Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 7,914 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/-
Copyright (c) 2022 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import topology.basic

/-!
### Locally finite families of sets

We say that a family of sets in a topological space is *locally finite* if at every point `x : X`,
there is a neighborhood of `x` which meets only finitely many sets in the family.

In this file we give the definition and prove basic properties of locally finite families of sets.
-/

/- locally finite family [General Topology (Bourbaki, 1995)] -/

open set function filter
open_locale topological_space filter

variables {ι ι' α X Y : Type*} [topological_space X] [topological_space Y]
  {f g : ι → set X}

/-- A family of sets in `set X` is locally finite if at every point `x : X`,
there is a neighborhood of `x` which meets only finitely many sets in the family. -/
def locally_finite (f : ι → set X) :=
∀ x : X, ∃t ∈ 𝓝 x, {i | (f i ∩ t).nonempty}.finite

lemma locally_finite_of_finite [finite ι] (f : ι → set X) : locally_finite f :=
assume x, ⟨univ, univ_mem, to_finite _⟩

namespace locally_finite

lemma point_finite (hf : locally_finite f) (x : X) : {b | x ∈ f b}.finite :=
let ⟨t, hxt, ht⟩ := hf x in ht.subset $ λ b hb, ⟨x, hb, mem_of_mem_nhds hxt⟩

protected lemma subset (hf : locally_finite f) (hg : ∀ i, g i ⊆ f i) : locally_finite g :=
assume a,
let ⟨t, ht₁, ht₂⟩ := hf a in
⟨t, ht₁, ht₂.subset $ assume i hi, hi.mono $ inter_subset_inter (hg i) subset.rfl⟩

lemma comp_inj_on {g : ι' → ι} (hf : locally_finite f)
  (hg : inj_on g {i | (f (g i)).nonempty}) : locally_finite (f ∘ g) :=
λ x, let ⟨t, htx, htf⟩ := hf x in ⟨t, htx, htf.preimage $ hg.mono $ λ i hi,
  hi.out.mono $ inter_subset_left _ _⟩

lemma comp_injective {g : ι' → ι} (hf : locally_finite f)
  (hg : function.injective g) : locally_finite (f ∘ g) :=
hf.comp_inj_on (hg.inj_on _)

lemma eventually_finite (hf : locally_finite f) (x : X) :
  ∀ᶠ s in (𝓝 x).small_sets, {i | (f i ∩ s).nonempty}.finite :=
eventually_small_sets.2 $ let ⟨s, hsx, hs⟩ := hf x in
  ⟨s, hsx, λ t hts, hs.subset $ λ i hi, hi.out.mono $ inter_subset_inter_right _ hts⟩

lemma exists_mem_basis {ι' : Sort*} (hf : locally_finite f) {p : ι' → Prop}
  {s : ι' → set X} {x : X} (hb : (𝓝 x).has_basis p s) :
  ∃ i (hi : p i), {j | (f j ∩ s i).nonempty}.finite :=
let ⟨i, hpi, hi⟩ := hb.small_sets.eventually_iff.mp (hf.eventually_finite x)
in ⟨i, hpi, hi subset.rfl⟩

lemma sum_elim {g : ι' → set X} (hf : locally_finite f) (hg : locally_finite g) :
  locally_finite (sum.elim f g) :=
begin
  intro x,
  obtain ⟨s, hsx, hsf, hsg⟩ :
    ∃ s, s ∈ 𝓝 x ∧ {i | (f i ∩ s).nonempty}.finite ∧ {j | (g j ∩ s).nonempty}.finite,
    from ((𝓝 x).frequently_small_sets_mem.and_eventually
      ((hf.eventually_finite x).and (hg.eventually_finite x))).exists,
  refine ⟨s, hsx, _⟩,
  convert (hsf.image sum.inl).union (hsg.image sum.inr) using 1,
  ext (i|j); simp
end

protected lemma closure (hf : locally_finite f) : locally_finite (λ i, closure (f i)) :=
begin
  intro x,
  rcases hf x with ⟨s, hsx, hsf⟩,
  refine ⟨interior s, interior_mem_nhds.2 hsx, hsf.subset $ λ i hi, _⟩,
  exact (hi.mono (closure_inter_open' is_open_interior)).of_closure.mono
    (inter_subset_inter_right _ interior_subset)
end

lemma is_closed_Union (hf : locally_finite f) (hc : ∀i, is_closed (f i)) :
  is_closed (⋃i, f i) :=
begin
  simp only [← is_open_compl_iff, compl_Union, is_open_iff_mem_nhds, mem_Inter],
  intros a ha,
  replace ha : ∀ i, (f i)ᶜ ∈ 𝓝 a := λ i, (hc i).is_open_compl.mem_nhds (ha i),
  rcases hf a with ⟨t, h_nhds, h_fin⟩,
  have : t ∩ (⋂ i ∈ {i | (f i ∩ t).nonempty}, (f i)ᶜ) ∈ 𝓝 a,
    from inter_mem h_nhds ((bInter_mem h_fin).2 (λ i _, ha i)),
  filter_upwards [this],
  simp only [mem_inter_eq, mem_Inter],
  rintros b ⟨hbt, hn⟩ i hfb,
  exact hn i ⟨b, hfb, hbt⟩ hfb,
end

lemma closure_Union (h : locally_finite f) : closure (⋃ i, f i) = ⋃ i, closure (f i) :=
subset.antisymm
  (closure_minimal (Union_mono $ λ _, subset_closure) $
    h.closure.is_closed_Union $ λ _, is_closed_closure)
  (Union_subset $ λ i, closure_mono $ subset_Union _ _)

