Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 18,062 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
/-
Copyright (c) 2021 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import topology.subset_properties
import topology.connected
import topology.algebra.monoid
import topology.continuous_function.basic
import tactic.tfae
import tactic.fin_cases

/-!
# Locally constant functions

This file sets up the theory of locally constant function from a topological space to a type.

## Main definitions and constructions

* `is_locally_constant f` : a map `f : X → Y` where `X` is a topological space is locally
                            constant if every set in `Y` has an open preimage.
* `locally_constant X Y` : the type of locally constant maps from `X` to `Y`
* `locally_constant.map` : push-forward of locally constant maps
* `locally_constant.comap` : pull-back of locally constant maps

-/

variables {X Y Z α : Type*} [topological_space X]

open set filter
open_locale topological_space

/-- A function between topological spaces is locally constant if the preimage of any set is open. -/
def is_locally_constant (f : X → Y) : Prop := ∀ s : set Y, is_open (f ⁻¹' s)

namespace is_locally_constant

protected lemma tfae (f : X → Y) :
  tfae [is_locally_constant f,
    ∀ x, ∀ᶠ x' in 𝓝 x, f x' = f x,
    ∀ x, is_open {x' | f x' = f x},
    ∀ y, is_open (f ⁻¹' {y}),
    ∀ x, ∃ (U : set X) (hU : is_open U) (hx : x ∈ U), ∀ x' ∈ U, f x' = f x] :=
begin
  tfae_have : 14, from λ h y, h {y},
  tfae_have : 43, from λ h x, h (f x),
  tfae_have : 32, from λ h x, is_open.mem_nhds (h x) rfl,
  tfae_have : 25,
  { intros h x,
    rcases mem_nhds_iff.1 (h x) with ⟨U, eq, hU, hx⟩,
    exact ⟨U, hU, hx, eq⟩ },
  tfae_have : 51,
  { intros h s,
    refine is_open_iff_forall_mem_open.2 (λ x hx, _),
    rcases h x with ⟨U, hU, hxU, eq⟩,
    exact ⟨U, λ x' hx', mem_preimage.2 $ (eq x' hx').symm ▸ hx, hU, hxU⟩ },
  tfae_finish
end

@[nontriviality] lemma of_discrete [discrete_topology X] (f : X → Y) :
  is_locally_constant f :=
λ s, is_open_discrete _

lemma is_open_fiber {f : X → Y} (hf : is_locally_constant f) (y : Y) :
  is_open {x | f x = y} :=
hf {y}

lemma is_closed_fiber {f : X → Y} (hf : is_locally_constant f) (y : Y) :
  is_closed {x | f x = y} :=
⟨hf {y}ᶜ⟩

lemma is_clopen_fiber {f : X → Y} (hf : is_locally_constant f) (y : Y) :
  is_clopen {x | f x = y} :=
⟨is_open_fiber hf _, is_closed_fiber hf _⟩

lemma iff_exists_open (f : X → Y) :
  is_locally_constant f ↔ ∀ x, ∃ (U : set X) (hU : is_open U) (hx : x ∈ U), ∀ x' ∈ U, f x' = f x :=
(is_locally_constant.tfae f).out 0 4

lemma iff_eventually_eq (f : X → Y) :
  is_locally_constant f ↔ ∀ x, ∀ᶠ y in 𝓝 x, f y = f x :=
(is_locally_constant.tfae f).out 0 1

lemma exists_open {f : X → Y} (hf : is_locally_constant f) (x : X) :
  ∃ (U : set X) (hU : is_open U) (hx : x ∈ U), ∀ x' ∈ U, f x' = f x :=
(iff_exists_open f).1 hf x

protected lemma eventually_eq {f : X → Y} (hf : is_locally_constant f) (x : X) :
  ∀ᶠ y in 𝓝 x, f y = f x :=
(iff_eventually_eq f).1 hf x

protected lemma continuous [topological_space Y] {f : X → Y} (hf : is_locally_constant f) :
  continuous f :=
⟨λ U hU, hf _⟩

lemma iff_continuous {_ : topological_space Y} [discrete_topology Y] (f : X → Y) :
  is_locally_constant f ↔ continuous f :=
⟨is_locally_constant.continuous, λ h s, h.is_open_preimage s (is_open_discrete _)⟩

lemma iff_continuous_bot (f : X → Y) :
  is_locally_constant f ↔ @continuous X Y _ ⊥ f :=
iff_continuous f

