Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 18,062 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
/-
Copyright (c) 2021 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import topology.subset_properties
import topology.connected
import topology.algebra.monoid
import topology.continuous_function.basic
import tactic.tfae
import tactic.fin_cases
/-!
# Locally constant functions
This file sets up the theory of locally constant function from a topological space to a type.
## Main definitions and constructions
* `is_locally_constant f` : a map `f : X → Y` where `X` is a topological space is locally
constant if every set in `Y` has an open preimage.
* `locally_constant X Y` : the type of locally constant maps from `X` to `Y`
* `locally_constant.map` : push-forward of locally constant maps
* `locally_constant.comap` : pull-back of locally constant maps
-/
variables {X Y Z α : Type*} [topological_space X]
open set filter
open_locale topological_space
/-- A function between topological spaces is locally constant if the preimage of any set is open. -/
def is_locally_constant (f : X → Y) : Prop := ∀ s : set Y, is_open (f ⁻¹' s)
namespace is_locally_constant
protected lemma tfae (f : X → Y) :
tfae [is_locally_constant f,
∀ x, ∀ᶠ x' in 𝓝 x, f x' = f x,
∀ x, is_open {x' | f x' = f x},
∀ y, is_open (f ⁻¹' {y}),
∀ x, ∃ (U : set X) (hU : is_open U) (hx : x ∈ U), ∀ x' ∈ U, f x' = f x] :=
begin
tfae_have : 1 → 4, from λ h y, h {y},
tfae_have : 4 → 3, from λ h x, h (f x),
tfae_have : 3 → 2, from λ h x, is_open.mem_nhds (h x) rfl,
tfae_have : 2 → 5,
{ intros h x,
rcases mem_nhds_iff.1 (h x) with ⟨U, eq, hU, hx⟩,
exact ⟨U, hU, hx, eq⟩ },
tfae_have : 5 → 1,
{ intros h s,
refine is_open_iff_forall_mem_open.2 (λ x hx, _),
rcases h x with ⟨U, hU, hxU, eq⟩,
exact ⟨U, λ x' hx', mem_preimage.2 $ (eq x' hx').symm ▸ hx, hU, hxU⟩ },
tfae_finish
end
@[nontriviality] lemma of_discrete [discrete_topology X] (f : X → Y) :
is_locally_constant f :=
λ s, is_open_discrete _
lemma is_open_fiber {f : X → Y} (hf : is_locally_constant f) (y : Y) :
is_open {x | f x = y} :=
hf {y}
lemma is_closed_fiber {f : X → Y} (hf : is_locally_constant f) (y : Y) :
is_closed {x | f x = y} :=
⟨hf {y}ᶜ⟩
lemma is_clopen_fiber {f : X → Y} (hf : is_locally_constant f) (y : Y) :
is_clopen {x | f x = y} :=
⟨is_open_fiber hf _, is_closed_fiber hf _⟩
lemma iff_exists_open (f : X → Y) :
is_locally_constant f ↔ ∀ x, ∃ (U : set X) (hU : is_open U) (hx : x ∈ U), ∀ x' ∈ U, f x' = f x :=
(is_locally_constant.tfae f).out 0 4
lemma iff_eventually_eq (f : X → Y) :
is_locally_constant f ↔ ∀ x, ∀ᶠ y in 𝓝 x, f y = f x :=
(is_locally_constant.tfae f).out 0 1
lemma exists_open {f : X → Y} (hf : is_locally_constant f) (x : X) :
∃ (U : set X) (hU : is_open U) (hx : x ∈ U), ∀ x' ∈ U, f x' = f x :=
(iff_exists_open f).1 hf x
protected lemma eventually_eq {f : X → Y} (hf : is_locally_constant f) (x : X) :
∀ᶠ y in 𝓝 x, f y = f x :=
(iff_eventually_eq f).1 hf x
protected lemma continuous [topological_space Y] {f : X → Y} (hf : is_locally_constant f) :
continuous f :=
⟨λ U hU, hf _⟩
lemma iff_continuous {_ : topological_space Y} [discrete_topology Y] (f : X → Y) :
is_locally_constant f ↔ continuous f :=
⟨is_locally_constant.continuous, λ h s, h.is_open_preimage s (is_open_discrete _)⟩
lemma iff_continuous_bot (f : X → Y) :
