Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 7,914 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
/-
Copyright (c) 2022 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import topology.basic
/-!
### Locally finite families of sets
We say that a family of sets in a topological space is *locally finite* if at every point `x : X`,
there is a neighborhood of `x` which meets only finitely many sets in the family.
In this file we give the definition and prove basic properties of locally finite families of sets.
-/
/- locally finite family [General Topology (Bourbaki, 1995)] -/
open set function filter
open_locale topological_space filter
variables {ι ι' α X Y : Type*} [topological_space X] [topological_space Y]
{f g : ι → set X}
/-- A family of sets in `set X` is locally finite if at every point `x : X`,
there is a neighborhood of `x` which meets only finitely many sets in the family. -/
def locally_finite (f : ι → set X) :=
∀ x : X, ∃t ∈ 𝓝 x, {i | (f i ∩ t).nonempty}.finite
lemma locally_finite_of_finite [finite ι] (f : ι → set X) : locally_finite f :=
assume x, ⟨univ, univ_mem, to_finite _⟩
namespace locally_finite
lemma point_finite (hf : locally_finite f) (x : X) : {b | x ∈ f b}.finite :=
let ⟨t, hxt, ht⟩ := hf x in ht.subset $ λ b hb, ⟨x, hb, mem_of_mem_nhds hxt⟩
protected lemma subset (hf : locally_finite f) (hg : ∀ i, g i ⊆ f i) : locally_finite g :=
assume a,
let ⟨t, ht₁, ht₂⟩ := hf a in
⟨t, ht₁, ht₂.subset $ assume i hi, hi.mono $ inter_subset_inter (hg i) subset.rfl⟩
lemma comp_inj_on {g : ι' → ι} (hf : locally_finite f)
(hg : inj_on g {i | (f (g i)).nonempty}) : locally_finite (f ∘ g) :=
λ x, let ⟨t, htx, htf⟩ := hf x in ⟨t, htx, htf.preimage $ hg.mono $ λ i hi,
hi.out.mono $ inter_subset_left _ _⟩
lemma comp_injective {g : ι' → ι} (hf : locally_finite f)
(hg : function.injective g) : locally_finite (f ∘ g) :=
hf.comp_inj_on (hg.inj_on _)
lemma eventually_finite (hf : locally_finite f) (x : X) :
∀ᶠ s in (𝓝 x).small_sets, {i | (f i ∩ s).nonempty}.finite :=
eventually_small_sets.2 $ let ⟨s, hsx, hs⟩ := hf x in
⟨s, hsx, λ t hts, hs.subset $ λ i hi, hi.out.mono $ inter_subset_inter_right _ hts⟩
lemma exists_mem_basis {ι' : Sort*} (hf : locally_finite f) {p : ι' → Prop}
{s : ι' → set X} {x : X} (hb : (𝓝 x).has_basis p s) :
∃ i (hi : p i), {j | (f j ∩ s i).nonempty}.finite :=
let ⟨i, hpi, hi⟩ := hb.small_sets.eventually_iff.mp (hf.eventually_finite x)
in ⟨i, hpi, hi subset.rfl⟩
lemma sum_elim {g : ι' → set X} (hf : locally_finite f) (hg : locally_finite g) :
locally_finite (sum.elim f g) :=
begin
intro x,
obtain ⟨s, hsx, hsf, hsg⟩ :
∃ s, s ∈ 𝓝 x ∧ {i | (f i ∩ s).nonempty}.finite ∧ {j | (g j ∩ s).nonempty}.finite,
from ((𝓝 x).frequently_small_sets_mem.and_eventually
((hf.eventually_finite x).and (hg.eventually_finite x))).exists,
refine ⟨s, hsx, _⟩,
convert (hsf.image sum.inl).union (hsg.image sum.inr) using 1,
ext (i|j); simp
end
protected lemma closure (hf : locally_finite f) : locally_finite (λ i, closure (f i)) :=
begin
intro x,
rcases hf x with ⟨s, hsx, hsf⟩,
refine ⟨interior s, interior_mem_nhds.2 hsx, hsf.subset $ λ i hi, _⟩,
exact (hi.mono (closure_inter_open' is_open_interior)).of_closure.mono
(inter_subset_inter_right _ interior_subset)
end
lemma is_closed_Union (hf : locally_finite f) (hc : ∀i, is_closed (f i)) :
is_closed (⋃i, f i) :=
begin
simp only [← is_open_compl_iff, compl_Union, is_open_iff_mem_nhds, mem_Inter],
intros a ha,
replace ha : ∀ i, (f i)ᶜ ∈ 𝓝 a := λ i, (hc i).is_open_compl.mem_nhds (ha i),
rcases hf a with ⟨t, h_nhds, h_fin⟩,
have : t ∩ (⋂ i ∈ {i | (f i ∩ t).nonempty}, (f i)ᶜ) ∈ 𝓝 a,
from inter_mem h_nhds ((bInter_mem h_fin).2 (λ i _, ha i)),
filter_upwards [this],
simp only [mem_inter_eq, mem_Inter],
rintros b ⟨hbt, hn⟩ i hfb,
exact hn i ⟨b, hfb, hbt⟩ hfb,
end
lemma closure_Union (h : locally_finite f) : closure (⋃ i, f i) = ⋃ i, closure (f i) :=
subset.antisymm
(closure_minimal (Union_mono $ λ _, subset_closure) $
h.closure.is_closed_Union $ λ _, is_closed_closure)
(Union_subset $ λ i, closure_mono $ subset_Union _ _)
/-- If `f : β → set α` is a locally finite family of closed sets, then for any `x : α`, the
intersection of the complements to `f i`, `x ∉ f i`, is a neighbourhood of `x`. -/
lemma Inter_compl_mem_nhds (hf : locally_finite f) (hc : ∀ i, is_closed (f i)) (x : X) :
(⋂ i (hi : x ∉ f i), (f i)ᶜ) ∈ 𝓝 x :=
begin
refine is_open.mem_nhds _ (mem_Inter₂.2 $ λ i, id),
suffices : is_closed (⋃ i : {i // x ∉ f i}, f i),
by rwa [← is_open_compl_iff, compl_Union, Inter_subtype] at this,
exact (hf.comp_injective subtype.coe_injective).is_closed_Union (λ i, hc _)
end
/-- Let `f : ℕ → Π a, β a` be a sequence of (dependent) functions on a topological space. Suppose
that the family of sets `s n = {x | f (n + 1) x ≠ f n x}` is locally finite. Then there exists a
function `F : Π a, β a` such that for any `x`, we have `f n x = F x` on the product of an infinite
interval `[N, +∞)` and a neighbourhood of `x`.