lemma of_constant (f : X → Y) (h : ∀ x y, f x = f y) :
  is_locally_constant f :=
(iff_eventually_eq f).2 $ λ x, eventually_of_forall $ λ x', h _ _

lemma const (y : Y) : is_locally_constant (function.const X y) :=
of_constant _ $ λ _ _, rfl

lemma comp {f : X → Y} (hf : is_locally_constant f) (g : Y → Z) :
  is_locally_constant (g ∘ f) :=
λ s, by { rw set.preimage_comp, exact hf _ }

lemma prod_mk {Y'} {f : X → Y} {f' : X → Y'} (hf : is_locally_constant f)
  (hf' : is_locally_constant f') :
  is_locally_constant (λ x, (f x, f' x)) :=
(iff_eventually_eq _).2 $ λ x, (hf.eventually_eq x).mp $ (hf'.eventually_eq x).mono $
  λ x' hf' hf, prod.ext hf hf'

lemma comp₂ {Y₁ Y₂ Z : Type*} {f : X → Y₁} {g : X → Y₂}
  (hf : is_locally_constant f) (hg : is_locally_constant g) (h : Y₁ → Y₂ → Z) :
  is_locally_constant (λ x, h (f x) (g x)) :=
(hf.prod_mk hg).comp (λ x : Y₁ × Y₂, h x.1 x.2)

lemma comp_continuous [topological_space Y] {g : Y → Z} {f : X → Y}
  (hg : is_locally_constant g) (hf : continuous f) :
  is_locally_constant (g ∘ f) :=
λ s, by { rw set.preimage_comp, exact hf.is_open_preimage _ (hg _) }

/-- A locally constant function is constant on any preconnected set. -/
lemma apply_eq_of_is_preconnected {f : X → Y} (hf : is_locally_constant f)
  {s : set X} (hs : is_preconnected s) {x y : X} (hx : x ∈ s) (hy : y ∈ s) :
  f x = f y :=
begin
  let U := f ⁻¹' {f y},
  suffices : x ∉ Uᶜ, from not_not.1 this,
  intro hxV,
  specialize hs U Uᶜ (hf {f y}) (hf {f y}ᶜ) _ ⟨y, ⟨hy, rfl⟩⟩ ⟨x, ⟨hx, hxV⟩⟩,
  { simp only [union_compl_self, subset_univ] },
  { simpa only [inter_empty, not_nonempty_empty, inter_compl_self] using hs }
end

lemma iff_is_const [preconnected_space X] {f : X → Y} :
  is_locally_constant f ↔ ∀ x y, f x = f y :=
⟨λ h x y, h.apply_eq_of_is_preconnected is_preconnected_univ trivial trivial, of_constant _⟩

lemma range_finite [compact_space X] {f : X → Y} (hf : is_locally_constant f) :
  (set.range f).finite :=
begin
  letI : topological_space Y := ⊥,
  haveI : discrete_topology Y := ⟨rfl⟩,
  rw @iff_continuous X Y ‹_› ‹_› at hf,
  exact (is_compact_range hf).finite_of_discrete
end

@[to_additive] lemma one [has_one Y] : is_locally_constant (1 : X → Y) := const 1

@[to_additive] lemma inv [has_inv Y] ⦃f : X → Y⦄ (hf : is_locally_constant f) :
  is_locally_constant f⁻¹ :=
hf.comp (λ x, x⁻¹)

@[to_additive]
lemma mul [has_mul Y] ⦃f g : X → Y⦄ (hf : is_locally_constant f) (hg : is_locally_constant g) :
  is_locally_constant (f * g) :=
hf.comp₂ hg (*)

@[to_additive]
lemma div [has_div Y] ⦃f g : X → Y⦄ (hf : is_locally_constant f) (hg : is_locally_constant g) :
  is_locally_constant (f / g) :=
hf.comp₂ hg (/)

/-- If a composition of a function `f` followed by an injection `g` is locally
constant, then the locally constant property descends to `f`. -/
lemma desc {α β : Type*} (f : X → α) (g : α → β)
  (h : is_locally_constant (g ∘ f)) (inj : function.injective g) : is_locally_constant f :=
begin
  rw (is_locally_constant.tfae f).out 0 3,
  intros a,
  have : f ⁻¹' {a} = (g ∘ f) ⁻¹' { g a },
  { ext x,
    simp only [mem_singleton_iff, function.comp_app, mem_preimage],
    exact ⟨λ h, by rw h, λ h, inj h⟩ },
  rw this,
  apply h,
end

end is_locally_constant

/-- A (bundled) locally constant function from a topological space `X` to a type `Y`. -/
structure locally_constant (X Y : Type*) [topological_space X] :=
(to_fun : X → Y)
(is_locally_constant : is_locally_constant to_fun)

namespace locally_constant

instance [inhabited Y] : inhabited (locally_constant X Y) :=
⟨⟨_, is_locally_constant.const default⟩⟩

instance : has_coe_to_fun (locally_constant X Y) (λ _, X → Y) := ⟨locally_constant.to_fun⟩

initialize_simps_projections locally_constant (to_fun → apply)

