.continuous _

lemma image_closure (h : α ≃ₜ β) (s : set α) : h '' (closure s) = closure (h '' s) :=
by rw [← preimage_symm, preimage_closure]

lemma preimage_interior (h : α ≃ₜ β) (s : set β) : h⁻¹' (interior s) = interior (h ⁻¹' s) :=
h.is_open_map.preimage_interior_eq_interior_preimage h.continuous _

lemma image_interior (h : α ≃ₜ β) (s : set α) : h '' (interior s) = interior (h '' s) :=
by rw [← preimage_symm, preimage_interior]

lemma preimage_frontier (h : α ≃ₜ β) (s : set β) : h ⁻¹' (frontier s) = frontier (h ⁻¹' s) :=
h.is_open_map.preimage_frontier_eq_frontier_preimage h.continuous _

@[to_additive]
lemma _root_.has_compact_mul_support.comp_homeomorph {M} [has_one M] {f : β → M}
  (hf : has_compact_mul_support f) (φ : α ≃ₜ β) : has_compact_mul_support (f ∘ φ) :=
hf.comp_closed_embedding φ.closed_embedding

@[simp] lemma map_nhds_eq (h : α ≃ₜ β) (x : α) : map h (𝓝 x) = 𝓝 (h x) :=
h.embedding.map_nhds_of_mem _ (by simp)

lemma symm_map_nhds_eq (h : α ≃ₜ β) (x : α) : map h.symm (𝓝 (h x)) = 𝓝 x :=
by rw [h.symm.map_nhds_eq, h.symm_apply_apply]

lemma nhds_eq_comap (h : α ≃ₜ β) (x : α) : 𝓝 x = comap h (𝓝 (h x)) :=
h.embedding.to_inducing.nhds_eq_comap x

@[simp] lemma comap_nhds_eq (h : α ≃ₜ β) (y : β) : comap h (𝓝 y) = 𝓝 (h.symm y) :=
by rw [h.nhds_eq_comap, h.apply_symm_apply]

/-- If an bijective map `e : α ≃ β` is continuous and open, then it is a homeomorphism. -/
def homeomorph_of_continuous_open (e : α ≃ β) (h₁ : continuous e) (h₂ : is_open_map e) :
  α ≃ₜ β :=
{ continuous_to_fun := h₁,
  continuous_inv_fun := begin
    rw continuous_def,
    intros s hs,
    convert ← h₂ s hs using 1,
    apply e.image_eq_preimage
  end,
  to_equiv := e }

@[simp] lemma comp_continuous_on_iff (h : α ≃ₜ β) (f : γ → α) (s : set γ) :
  continuous_on (h ∘ f) s ↔ continuous_on f s :=
h.inducing.continuous_on_iff.symm

@[simp] lemma comp_continuous_iff (h : α ≃ₜ β) {f : γ → α} :
  continuous (h ∘ f) ↔ continuous f :=
h.inducing.continuous_iff.symm

@[simp] lemma comp_continuous_iff' (h : α ≃ₜ β) {f : β → γ} :
  continuous (f ∘ h) ↔ continuous f :=
h.quotient_map.continuous_iff.symm

lemma comp_continuous_at_iff (h : α ≃ₜ β) (f : γ → α) (x : γ) :
  continuous_at (h ∘ f) x ↔ continuous_at f x :=
h.inducing.continuous_at_iff.symm

lemma comp_continuous_at_iff' (h : α ≃ₜ β) (f : β → γ) (x : α) :
  continuous_at (f ∘ h) x ↔ continuous_at f (h x) :=
h.inducing.continuous_at_iff' (by simp)

lemma comp_continuous_within_at_iff (h : α ≃ₜ β) (f : γ → α) (s : set γ) (x : γ) :
  continuous_within_at f s x ↔ continuous_within_at (h ∘ f) s x :=
h.inducing.continuous_within_at_iff

@[simp] lemma comp_is_open_map_iff (h : α ≃ₜ β) {f : γ → α} :
  is_open_map (h ∘ f) ↔ is_open_map f :=
begin
  refine ⟨_, λ hf, h.is_open_map.comp hf⟩,
  intros hf,
  rw [← function.comp.left_id f, ← h.symm_comp_self, function.comp.assoc],
  exact h.symm.is_open_map.comp hf,
end

@[simp] lemma comp_is_open_map_iff' (h : α ≃ₜ β) {f : β → γ} :
  is_open_map (f ∘ h) ↔ is_open_map f :=
begin
  refine ⟨_, λ hf, hf.comp h.is_open_map⟩,
  intros hf,
  rw [← function.comp.right_id f, ← h.self_comp_symm, ← function.comp.assoc],
  exact hf.comp h.symm.is_open_map,
end

