Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 3,563 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/-
Copyright (c) 2022 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Patrick Massot
-/
import topology.basic
/-!
# Neighborhoods of a set

In this file we define the filter `𝓝˒ s` or `nhds_set s` consisting of all neighborhoods of a set
`s`.

## Main Properties

There are a couple different notions equivalent to `s ∈ 𝓝˒ t`:
* `s βŠ† interior t` using `subset_interior_iff_mem_nhds_set`
* `βˆ€ (x : Ξ±), x ∈ t β†’ s ∈ 𝓝 x` using `mem_nhds_set_iff_forall`
* `βˆƒ U : set Ξ±, is_open U ∧ t βŠ† U ∧ U βŠ† s` using `mem_nhds_set_iff_exists`

Furthermore, we have the following results:
* `monotone_nhds_set`: `𝓝˒` is monotone
* In T₁-spaces, `𝓝˒`is strictly monotone and hence injective:
  `strict_mono_nhds_set`/`injective_nhds_set`. These results are in `topology.separation`.
-/

open set filter
open_locale topological_space

variables {Ξ± Ξ² : Type*} [topological_space Ξ±] [topological_space Ξ²]
  {s t s₁ sβ‚‚ t₁ tβ‚‚ : set Ξ±} {x : Ξ±}

/-- The filter of neighborhoods of a set in a topological space. -/
def nhds_set (s : set Ξ±) : filter Ξ± :=
Sup (nhds '' s)

localized "notation `𝓝˒` := nhds_set" in topological_space

lemma mem_nhds_set_iff_forall : s ∈ 𝓝˒ t ↔ βˆ€ (x : Ξ±), x ∈ t β†’ s ∈ 𝓝 x :=
by simp_rw [nhds_set, filter.mem_Sup, ball_image_iff]

lemma subset_interior_iff_mem_nhds_set : s βŠ† interior t ↔ t ∈ 𝓝˒ s :=
by simp_rw [mem_nhds_set_iff_forall, subset_interior_iff_nhds]

lemma mem_nhds_set_iff_exists : s ∈ 𝓝˒ t ↔ βˆƒ U : set Ξ±, is_open U ∧ t βŠ† U ∧ U βŠ† s :=
by { rw [← subset_interior_iff_mem_nhds_set, subset_interior_iff] }

lemma has_basis_nhds_set (s : set Ξ±) : (𝓝˒ s).has_basis (Ξ» U, is_open U ∧ s βŠ† U) (Ξ» U, U) :=
⟨λ t, by simp [mem_nhds_set_iff_exists, and_assoc]⟩

lemma is_open.mem_nhds_set (hU : is_open s) : s ∈ 𝓝˒ t ↔ t βŠ† s :=
by rw [← subset_interior_iff_mem_nhds_set, interior_eq_iff_open.mpr hU]

@[simp] lemma nhds_set_singleton : 𝓝˒ {x} = 𝓝 x :=
by { ext,
     rw [← subset_interior_iff_mem_nhds_set, ← mem_interior_iff_mem_nhds, singleton_subset_iff] }

lemma mem_nhds_set_interior : s ∈ 𝓝˒ (interior s) :=
subset_interior_iff_mem_nhds_set.mp subset.rfl

lemma mem_nhds_set_empty : s ∈ 𝓝˒ (βˆ… : set Ξ±) :=
subset_interior_iff_mem_nhds_set.mp $ empty_subset _

@[simp] lemma nhds_set_empty : 𝓝˒ (βˆ… : set Ξ±) = βŠ₯ :=
by { ext, simp [mem_nhds_set_empty] }

@[simp] lemma nhds_set_univ : 𝓝˒ (univ : set Ξ±) = ⊀ :=
by { ext, rw [← subset_interior_iff_mem_nhds_set, univ_subset_iff, interior_eq_univ, mem_top] }

lemma monotone_nhds_set : monotone (𝓝˒ : set Ξ± β†’ filter Ξ±) :=
Ξ» s t hst, Sup_le_Sup $ image_subset _ hst

@[simp] lemma nhds_set_union (s t : set Ξ±) : 𝓝˒ (s βˆͺ t) = 𝓝˒ s βŠ” 𝓝˒ t :=
by simp only [nhds_set, image_union, Sup_union]

lemma union_mem_nhds_set (h₁ : s₁ ∈ 𝓝˒ t₁) (hβ‚‚ : sβ‚‚ ∈ 𝓝˒ tβ‚‚) : s₁ βˆͺ sβ‚‚ ∈ 𝓝˒ (t₁ βˆͺ tβ‚‚) :=
by { rw nhds_set_union, exact union_mem_sup h₁ hβ‚‚ }

/-- Preimage of a set neighborhood of `t` under a continuous map `f` is a set neighborhood of `s`
provided that `f` maps `s` to `t`.  -/
lemma continuous.tendsto_nhds_set {f : Ξ± β†’ Ξ²} {t : set Ξ²} (hf : continuous f)
  (hst : maps_to f s t) : tendsto f (𝓝˒ s) (𝓝˒ t) :=
((has_basis_nhds_set s).tendsto_iff (has_basis_nhds_set t)).mpr $ Ξ» U hU,
  ⟨f ⁻¹' U, ⟨hU.1.preimage hf, hst.mono subset.rfl hU.2⟩, λ x, id⟩