@[simp] lemma to_fun_eq_coe (f : locally_constant X Y) : f.to_fun = f := rfl

@[simp] lemma coe_mk (f : X → Y) (h) : ⇑(⟨f, h⟩ : locally_constant X Y) = f := rfl

theorem congr_fun {f g : locally_constant X Y} (h : f = g) (x : X) : f x = g x :=
congr_arg (λ h : locally_constant X Y, h x) h

theorem congr_arg (f : locally_constant X Y) {x y : X} (h : x = y) : f x = f y :=
congr_arg (λ x : X, f x) h

theorem coe_injective : @function.injective (locally_constant X Y) (X → Y) coe_fn
| ⟨f, hf⟩ ⟨g, hg⟩ h := have f = g, from h, by subst f

@[simp, norm_cast] theorem coe_inj {f g : locally_constant X Y} : (f : X → Y) = g ↔ f = g :=
coe_injective.eq_iff

@[ext] theorem ext ⦃f g : locally_constant X Y⦄ (h : ∀ x, f x = g x) : f = g :=
coe_injective (funext h)

theorem ext_iff {f g : locally_constant X Y} : f = g ↔ ∀ x, f x = g x :=
⟨λ h x, h ▸ rfl, λ h, ext h⟩

section codomain_topological_space

variables [topological_space Y] (f : locally_constant X Y)

protected lemma continuous : continuous f := f.is_locally_constant.continuous

/-- We can turn a locally-constant function into a bundled `continuous_map`. -/
def to_continuous_map : C(X, Y) := ⟨f, f.continuous⟩

/-- As a shorthand, `locally_constant.to_continuous_map` is available as a coercion -/
instance : has_coe (locally_constant X Y) C(X, Y) := ⟨to_continuous_map⟩

@[simp] lemma to_continuous_map_eq_coe : f.to_continuous_map = f := rfl

@[simp] lemma coe_continuous_map : ((f : C(X, Y)) : X → Y) = (f : X → Y) := rfl

lemma to_continuous_map_injective :
  function.injective (to_continuous_map : locally_constant X Y → C(X, Y)) :=
λ _ _ h, ext (continuous_map.congr_fun h)

end codomain_topological_space

/-- The constant locally constant function on `X` with value `y : Y`. -/
def const (X : Type*) {Y : Type*} [topological_space X] (y : Y) :
  locally_constant X Y :=
⟨function.const X y, is_locally_constant.const _⟩

@[simp] lemma coe_const (y : Y) : (const X y : X → Y) = function.const X y := rfl

/-- The locally constant function to `fin 2` associated to a clopen set. -/
def of_clopen {X : Type*} [topological_space X] {U : set X} [∀ x, decidable (x ∈ U)]
  (hU : is_clopen U) : locally_constant X (fin 2) :=
{ to_fun := λ x, if x ∈ U then 0 else 1,
  is_locally_constant := begin
    rw (is_locally_constant.tfae (λ x, if x ∈ U then (0 : fin 2) else 1)).out 0 3,
    intros e,
    fin_cases e,
    { convert hU.1 using 1,
      ext,
      simp only [nat.one_ne_zero, mem_singleton_iff, fin.one_eq_zero_iff,
        mem_preimage, ite_eq_left_iff],
      tauto },
    { rw ← is_closed_compl_iff,
      convert hU.2,
      ext,
      simp }
  end }

@[simp] lemma of_clopen_fiber_zero {X : Type*} [topological_space X] {U : set X}
  [∀ x, decidable (x ∈ U)] (hU : is_clopen U) : of_clopen hU ⁻¹' ({0} : set (fin 2)) = U :=
begin
  ext,
  simp only [of_clopen, nat.one_ne_zero, mem_singleton_iff,
    fin.one_eq_zero_iff, coe_mk, mem_preimage, ite_eq_left_iff],
  tauto,
end