/-- If two sets are equal, then they are homeomorphic. -/
def set_congr {s t : set α} (h : s = t) : s ≃ₜ t :=
{ continuous_to_fun := continuous_subtype_mk _ continuous_subtype_val,
  continuous_inv_fun := continuous_subtype_mk _ continuous_subtype_val,
  to_equiv := equiv.set_congr h }

/-- Sum of two homeomorphisms. -/
def sum_congr (h₁ : α ≃ₜ β) (h₂ : γ ≃ₜ δ) : α ⊕ γ ≃ₜ β ⊕ δ :=
{ continuous_to_fun  := h₁.continuous.sum_map h₂.continuous,
  continuous_inv_fun := h₁.symm.continuous.sum_map h₂.symm.continuous,
  to_equiv := h₁.to_equiv.sum_congr h₂.to_equiv }

/-- Product of two homeomorphisms. -/
def prod_congr (h₁ : α ≃ₜ β) (h₂ : γ ≃ₜ δ) : α × γ ≃ₜ β × δ :=
{ continuous_to_fun  := (h₁.continuous.comp continuous_fst).prod_mk
    (h₂.continuous.comp continuous_snd),
  continuous_inv_fun := (h₁.symm.continuous.comp continuous_fst).prod_mk
    (h₂.symm.continuous.comp continuous_snd),
  to_equiv := h₁.to_equiv.prod_congr h₂.to_equiv }

@[simp] lemma prod_congr_symm (h₁ : α ≃ₜ β) (h₂ : γ ≃ₜ δ) :
  (h₁.prod_congr h₂).symm = h₁.symm.prod_congr h₂.symm := rfl

@[simp] lemma coe_prod_congr (h₁ : α ≃ₜ β) (h₂ : γ ≃ₜ δ) :
  ⇑(h₁.prod_congr h₂) = prod.map h₁ h₂ := rfl

section
variables (α β γ)

/-- `α × β` is homeomorphic to `β × α`. -/
def prod_comm : α × β ≃ₜ β × α :=
{ continuous_to_fun  := continuous_snd.prod_mk continuous_fst,
  continuous_inv_fun := continuous_snd.prod_mk continuous_fst,
  to_equiv := equiv.prod_comm α β }

@[simp] lemma prod_comm_symm : (prod_comm α β).symm = prod_comm β α := rfl
@[simp] lemma coe_prod_comm : ⇑(prod_comm α β) = prod.swap := rfl

/-- `(α × β) × γ` is homeomorphic to `α × (β × γ)`. -/
def prod_assoc : (α × β) × γ ≃ₜ α × (β × γ) :=
{ continuous_to_fun  := (continuous_fst.comp continuous_fst).prod_mk
    ((continuous_snd.comp continuous_fst).prod_mk continuous_snd),
  continuous_inv_fun := (continuous_fst.prod_mk (continuous_fst.comp continuous_snd)).prod_mk
    (continuous_snd.comp continuous_snd),
  to_equiv := equiv.prod_assoc α β γ }

/-- `α × {*}` is homeomorphic to `α`. -/
@[simps apply {fully_applied := ff}]
def prod_punit : α × punit ≃ₜ α :=
{ to_equiv := equiv.prod_punit α,
  continuous_to_fun := continuous_fst,
  continuous_inv_fun := continuous_id.prod_mk continuous_const }

/-- `{*} × α` is homeomorphic to `α`. -/
def punit_prod : punit × α ≃ₜ α :=
(prod_comm _ _).trans (prod_punit _)

@[simp] lemma coe_punit_prod : ⇑(punit_prod α) = prod.snd := rfl

end

/-- `ulift α` is homeomorphic to `α`. -/
def {u v} ulift {α : Type u} [topological_space α] : ulift.{v u} α ≃ₜ α :=
{ continuous_to_fun := continuous_ulift_down,
  continuous_inv_fun := continuous_ulift_up,
  to_equiv := equiv.ulift }

section distrib

/-- `(α ⊕ β) × γ` is homeomorphic to `α × γ ⊕ β × γ`. -/
def sum_prod_distrib : (α ⊕ β) × γ ≃ₜ α × γ ⊕ β × γ :=
homeomorph.symm $ homeomorph_of_continuous_open (equiv.sum_prod_distrib α β γ).symm
  ((continuous_inl.prod_map continuous_id).sum_elim (continuous_inr.prod_map continuous_id)) $
  is_open_map_sum (open_embedding_inl.is_open_map.prod is_open_map.id)
    (open_embedding_inr.is_open_map.prod is_open_map.id)