is_locally_constant f ↔ @continuous X Y _ ⊥ f :=
iff_continuous f
lemma of_constant (f : X → Y) (h : ∀ x y, f x = f y) :
is_locally_constant f :=
(iff_eventually_eq f).2 $ λ x, eventually_of_forall $ λ x', h _ _
lemma const (y : Y) : is_locally_constant (function.const X y) :=
of_constant _ $ λ _ _, rfl
lemma comp {f : X → Y} (hf : is_locally_constant f) (g : Y → Z) :
is_locally_constant (g ∘ f) :=
λ s, by { rw set.preimage_comp, exact hf _ }
lemma prod_mk {Y'} {f : X → Y} {f' : X → Y'} (hf : is_locally_constant f)
(hf' : is_locally_constant f') :
is_locally_constant (λ x, (f x, f' x)) :=
(iff_eventually_eq _).2 $ λ x, (hf.eventually_eq x).mp $ (hf'.eventually_eq x).mono $
λ x' hf' hf, prod.ext hf hf'
lemma comp₂ {Y₁ Y₂ Z : Type*} {f : X → Y₁} {g : X → Y₂}
(hf : is_locally_constant f) (hg : is_locally_constant g) (h : Y₁ → Y₂ → Z) :
is_locally_constant (λ x, h (f x) (g x)) :=
(hf.prod_mk hg).comp (λ x : Y₁ × Y₂, h x.1 x.2)
lemma comp_continuous [topological_space Y] {g : Y → Z} {f : X → Y}
(hg : is_locally_constant g) (hf : continuous f) :
is_locally_constant (g ∘ f) :=
λ s, by { rw set.preimage_comp, exact hf.is_open_preimage _ (hg _) }
/-- A locally constant function is constant on any preconnected set. -/
lemma apply_eq_of_is_preconnected {f : X → Y} (hf : is_locally_constant f)
{s : set X} (hs : is_preconnected s) {x y : X} (hx : x ∈ s) (hy : y ∈ s) :
f x = f y :=
begin
let U := f ⁻¹' {f y},
suffices : x ∉ Uᶜ, from not_not.1 this,
intro hxV,
specialize hs U Uᶜ (hf {f y}) (hf {f y}ᶜ) _ ⟨y, ⟨hy, rfl⟩⟩ ⟨x, ⟨hx, hxV⟩⟩,
{ simp only [union_compl_self, subset_univ] },
{ simpa only [inter_empty, not_nonempty_empty, inter_compl_self] using hs }
end
lemma iff_is_const [preconnected_space X] {f : X → Y} :
is_locally_constant f ↔ ∀ x y, f x = f y :=
⟨λ h x y, h.apply_eq_of_is_preconnected is_preconnected_univ trivial trivial, of_constant _⟩
lemma range_finite [compact_space X] {f : X → Y} (hf : is_locally_constant f) :
(set.range f).finite :=
begin
letI : topological_space Y := ⊥,
haveI : discrete_topology Y := ⟨rfl⟩,
rw @iff_continuous X Y ‹_› ‹_› at hf,
exact (is_compact_range hf).finite_of_discrete
end
@[to_additive] lemma one [has_one Y] : is_locally_constant (1 : X → Y) := const 1
@[to_additive] lemma inv [has_inv Y] ⦃f : X → Y⦄ (hf : is_locally_constant f) :
is_locally_constant f⁻¹ :=
hf.comp (λ x, x⁻¹)
@[to_additive]
lemma mul [has_mul Y] ⦃f g : X → Y⦄ (hf : is_locally_constant f) (hg : is_locally_constant g) :
is_locally_constant (f * g) :=
hf.comp₂ hg (*)
@[to_additive]
lemma div [has_div Y] ⦃f g : X → Y⦄ (hf : is_locally_constant f) (hg : is_locally_constant g) :
is_locally_constant (f / g) :=
hf.comp₂ hg (/)
/-- If a composition of a function `f` followed by an injection `g` is locally
constant, then the locally constant property descends to `f`. -/
lemma desc {α β : Type*} (f : X → α) (g : α → β)
(h : is_locally_constant (g ∘ f)) (inj : function.injective g) : is_locally_constant f :=
begin
rw (is_locally_constant.tfae f).out 0 3,
intros a,
have : f ⁻¹' {a} = (g ∘ f) ⁻¹' { g a },
{ ext x,
simp only [mem_singleton_iff, function.comp_app, mem_preimage],
exact ⟨λ h, by rw h, λ h, inj h⟩ },
rw this,
apply h,
end
end is_locally_constant
/-- A (bundled) locally constant function from a topological space `X` to a type `Y`. -/
structure locally_constant (X Y : Type*) [topological_space X] :=
