File size: 9,135 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/-
Copyright (c) 2022 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import order.compactly_generated
import order.order_iso_nat
import topology.sets.compacts

/-!
# Noetherian space

A Noetherian space is a topological space that satisfies any of the following equivalent conditions:
- `well_founded ((>) : opens α → opens α → Prop)`
- `well_founded ((<) : closeds α → closeds α → Prop)`
- `∀ s : set α, is_compact s`
- `∀ s : opens α, is_compact s`

The first is chosen as the definition, and the equivalence is shown in
`topological_space.noetherian_space_tfae`.

Many examples of noetherian spaces come from algebraic topology. For example, the underlying space
of a noetherian scheme (e.g., the spectrum of a noetherian ring) is noetherian.

## Main Results
- `noetherian_space.set`: Every subspace of a noetherian space is noetherian.
- `noetherian_space.is_compact`: Every subspace of a noetherian space is compact.
- `noetherian_space_tfae`: Describes the equivalent definitions of noetherian spaces.
- `noetherian_space.range`: The image of a noetherian space under a continuous map is noetherian.
- `noetherian_space.Union`: The finite union of noetherian spaces is noetherian.
- `noetherian_space.discrete`: A noetherian and hausdorff space is discrete.
- `noetherian_space.exists_finset_irreducible` : Every closed subset of a noetherian space is a
  finite union of irreducible closed subsets.
- `noetherian_space.finite_irreducible_components `: The number of irreducible components of a
  noetherian space is finite.

-/

variables (α β : Type*) [topological_space α] [topological_space β]

namespace topological_space

/-- Type class for noetherian spaces. It is defined to be spaces whose open sets satisfies ACC. -/
@[mk_iff]
class noetherian_space : Prop :=
(well_founded : well_founded ((>) : opens α → opens α → Prop))

lemma noetherian_space_iff_opens :
  noetherian_space α ↔ ∀ s : opens α, is_compact (s : set α) :=
begin
  rw [noetherian_space_iff, complete_lattice.well_founded_iff_is_Sup_finite_compact,
    complete_lattice.is_Sup_finite_compact_iff_all_elements_compact],
  exact forall_congr opens.is_compact_element_iff,
end

@[priority 100]
instance noetherian_space.compact_space [h : noetherian_space α] : compact_space α :=
is_compact_univ_iff.mp ((noetherian_space_iff_opens α).mp h ⊤)

variable {α}

instance noetherian_space.set [h : noetherian_space α] (s : set α) : noetherian_space s :=
begin
  rw noetherian_space_iff,
  apply well_founded.well_founded_iff_has_max'.2,
  intros p hp,
  obtain ⟨⟨_, u, hu, rfl⟩, hu'⟩ := hp,
  obtain ⟨U, hU, hU'⟩ := well_founded.well_founded_iff_has_max'.1 h.1
    (((opens.comap ⟨_, continuous_subtype_coe⟩)) ⁻¹' p) ⟨⟨u, hu⟩, hu'⟩,
  refine ⟨opens.comap ⟨_, continuous_subtype_coe⟩ U, hU, _⟩,
  rintros ⟨_, x, hx, rfl⟩ hx' hx'',
  refine le_antisymm (set.preimage_mono (_ : (⟨x, hx⟩ : opens α) ≤ U)) hx'',
  refine sup_eq_right.mp (hU' (⟨x, hx⟩ ⊔ U) _ le_sup_right),
  dsimp [set.preimage],
  rw map_sup,
  convert hx',
  exact sup_eq_left.mpr hx''
end

variable (α)

example (α : Type*) : set α ≃o (set α)ᵒᵈ := by refine order_iso.compl (set α)

lemma noetherian_space_tfae :
  tfae [noetherian_space α,
    well_founded (λ s t : closeds α, s < t),
    ∀ s : set α, is_compact s,
    ∀ s : opens α, is_compact (s : set α)] :=
begin
  tfae_have : 1 ↔ 2,
  { refine (noetherian_space_iff _).trans (surjective.well_founded_iff opens.compl_bijective.2 _),
    exact λ s t, (order_iso.compl (set α)).lt_iff_lt.symm },
  tfae_have : 1 ↔ 4,
  { exact noetherian_space_iff_opens α },
  tfae_have : 1 → 3,
  { intros H s, rw is_compact_iff_compact_space, resetI, apply_instance },
  tfae_have : 3 → 4,
  { exact λ H s, H s },
  tfae_finish
end

variables {α β}

lemma noetherian_space.is_compact [h : noetherian_space α] (s : set α) : is_compact s :=
let H := (noetherian_space_tfae α).out 0 2 in H.mp h s

lemma noetherian_space_of_surjective [noetherian_space α] (f : α → β)
  (hf : continuous f) (hf' : function.surjective f) : noetherian_space β :=
begin
  rw noetherian_space_iff_opens,
  intro s,
  obtain ⟨t, e⟩ := set.image_surjective.mpr hf' s,
  exact e ▸ (noetherian_space.is_compact t).image hf,
end

lemma noetherian_space_iff_of_homeomorph (f : α ≃ₜ β) :
  noetherian_space α ↔ noetherian_space β :=
⟨λ h, @@noetherian_space_of_surjective _ _ h f f.continuous f.surjective,
  λ h, @@noetherian_space_of_surjective _ _ h f.symm f.symm.continuous f.symm.surjective⟩

lemma noetherian_space.range [noetherian_space α] (f : α → β) (hf : continuous f) :
  noetherian_space (set.range f) :=
noetherian_space_of_surjective (set.cod_restrict f _ set.mem_range_self) (by continuity)
  (λ ⟨a, b, h⟩, ⟨b, subtype.ext h⟩)

lemma noetherian_space_set_iff (s : set α) :
  noetherian_space s ↔ ∀ t ⊆ s, is_compact t :=
begin
  rw (noetherian_space_tfae s).out 0 2,
  split,
  { intros H t ht,
    have := embedding_subtype_coe.is_compact_iff_is_compact_image.mp (H (coe ⁻¹' t)),
    simpa [set.inter_eq_left_iff_subset.mpr ht] using this },
  { intros H t,
    refine embedding_subtype_coe.is_compact_iff_is_compact_image.mpr (H (coe '' t) _),
    simp }
end

