Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 3,563 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
/-
Copyright (c) 2022 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Patrick Massot
-/
import topology.basic
/-!
# Neighborhoods of a set
In this file we define the filter `πΛ’ s` or `nhds_set s` consisting of all neighborhoods of a set
`s`.
## Main Properties
There are a couple different notions equivalent to `s β πΛ’ t`:
* `s β interior t` using `subset_interior_iff_mem_nhds_set`
* `β (x : Ξ±), x β t β s β π x` using `mem_nhds_set_iff_forall`
* `β U : set Ξ±, is_open U β§ t β U β§ U β s` using `mem_nhds_set_iff_exists`
Furthermore, we have the following results:
* `monotone_nhds_set`: `πΛ’` is monotone
* In Tβ-spaces, `πΛ’`is strictly monotone and hence injective:
`strict_mono_nhds_set`/`injective_nhds_set`. These results are in `topology.separation`.
-/
open set filter
open_locale topological_space
variables {Ξ± Ξ² : Type*} [topological_space Ξ±] [topological_space Ξ²]
{s t sβ sβ tβ tβ : set Ξ±} {x : Ξ±}
/-- The filter of neighborhoods of a set in a topological space. -/
def nhds_set (s : set Ξ±) : filter Ξ± :=
Sup (nhds '' s)
localized "notation `πΛ’` := nhds_set" in topological_space
lemma mem_nhds_set_iff_forall : s β πΛ’ t β β (x : Ξ±), x β t β s β π x :=
by simp_rw [nhds_set, filter.mem_Sup, ball_image_iff]
lemma subset_interior_iff_mem_nhds_set : s β interior t β t β πΛ’ s :=
by simp_rw [mem_nhds_set_iff_forall, subset_interior_iff_nhds]
lemma mem_nhds_set_iff_exists : s β πΛ’ t β β U : set Ξ±, is_open U β§ t β U β§ U β s :=
by { rw [β subset_interior_iff_mem_nhds_set, subset_interior_iff] }
lemma has_basis_nhds_set (s : set Ξ±) : (πΛ’ s).has_basis (Ξ» U, is_open U β§ s β U) (Ξ» U, U) :=
β¨Ξ» t, by simp [mem_nhds_set_iff_exists, and_assoc]β©
lemma is_open.mem_nhds_set (hU : is_open s) : s β πΛ’ t β t β s :=
by rw [β subset_interior_iff_mem_nhds_set, interior_eq_iff_open.mpr hU]
@[simp] lemma nhds_set_singleton : πΛ’ {x} = π x :=
by { ext,
rw [β subset_interior_iff_mem_nhds_set, β mem_interior_iff_mem_nhds, singleton_subset_iff] }
lemma mem_nhds_set_interior : s β πΛ’ (interior s) :=
subset_interior_iff_mem_nhds_set.mp subset.rfl
lemma mem_nhds_set_empty : s β πΛ’ (β
: set Ξ±) :=
subset_interior_iff_mem_nhds_set.mp $ empty_subset _
@[simp] lemma nhds_set_empty : πΛ’ (β
: set Ξ±) = β₯ :=
by { ext, simp [mem_nhds_set_empty] }
@[simp] lemma nhds_set_univ : πΛ’ (univ : set Ξ±) = β€ :=
by { ext, rw [β subset_interior_iff_mem_nhds_set, univ_subset_iff, interior_eq_univ, mem_top] }
lemma monotone_nhds_set : monotone (πΛ’ : set Ξ± β filter Ξ±) :=
Ξ» s t hst, Sup_le_Sup $ image_subset _ hst
@[simp] lemma nhds_set_union (s t : set Ξ±) : πΛ’ (s βͺ t) = πΛ’ s β πΛ’ t :=
by simp only [nhds_set, image_union, Sup_union]
lemma union_mem_nhds_set (hβ : sβ β πΛ’ tβ) (hβ : sβ β πΛ’ tβ) : sβ βͺ sβ β πΛ’ (tβ βͺ tβ) :=
by { rw nhds_set_union, exact union_mem_sup hβ hβ }
/-- Preimage of a set neighborhood of `t` under a continuous map `f` is a set neighborhood of `s`
provided that `f` maps `s` to `t`. -/
lemma continuous.tendsto_nhds_set {f : Ξ± β Ξ²} {t : set Ξ²} (hf : continuous f)
(hst : maps_to f s t) : tendsto f (πΛ’ s) (πΛ’ t) :=
((has_basis_nhds_set s).tendsto_iff (has_basis_nhds_set t)).mpr $ Ξ» U hU,
β¨f β»ΒΉ' U, β¨hU.1.preimage hf, hst.mono subset.rfl hU.2β©, Ξ» x, idβ©
|