(to_fun : X → Y)
(is_locally_constant : is_locally_constant to_fun)
namespace locally_constant
instance [inhabited Y] : inhabited (locally_constant X Y) :=
⟨⟨_, is_locally_constant.const default⟩⟩
instance : has_coe_to_fun (locally_constant X Y) (λ _, X → Y) := ⟨locally_constant.to_fun⟩
initialize_simps_projections locally_constant (to_fun → apply)
@[simp] lemma to_fun_eq_coe (f : locally_constant X Y) : f.to_fun = f := rfl
@[simp] lemma coe_mk (f : X → Y) (h) : ⇑(⟨f, h⟩ : locally_constant X Y) = f := rfl
theorem congr_fun {f g : locally_constant X Y} (h : f = g) (x : X) : f x = g x :=
congr_arg (λ h : locally_constant X Y, h x) h
theorem congr_arg (f : locally_constant X Y) {x y : X} (h : x = y) : f x = f y :=
congr_arg (λ x : X, f x) h
theorem coe_injective : @function.injective (locally_constant X Y) (X → Y) coe_fn
| ⟨f, hf⟩ ⟨g, hg⟩ h := have f = g, from h, by subst f
@[simp, norm_cast] theorem coe_inj {f g : locally_constant X Y} : (f : X → Y) = g ↔ f = g :=
coe_injective.eq_iff
@[ext] theorem ext ⦃f g : locally_constant X Y⦄ (h : ∀ x, f x = g x) : f = g :=
coe_injective (funext h)
theorem ext_iff {f g : locally_constant X Y} : f = g ↔ ∀ x, f x = g x :=
⟨λ h x, h ▸ rfl, λ h, ext h⟩
section codomain_topological_space
variables [topological_space Y] (f : locally_constant X Y)
protected lemma continuous : continuous f := f.is_locally_constant.continuous
/-- We can turn a locally-constant function into a bundled `continuous_map`. -/
def to_continuous_map : C(X, Y) := ⟨f, f.continuous⟩
/-- As a shorthand, `locally_constant.to_continuous_map` is available as a coercion -/
instance : has_coe (locally_constant X Y) C(X, Y) := ⟨to_continuous_map⟩
@[simp] lemma to_continuous_map_eq_coe : f.to_continuous_map = f := rfl
@[simp] lemma coe_continuous_map : ((f : C(X, Y)) : X → Y) = (f : X → Y) := rfl
lemma to_continuous_map_injective :
function.injective (to_continuous_map : locally_constant X Y → C(X, Y)) :=
λ _ _ h, ext (continuous_map.congr_fun h)
end codomain_topological_space
/-- The constant locally constant function on `X` with value `y : Y`. -/
def const (X : Type*) {Y : Type*} [topological_space X] (y : Y) :
locally_constant X Y :=
⟨function.const X y, is_locally_constant.const _⟩
@[simp] lemma coe_const (y : Y) : (const X y : X → Y) = function.const X y := rfl
/-- The locally constant function to `fin 2` associated to a clopen set. -/
def of_clopen {X : Type*} [topological_space X] {U : set X} [∀ x, decidable (x ∈ U)]
(hU : is_clopen U) : locally_constant X (fin 2) :=
{ to_fun := λ x, if x ∈ U then 0 else 1,
is_locally_constant := begin
rw (is_locally_constant.tfae (λ x, if x ∈ U then (0 : fin 2) else 1)).out 0 3,
intros e,
fin_cases e,
{ convert hU.1 using 1,
ext,
simp only [nat.one_ne_zero, mem_singleton_iff, fin.one_eq_zero_iff,
mem_preimage, ite_eq_left_iff],
tauto },
{ rw ← is_closed_compl_iff,
convert hU.2,
ext,
simp }
end }
@[simp] lemma of_clopen_fiber_zero {X : Type*} [topological_space X] {U : set X}
[∀ x, decidable (x ∈ U)] (hU : is_clopen U) : of_clopen hU ⁻¹' ({0} : set (fin 2)) = U :=
begin
ext,
simp only [of_clopen, nat.one_ne_zero, mem_singleton_iff,
fin.one_eq_zero_iff, coe_mk, mem_preimage, ite_eq_left_iff],
tauto,
end
@[simp] lemma of_clopen_fiber_one {X : Type*} [topological_space X] {U : set X}
[∀ x, decidable (x ∈ U)] (hU : is_clopen U) : of_clopen hU ⁻¹' ({1} : set (fin 2)) = Uᶜ :=