@[simp] lemma noetherian_univ_iff :
  noetherian_space (set.univ : set α) ↔ noetherian_space α :=
noetherian_space_iff_of_homeomorph (homeomorph.set.univ α)

lemma noetherian_space.Union {ι : Type*} (f : ι → set α) [finite ι]
  [hf : ∀ i, noetherian_space (f i)] :
  noetherian_space (⋃ i, f i) :=
begin
  casesI nonempty_fintype ι,
  simp_rw noetherian_space_set_iff at hf ⊢,
  intros t ht,
  rw [← set.inter_eq_left_iff_subset.mpr ht, set.inter_Union],
  exact compact_Union (λ i, hf i _ (set.inter_subset_right _ _))
end

-- This is not an instance since it makes a loop with `t2_space_discrete`.
lemma noetherian_space.discrete [noetherian_space α] [t2_space α] : discrete_topology α :=
⟨eq_bot_iff.mpr (λ U _, is_closed_compl_iff.mp (noetherian_space.is_compact _).is_closed)⟩

local attribute [instance] noetherian_space.discrete

/-- Spaces that are both Noetherian and Hausdorff is finite. -/
lemma noetherian_space.finite [noetherian_space α] [t2_space α] : finite α :=
begin
  letI : fintype α :=
    set.fintype_of_finite_univ (noetherian_space.is_compact set.univ).finite_of_discrete,
  apply_instance
end

@[priority 100]
instance finite.to_noetherian_space [finite α] : noetherian_space α :=
begin
  casesI nonempty_fintype α,
  classical,
  exact ⟨@@fintype.well_founded_of_trans_of_irrefl (subtype.fintype _) _ _ _⟩
end

lemma noetherian_space.exists_finset_irreducible [noetherian_space α] (s : closeds α) :
  ∃ S : finset (closeds α), (∀ k : S, is_irreducible (k : set α)) ∧ s = S.sup id :=
begin
  classical,
  have := ((noetherian_space_tfae α).out 0 1).mp infer_instance,
  apply well_founded.induction this s, clear s,
  intros s H,
  by_cases h₁ : is_preirreducible s.1,
  cases h₂ : s.1.eq_empty_or_nonempty,
  { use ∅, refine ⟨λ k, k.2.elim, _⟩, rw finset.sup_empty, ext1, exact h },
  { use {s},
    simp only [coe_coe, finset.sup_singleton, id.def, eq_self_iff_true, and_true],
    rintro ⟨k, hk⟩,
    cases finset.mem_singleton.mp hk,
    exact ⟨h, h₁⟩ },
  { rw is_preirreducible_iff_closed_union_closed at h₁,
    push_neg at h₁,
    obtain ⟨z₁, z₂, hz₁, hz₂, h, hz₁', hz₂'⟩ := h₁,
    obtain ⟨S₁, hS₁, hS₁'⟩ := H (s ⊓ ⟨z₁, hz₁⟩) (inf_lt_left.2 hz₁'),
    obtain ⟨S₂, hS₂, hS₂'⟩ := H (s ⊓ ⟨z₂, hz₂⟩) (inf_lt_left.2 hz₂'),
    refine ⟨S₁ ∪ S₂, λ k, _, _⟩,
    { cases finset.mem_union.mp k.2 with h' h', exacts [hS₁ ⟨k, h'⟩, hS₂ ⟨k, h'⟩] },
    { rwa [finset.sup_union, ← hS₁', ← hS₂', ← inf_sup_left, left_eq_inf] } }
end

lemma noetherian_space.finite_irreducible_components [noetherian_space α] :
  (set.range irreducible_component : set (set α)).finite :=
begin
  classical,
  obtain ⟨S, hS₁, hS₂⟩ := noetherian_space.exists_finset_irreducible (⊤ : closeds α),
  suffices : ∀ x : α, ∃ s : S, irreducible_component x = s,
  { choose f hf,
    rw [show irreducible_component = coe ∘ f, from funext hf, set.range_comp],
    exact (set.finite.intro infer_instance).image _ },
  intro x,
  obtain ⟨z, hz, hz'⟩ : ∃ (z : set α) (H : z ∈ finset.image coe S), irreducible_component x ⊆ z,
  { convert is_irreducible_iff_sUnion_closed.mp
      is_irreducible_irreducible_component (S.image coe) _ _,
    { apply_instance },
    { simp only [finset.mem_image, exists_prop, forall_exists_index, and_imp],
      rintro _ z hz rfl,
      exact z.2 },
    { exact (set.subset_univ _).trans ((congr_arg coe hS₂).trans $ by simp).subset } },
  obtain ⟨s, hs, e⟩ := finset.mem_image.mp hz,
  rw ← e at hz',
  use ⟨s, hs⟩,
  symmetry,
  apply eq_irreducible_component (hS₁ _).2,
  simpa,
end

end topological_space