/-- If `f : β → set α` is a locally finite family of closed sets, then for any `x : α`, the
intersection of the complements to `f i`, `x ∉ f i`, is a neighbourhood of `x`. -/
lemma Inter_compl_mem_nhds (hf : locally_finite f) (hc : ∀ i, is_closed (f i)) (x : X) :
  (⋂ i (hi : x ∉ f i), (f i)ᶜ) ∈ 𝓝 x :=
begin
  refine is_open.mem_nhds _ (mem_Inter₂.2 $ λ i, id),
  suffices : is_closed (⋃ i : {i // x ∉ f i}, f i),
    by rwa [← is_open_compl_iff, compl_Union, Inter_subtype] at this,
  exact (hf.comp_injective subtype.coe_injective).is_closed_Union (λ i, hc _)
end

/-- Let `f : ℕ → Π a, β a` be a sequence of (dependent) functions on a topological space. Suppose
that the family of sets `s n = {x | f (n + 1) x ≠ f n x}` is locally finite. Then there exists a
function `F : Π a, β a` such that for any `x`, we have `f n x = F x` on the product of an infinite
interval `[N, +∞)` and a neighbourhood of `x`.

We formulate the conclusion in terms of the product of filter `filter.at_top` and `𝓝 x`. -/
lemma exists_forall_eventually_eq_prod {π : X → Sort*} {f : ℕ → Π x : X, π x}
  (hf : locally_finite (λ n, {x | f (n + 1) x ≠ f n x})) :
  ∃ F : Π x : X, π x, ∀ x, ∀ᶠ p : ℕ × X in at_top ×ᶠ 𝓝 x, f p.1 p.2 = F p.2 :=
begin
  choose U hUx hU using hf,
  choose N hN using λ x, (hU x).bdd_above,
  replace hN : ∀ x (n > N x) (y ∈ U x), f (n + 1) y = f n y,
    from λ x n hn y hy, by_contra (λ hne, hn.lt.not_le $ hN x ⟨y, hne, hy⟩),
  replace hN : ∀ x (n ≥ N x + 1) (y ∈ U x), f n y = f (N x + 1) y,
    from λ x n hn y hy, nat.le_induction rfl (λ k hle, (hN x _ hle _ hy).trans) n hn, 
  refine ⟨λ x, f (N x + 1) x, λ x, _⟩,
  filter_upwards [filter.prod_mem_prod (eventually_gt_at_top (N x)) (hUx x)],
  rintro ⟨n, y⟩ ⟨hn : N x < n, hy : y ∈ U x⟩,
  calc f n y = f (N x + 1) y : hN _ _ hn _ hy
  ... = f (max (N x + 1) (N y + 1)) y : (hN _ _ (le_max_left _ _) _ hy).symm
  ... = f (N y + 1) y : hN _ _ (le_max_right _ _) _ (mem_of_mem_nhds $ hUx y)
end

/-- Let `f : ℕ → Π a, β a` be a sequence of (dependent) functions on a topological space. Suppose
that the family of sets `s n = {x | f (n + 1) x ≠ f n x}` is locally finite. Then there exists a
function `F : Π a, β a` such that for any `x`, for sufficiently large values of `n`, we have
`f n y = F y` in a neighbourhood of `x`. -/
lemma exists_forall_eventually_at_top_eventually_eq' {π : X → Sort*}
  {f : ℕ → Π x : X, π x} (hf : locally_finite (λ n, {x | f (n + 1) x ≠ f n x})) :
  ∃ F : Π x : X, π x, ∀ x, ∀ᶠ n : ℕ in at_top, ∀ᶠ y : X in 𝓝 x, f n y = F y :=
hf.exists_forall_eventually_eq_prod.imp $ λ F hF x, (hF x).curry

/-- Let `f : ℕ → α → β` be a sequence of functions on a topological space. Suppose
that the family of sets `s n = {x | f (n + 1) x ≠ f n x}` is locally finite. Then there exists a
function `F :  α → β` such that for any `x`, for sufficiently large values of `n`, we have
`f n =ᶠ[𝓝 x] F`. -/
lemma exists_forall_eventually_at_top_eventually_eq {f : ℕ → X → α}
  (hf : locally_finite (λ n, {x | f (n + 1) x ≠ f n x})) :
  ∃ F : X → α, ∀ x, ∀ᶠ n : ℕ in at_top, f n =ᶠ[𝓝 x] F :=
hf.exists_forall_eventually_at_top_eventually_eq'

lemma preimage_continuous {g : Y → X} (hf : locally_finite f) (hg : continuous g) :
  locally_finite (λ i, g ⁻¹' (f i)) :=
λ x, let ⟨s, hsx, hs⟩ := hf (g x)
  in ⟨g ⁻¹' s, hg.continuous_at hsx, hs.subset $ λ i ⟨y, hy⟩, ⟨g y, hy⟩⟩

end locally_finite