begin
ext,
simp only [of_clopen, nat.one_ne_zero, mem_singleton_iff, coe_mk,
fin.zero_eq_one_iff, mem_preimage, ite_eq_right_iff,
mem_compl_eq],
tauto,
end
lemma locally_constant_eq_of_fiber_zero_eq {X : Type*} [topological_space X]
(f g : locally_constant X (fin 2)) (h : f ⁻¹' ({0} : set (fin 2)) = g ⁻¹' {0}) : f = g :=
begin
simp only [set.ext_iff, mem_singleton_iff, mem_preimage] at h,
ext1 x,
exact fin.fin_two_eq_of_eq_zero_iff (h x)
end
lemma range_finite [compact_space X] (f : locally_constant X Y) :
(set.range f).finite :=
f.is_locally_constant.range_finite
lemma apply_eq_of_is_preconnected (f : locally_constant X Y) {s : set X} (hs : is_preconnected s)
{x y : X} (hx : x ∈ s) (hy : y ∈ s) :
f x = f y :=
f.is_locally_constant.apply_eq_of_is_preconnected hs hx hy
lemma apply_eq_of_preconnected_space [preconnected_space X] (f : locally_constant X Y) (x y : X) :
f x = f y :=
f.is_locally_constant.apply_eq_of_is_preconnected is_preconnected_univ trivial trivial
lemma eq_const [preconnected_space X] (f : locally_constant X Y) (x : X) :
f = const X (f x) :=
ext $ λ y, apply_eq_of_preconnected_space f _ _
lemma exists_eq_const [preconnected_space X] [nonempty Y] (f : locally_constant X Y) :
∃ y, f = const X y :=
begin
rcases classical.em (nonempty X) with ⟨⟨x⟩⟩|hX,
{ exact ⟨f x, f.eq_const x⟩ },
{ exact ⟨classical.arbitrary Y, ext $ λ x, (hX ⟨x⟩).elim⟩ }
end
/-- Push forward of locally constant maps under any map, by post-composition. -/
def map (f : Y → Z) : locally_constant X Y → locally_constant X Z :=
λ g, ⟨f ∘ g, λ s, by { rw set.preimage_comp, apply g.is_locally_constant }⟩
@[simp] lemma map_apply (f : Y → Z) (g : locally_constant X Y) : ⇑(map f g) = f ∘ g := rfl
@[simp] lemma map_id : @map X Y Y _ id = id := by { ext, refl }
@[simp] lemma map_comp {Y₁ Y₂ Y₃ : Type*} (g : Y₂ → Y₃) (f : Y₁ → Y₂) :
@map X _ _ _ g ∘ map f = map (g ∘ f) := by { ext, refl }
/-- Given a locally constant function to `α → β`, construct a family of locally constant
functions with values in β indexed by α. -/
def flip {X α β : Type*} [topological_space X] (f : locally_constant X (α → β)) (a : α) :
locally_constant X β := f.map (λ f, f a)
/-- If α is finite, this constructs a locally constant function to `α → β` given a
family of locally constant functions with values in β indexed by α. -/
def unflip {X α β : Type*} [fintype α] [topological_space X] (f : α → locally_constant X β) :
locally_constant X (α → β) :=
{ to_fun := λ x a, f a x,
is_locally_constant := begin
rw (is_locally_constant.tfae (λ x a, f a x)).out 0 3,
intros g,
have : (λ (x : X) (a : α), f a x) ⁻¹' {g} = ⋂ (a : α), (f a) ⁻¹' {g a}, by tidy,
rw this,
apply is_open_Inter,
intros a,
apply (f a).is_locally_constant,
end }
@[simp]
lemma unflip_flip {X α β : Type*} [fintype α] [topological_space X]
(f : locally_constant X (α → β)) : unflip f.flip = f := by { ext, refl }
@[simp]
lemma flip_unflip {X α β : Type*} [fintype α] [topological_space X]
(f : α → locally_constant X β) : (unflip f).flip = f := by { ext, refl }
section comap
open_locale classical
variables [topological_space Y]
/-- Pull back of locally constant maps under any map, by pre-composition.
This definition only makes sense if `f` is continuous,
in which case it sends locally constant functions to their precomposition with `f`.