@[simp] lemma of_clopen_fiber_one {X : Type*} [topological_space X] {U : set X}
  [∀ x, decidable (x ∈ U)] (hU : is_clopen U) : of_clopen hU ⁻¹' ({1} : set (fin 2)) = Uᶜ :=
begin
  ext,
  simp only [of_clopen, nat.one_ne_zero, mem_singleton_iff, coe_mk,
    fin.zero_eq_one_iff, mem_preimage, ite_eq_right_iff,
    mem_compl_eq],
  tauto,
end

lemma locally_constant_eq_of_fiber_zero_eq {X : Type*} [topological_space X]
  (f g : locally_constant X (fin 2)) (h : f ⁻¹' ({0} : set (fin 2)) = g ⁻¹' {0}) : f = g :=
begin
  simp only [set.ext_iff, mem_singleton_iff, mem_preimage] at h,
  ext1 x,
  exact fin.fin_two_eq_of_eq_zero_iff (h x)
end

lemma range_finite [compact_space X] (f : locally_constant X Y) :
  (set.range f).finite :=
f.is_locally_constant.range_finite

lemma apply_eq_of_is_preconnected (f : locally_constant X Y) {s : set X} (hs : is_preconnected s)
  {x y : X} (hx : x ∈ s) (hy : y ∈ s) :
  f x = f y :=
f.is_locally_constant.apply_eq_of_is_preconnected hs hx hy

lemma apply_eq_of_preconnected_space [preconnected_space X] (f : locally_constant X Y) (x y : X) :
  f x = f y :=
f.is_locally_constant.apply_eq_of_is_preconnected is_preconnected_univ trivial trivial

lemma eq_const [preconnected_space X] (f : locally_constant X Y) (x : X) :
  f = const X (f x) :=
ext $ λ y, apply_eq_of_preconnected_space f _ _

lemma exists_eq_const [preconnected_space X] [nonempty Y] (f : locally_constant X Y) :
  ∃ y, f = const X y :=
begin
  rcases classical.em (nonempty X) with ⟨⟨x⟩⟩|hX,
  { exact ⟨f x, f.eq_const x⟩ },
  { exact ⟨classical.arbitrary Y, ext $ λ x, (hX ⟨x⟩).elim⟩ }
end

/-- Push forward of locally constant maps under any map, by post-composition. -/
def map (f : Y → Z) : locally_constant X Y → locally_constant X Z :=
λ g, ⟨f ∘ g, λ s, by { rw set.preimage_comp, apply g.is_locally_constant }⟩

@[simp] lemma map_apply (f : Y → Z) (g : locally_constant X Y) : ⇑(map f g) = f ∘ g := rfl

@[simp] lemma map_id : @map X Y Y _ id = id := by { ext, refl }

@[simp] lemma map_comp {Y₁ Y₂ Y₃ : Type*} (g : Y₂ → Y₃) (f : Y₁ → Y₂) :
  @map X _ _ _ g ∘ map f = map (g ∘ f) := by { ext, refl }

/-- Given a locally constant function to `α → β`, construct a family of locally constant
functions with values in β indexed by α. -/
def flip {X α β : Type*} [topological_space X] (f : locally_constant X (α → β)) (a : α) :
  locally_constant X β := f.map (λ f, f a)

/-- If α is finite, this constructs a locally constant function to `α → β` given a
family of locally constant functions with values in β indexed by α. -/
def unflip {X α β : Type*} [fintype α] [topological_space X] (f : α → locally_constant X β) :
  locally_constant X (α → β) :=
{ to_fun := λ x a, f a x,
  is_locally_constant := begin
    rw (is_locally_constant.tfae (λ x a, f a x)).out 0 3,
    intros g,
    have : (λ (x : X) (a : α), f a x) ⁻¹' {g} = ⋂ (a : α), (f a) ⁻¹' {g a}, by tidy,
    rw this,
    apply is_open_Inter,
    intros a,
    apply (f a).is_locally_constant,
  end }

@[simp]
lemma unflip_flip {X α β : Type*} [fintype α] [topological_space X]
  (f : locally_constant X (α → β)) : unflip f.flip = f := by { ext, refl }

@[simp]
lemma flip_unflip {X α β : Type*} [fintype α] [topological_space X]
  (f : α → locally_constant X β) : (unflip f).flip = f := by { ext, refl }

section comap

open_locale classical

variables [topological_space Y]

/-- Pull back of locally constant maps under any map, by pre-composition.