We formulate the conclusion in terms of the product of filter `filter.at_top` and `𝓝 x`. -/
lemma exists_forall_eventually_eq_prod {π : X → Sort*} {f : ℕ → Π x : X, π x}
(hf : locally_finite (λ n, {x | f (n + 1) x ≠ f n x})) :
∃ F : Π x : X, π x, ∀ x, ∀ᶠ p : ℕ × X in at_top ×ᶠ 𝓝 x, f p.1 p.2 = F p.2 :=
begin
choose U hUx hU using hf,
choose N hN using λ x, (hU x).bdd_above,
replace hN : ∀ x (n > N x) (y ∈ U x), f (n + 1) y = f n y,
from λ x n hn y hy, by_contra (λ hne, hn.lt.not_le $ hN x ⟨y, hne, hy⟩),
replace hN : ∀ x (n ≥ N x + 1) (y ∈ U x), f n y = f (N x + 1) y,
from λ x n hn y hy, nat.le_induction rfl (λ k hle, (hN x _ hle _ hy).trans) n hn,
refine ⟨λ x, f (N x + 1) x, λ x, _⟩,
filter_upwards [filter.prod_mem_prod (eventually_gt_at_top (N x)) (hUx x)],
rintro ⟨n, y⟩ ⟨hn : N x < n, hy : y ∈ U x⟩,
calc f n y = f (N x + 1) y : hN _ _ hn _ hy
... = f (max (N x + 1) (N y + 1)) y : (hN _ _ (le_max_left _ _) _ hy).symm
... = f (N y + 1) y : hN _ _ (le_max_right _ _) _ (mem_of_mem_nhds $ hUx y)
end
/-- Let `f : ℕ → Π a, β a` be a sequence of (dependent) functions on a topological space. Suppose
that the family of sets `s n = {x | f (n + 1) x ≠ f n x}` is locally finite. Then there exists a
function `F : Π a, β a` such that for any `x`, for sufficiently large values of `n`, we have
`f n y = F y` in a neighbourhood of `x`. -/
lemma exists_forall_eventually_at_top_eventually_eq' {π : X → Sort*}
{f : ℕ → Π x : X, π x} (hf : locally_finite (λ n, {x | f (n + 1) x ≠ f n x})) :
∃ F : Π x : X, π x, ∀ x, ∀ᶠ n : ℕ in at_top, ∀ᶠ y : X in 𝓝 x, f n y = F y :=
hf.exists_forall_eventually_eq_prod.imp $ λ F hF x, (hF x).curry
/-- Let `f : ℕ → α → β` be a sequence of functions on a topological space. Suppose
that the family of sets `s n = {x | f (n + 1) x ≠ f n x}` is locally finite. Then there exists a
function `F : α → β` such that for any `x`, for sufficiently large values of `n`, we have
`f n =ᶠ[𝓝 x] F`. -/
lemma exists_forall_eventually_at_top_eventually_eq {f : ℕ → X → α}
(hf : locally_finite (λ n, {x | f (n + 1) x ≠ f n x})) :
∃ F : X → α, ∀ x, ∀ᶠ n : ℕ in at_top, f n =ᶠ[𝓝 x] F :=
hf.exists_forall_eventually_at_top_eventually_eq'
lemma preimage_continuous {g : Y → X} (hf : locally_finite f) (hg : continuous g) :
locally_finite (λ i, g ⁻¹' (f i)) :=
λ x, let ⟨s, hsx, hs⟩ := hf (g x)
in ⟨g ⁻¹' s, hg.continuous_at hsx, hs.subset $ λ i ⟨y, hy⟩, ⟨g y, hy⟩⟩
end locally_finite
|