See also `locally_constant.coe_comap`. -/
noncomputable
def comap (f : X → Y) :
locally_constant Y Z → locally_constant X Z :=
if hf : continuous f
then λ g, ⟨g ∘ f, g.is_locally_constant.comp_continuous hf⟩
else
begin
by_cases H : nonempty X,
{ introsI g, exact const X (g $ f $ classical.arbitrary X) },
{ intro g, refine ⟨λ x, (H ⟨x⟩).elim, _⟩,
intro s, rw is_open_iff_nhds, intro x, exact (H ⟨x⟩).elim }
end
@[simp] lemma coe_comap (f : X → Y) (g : locally_constant Y Z) (hf : continuous f) :
⇑(comap f g) = g ∘ f :=
by { rw [comap, dif_pos hf], refl }
@[simp] lemma comap_id : @comap X X Z _ _ id = id :=
by { ext, simp only [continuous_id, id.def, function.comp.right_id, coe_comap] }
lemma comap_comp [topological_space Z]
(f : X → Y) (g : Y → Z) (hf : continuous f) (hg : continuous g) :
@comap _ _ α _ _ f ∘ comap g = comap (g ∘ f) :=
by { ext, simp only [hf, hg, hg.comp hf, coe_comap] }
lemma comap_const (f : X → Y) (y : Y) (h : ∀ x, f x = y) :
(comap f : locally_constant Y Z → locally_constant X Z) =
λ g, ⟨λ x, g y, is_locally_constant.const _⟩ :=
begin
ext, rw coe_comap,
{ simp only [h, coe_mk, function.comp_app] },
{ rw show f = λ x, y, by ext; apply h,
exact continuous_const }
end
end comap
section desc
/-- If a locally constant function factors through an injection, then it factors through a locally
constant function. -/
def desc {X α β : Type*} [topological_space X] {g : α → β} (f : X → α) (h : locally_constant X β)
(cond : g ∘ f = h) (inj : function.injective g) : locally_constant X α :=
{ to_fun := f,
is_locally_constant := is_locally_constant.desc _ g (by { rw cond, exact h.2 }) inj }
@[simp]
lemma coe_desc {X α β : Type*} [topological_space X] (f : X → α) (g : α → β)
(h : locally_constant X β) (cond : g ∘ f = h) (inj : function.injective g) :
⇑(desc f h cond inj) = f := rfl
end desc
section indicator
variables {R : Type*} [has_one R] {U : set X} (f : locally_constant X R)
open_locale classical
/-- Given a clopen set `U` and a locally constant function `f`, `locally_constant.mul_indicator`
returns the locally constant function that is `f` on `U` and `1` otherwise. -/
@[to_additive /-" Given a clopen set `U` and a locally constant function `f`,
`locally_constant.indicator` returns the locally constant function that is `f` on `U` and `0`
otherwise. "-/, simps]
noncomputable def mul_indicator (hU : is_clopen U) :
locally_constant X R :=
{ to_fun := set.mul_indicator U f,
is_locally_constant :=
begin
rw is_locally_constant.iff_exists_open, rintros x,
obtain ⟨V, hV, hx, h'⟩ := (is_locally_constant.iff_exists_open _).1 f.is_locally_constant x,
by_cases x ∈ U,
{ refine ⟨U ∩ V, is_open.inter hU.1 hV, set.mem_inter h hx, _⟩, rintros y hy,
rw set.mem_inter_iff at hy, rw [set.mul_indicator_of_mem hy.1, set.mul_indicator_of_mem h],
apply h' y hy.2, },
{ rw ←set.mem_compl_iff at h, refine ⟨Uᶜ, (is_clopen.compl hU).1, h, _⟩,
rintros y hy, rw set.mem_compl_iff at h, rw set.mem_compl_iff at hy,
simp [h, hy], },
end, }
variables (a : X)
@[to_additive]
theorem mul_indicator_apply_eq_if (hU : is_clopen U) :
mul_indicator f hU a = if a ∈ U then f a else 1 :=
set.mul_indicator_apply U f a
variables {a}
@[to_additive]
theorem mul_indicator_of_mem (hU : is_clopen U) (h : a ∈ U) : f.mul_indicator hU a = f a :=
by{ rw mul_indicator_apply, apply set.mul_indicator_of_mem h, }
@[to_additive]
theorem mul_indicator_of_not_mem (hU : is_clopen U) (h : a ∉ U) : f.mul_indicator hU a = 1 :=
by{ rw mul_indicator_apply, apply set.mul_indicator_of_not_mem h, }
end indicator
end locally_constant
|