This definition only makes sense if `f` is continuous,
in which case it sends locally constant functions to their precomposition with `f`.
See also `locally_constant.coe_comap`. -/
noncomputable
def comap (f : X → Y) :
  locally_constant Y Z → locally_constant X Z :=
if hf : continuous f
then λ g, ⟨g ∘ f, g.is_locally_constant.comp_continuous hf⟩
else
begin
  by_cases H : nonempty X,
  { introsI g, exact const X (g $ f $ classical.arbitrary X) },
  { intro g, refine ⟨λ x, (H ⟨x⟩).elim, _⟩,
    intro s, rw is_open_iff_nhds, intro x, exact (H ⟨x⟩).elim }
end

@[simp] lemma coe_comap (f : X → Y) (g : locally_constant Y Z) (hf : continuous f) :
  ⇑(comap f g) = g ∘ f :=
by { rw [comap, dif_pos hf], refl }

@[simp] lemma comap_id : @comap X X Z _ _ id = id :=
by { ext, simp only [continuous_id, id.def, function.comp.right_id, coe_comap] }

lemma comap_comp [topological_space Z]
  (f : X → Y) (g : Y → Z) (hf : continuous f) (hg : continuous g) :
  @comap _ _ α _ _ f ∘ comap g = comap (g ∘ f) :=
by { ext, simp only [hf, hg, hg.comp hf, coe_comap] }

lemma comap_const (f : X → Y) (y : Y) (h : ∀ x, f x = y) :
  (comap f : locally_constant Y Z → locally_constant X Z) =
  λ g, ⟨λ x, g y, is_locally_constant.const _⟩ :=
begin
  ext, rw coe_comap,
  { simp only [h, coe_mk, function.comp_app] },
  { rw show f = λ x, y, by ext; apply h,
    exact continuous_const }
end

end comap

section desc

/-- If a locally constant function factors through an injection, then it factors through a locally
constant function. -/
def desc {X α β : Type*} [topological_space X] {g : α → β} (f : X → α) (h : locally_constant X β)
  (cond : g ∘ f = h) (inj : function.injective g) : locally_constant X α :=
{ to_fun := f,
  is_locally_constant := is_locally_constant.desc _ g (by { rw cond, exact h.2 }) inj }

@[simp]
lemma coe_desc {X α β : Type*} [topological_space X] (f : X → α) (g : α → β)
  (h : locally_constant X β) (cond : g ∘ f = h) (inj : function.injective g) :
  ⇑(desc f h cond inj) = f := rfl

end desc

section indicator
variables {R : Type*} [has_one R] {U : set X} (f : locally_constant X R)
open_locale classical

/-- Given a clopen set `U` and a locally constant function `f`, `locally_constant.mul_indicator`
  returns the locally constant function that is `f` on `U` and `1` otherwise. -/
@[to_additive /-" Given a clopen set `U` and a locally constant function `f`,
  `locally_constant.indicator` returns the locally constant function that is `f` on `U` and `0`
  otherwise. "-/, simps]
noncomputable def mul_indicator (hU : is_clopen U) :
  locally_constant X R :=
{ to_fun := set.mul_indicator U f,
  is_locally_constant :=
    begin
      rw is_locally_constant.iff_exists_open, rintros x,
      obtain ⟨V, hV, hx, h'⟩ := (is_locally_constant.iff_exists_open _).1 f.is_locally_constant x,
      by_cases x ∈ U,
      { refine ⟨U ∩ V, is_open.inter hU.1 hV, set.mem_inter h hx, _⟩, rintros y hy,
        rw set.mem_inter_iff at hy, rw [set.mul_indicator_of_mem hy.1, set.mul_indicator_of_mem h],
        apply h' y hy.2, },
      { rw ←set.mem_compl_iff at h, refine ⟨Uᶜ, (is_clopen.compl hU).1, h, _⟩,
        rintros y hy, rw set.mem_compl_iff at h, rw set.mem_compl_iff at hy,
        simp [h, hy], },
    end, }

variables (a : X)

@[to_additive]
theorem mul_indicator_apply_eq_if (hU : is_clopen U) :
  mul_indicator f hU a = if a ∈ U then f a else 1 :=
set.mul_indicator_apply U f a

variables {a}

@[to_additive]
theorem mul_indicator_of_mem (hU : is_clopen U) (h : a ∈ U) : f.mul_indicator hU a = f a :=
by{ rw mul_indicator_apply, apply set.mul_indicator_of_mem h, }

@[to_additive]
theorem mul_indicator_of_not_mem (hU : is_clopen U) (h : a ∉ U) : f.mul_indicator hU a = 1 :=
by{ rw mul_indicator_apply, apply set.mul_indicator_of_not_mem h, }

end indicator
end locally_constant