/-- `α × (β ⊕ γ)` is homeomorphic to `α × β ⊕ α × γ`. -/
def prod_sum_distrib : α × (β ⊕ γ) ≃ₜ α × β ⊕ α × γ :=
(prod_comm _ _).trans $
sum_prod_distrib.trans $
sum_congr (prod_comm _ _) (prod_comm _ _)

variables {ι : Type*} {σ : ι → Type*} [Π i, topological_space (σ i)]

/-- `(Σ i, σ i) × β` is homeomorphic to `Σ i, (σ i × β)`. -/
def sigma_prod_distrib : ((Σ i, σ i) × β) ≃ₜ (Σ i, (σ i × β)) :=
homeomorph.symm $
homeomorph_of_continuous_open (equiv.sigma_prod_distrib σ β).symm
  (continuous_sigma $ λ i,
    (continuous_sigma_mk.comp continuous_fst).prod_mk continuous_snd)
  (is_open_map_sigma $ λ i,
    (open_embedding_sigma_mk.prod open_embedding_id).is_open_map)

end distrib

/-- If `ι` has a unique element, then `ι → α` is homeomorphic to `α`. -/
@[simps { fully_applied := ff }]
def fun_unique (ι α : Type*) [unique ι] [topological_space α] : (ι → α) ≃ₜ α :=
{ to_equiv := equiv.fun_unique ι α,
  continuous_to_fun := continuous_apply _,
  continuous_inv_fun := continuous_pi (λ _, continuous_id) }

/-- Homeomorphism between dependent functions `Π i : fin 2, α i` and `α 0 × α 1`. -/
@[simps { fully_applied := ff }]
def {u} pi_fin_two (α : fin 2Type u) [Π i, topological_space (α i)] : (Π i, α i) ≃ₜ α 0 × α 1 :=
{ to_equiv := pi_fin_two_equiv α,
  continuous_to_fun := (continuous_apply 0).prod_mk (continuous_apply 1),
  continuous_inv_fun := continuous_pi $ fin.forall_fin_two.2 ⟨continuous_fst, continuous_snd⟩ }

/-- Homeomorphism between `α² = fin 2 → α` and `α × α`. -/
@[simps { fully_applied := ff }] def fin_two_arrow : (fin 2 → α) ≃ₜ α × α :=
{ to_equiv := fin_two_arrow_equiv α, ..  pi_fin_two (λ _, α) }

/--
A subset of a topological space is homeomorphic to its image under a homeomorphism.
-/
@[simps] def image (e : α ≃ₜ β) (s : set α) : s ≃ₜ e '' s :=
{ continuous_to_fun := by continuity!,
  continuous_inv_fun := by continuity!,
  to_equiv := e.to_equiv.image s, }

/-- `set.univ α` is homeomorphic to `α`. -/
@[simps { fully_applied := ff }]
def set.univ (α : Type*) [topological_space α] : (univ : set α) ≃ₜ α :=
{ to_equiv := equiv.set.univ α,
  continuous_to_fun := continuous_subtype_coe,
  continuous_inv_fun := continuous_subtype_mk _ continuous_id }

end homeomorph

/-- An inducing equiv between topological spaces is a homeomorphism. -/
@[simps] def equiv.to_homeomorph_of_inducing [topological_space α] [topological_space β] (f : α ≃ β)
  (hf : inducing f) :
  α ≃ₜ β :=
{ continuous_to_fun := hf.continuous,
  continuous_inv_fun := hf.continuous_iff.2 $ by simpa using continuous_id,
  .. f }

namespace continuous
variables [topological_space α] [topological_space β]

lemma continuous_symm_of_equiv_compact_to_t2 [compact_space α] [t2_space β]
  {f : α ≃ β} (hf : continuous f) : continuous f.symm :=
begin
  rw continuous_iff_is_closed,
  intros C hC,
  have hC' : is_closed (f '' C) := (hC.is_compact.image hf).is_closed,
  rwa equiv.image_eq_preimage at hC',
end

/-- Continuous equivalences from a compact space to a T2 space are homeomorphisms.

This is not true when T2 is weakened to T1
(see `continuous.homeo_of_equiv_compact_to_t2.t1_counterexample`). -/
@[simps]
def homeo_of_equiv_compact_to_t2 [compact_space α] [t2_space β]
  {f : α ≃ β} (hf : continuous f) : α ≃ₜ β :=
{ continuous_to_fun := hf,
  continuous_inv_fun := hf.continuous_symm_of_equiv_compact_to_t2,
  ..f }

end continuous