File size: 7,039 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/-
Copyright (c) 2020 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Yaël Dillies
-/
import topology.sets.opens

/-!
# Closed sets

We define a few types of closed sets in a topological space.

## Main Definitions

For a topological space `α`,
* `closeds α`: The type of closed sets.
* `clopens α`: The type of clopen sets.
-/

open order order_dual set

variables {ι α β : Type*} [topological_space α] [topological_space β]

namespace topological_space

/-! ### Closed sets -/

/-- The type of closed subsets of a topological space. -/
structure closeds (α : Type*) [topological_space α] :=
(carrier : set α)
(closed' : is_closed carrier)

namespace closeds
variables {α}

instance : set_like (closeds α) α :=
{ coe := closeds.carrier,
  coe_injective' := λ s t h, by { cases s, cases t, congr' } }

lemma closed (s : closeds α) : is_closed (s : set α) := s.closed'

@[ext] protected lemma ext {s t : closeds α} (h : (s : set α) = t) : s = t := set_like.ext' h

@[simp] lemma coe_mk (s : set α) (h) : (mk s h : set α) = s := rfl

/-- The closure of a set, as an element of `closeds`. -/
protected def closure (s : set α) : closeds α := ⟨closure s, is_closed_closure⟩

lemma gc : galois_connection closeds.closure (coe : closeds α → set α) :=
λ s U, ⟨subset_closure.trans, λ h, closure_minimal h U.closed⟩

/-- The galois coinsertion between sets and opens. -/
def gi : galois_insertion (@closeds.closure α _) coe :=
{ choice := λ s hs, ⟨s, closure_eq_iff_is_closed.1 $ hs.antisymm subset_closure⟩,
  gc := gc,
  le_l_u := λ _, subset_closure,
  choice_eq := λ s hs, set_like.coe_injective $ subset_closure.antisymm hs }

instance : complete_lattice (closeds α) :=
complete_lattice.copy (galois_insertion.lift_complete_lattice gi)
/- le  -/ _ rfl
/- top -/ ⟨univ, is_closed_univ⟩ rfl
/- bot -/ ⟨∅, is_closed_empty⟩ (set_like.coe_injective closure_empty.symm)
/- sup -/ (λ s t, ⟨s ∪ t, s.2.union t.2⟩)
  (funext $ λ s, funext $ λ t, set_like.coe_injective (s.2.union t.2).closure_eq.symm)
/- inf -/ (λ s t, ⟨s ∩ t, s.2.inter t.2⟩) rfl
/- Sup -/ _ rfl
/- Inf -/ (λ S, ⟨⋂ s ∈ S, ↑s, is_closed_bInter $ λ s _, s.2⟩)
  (funext $ λ S, set_like.coe_injective Inf_image.symm)

/-- The type of closed sets is inhabited, with default element the empty set. -/
instance : inhabited (closeds α) := ⟨⊥⟩

@[simp, norm_cast] lemma coe_sup (s t : closeds α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl
@[simp, norm_cast] lemma coe_inf (s t : closeds α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl
@[simp, norm_cast] lemma coe_top : (↑(⊤ : closeds α) : set α) = univ := rfl
@[simp, norm_cast] lemma coe_bot : (↑(⊥ : closeds α) : set α) = ∅ := rfl
@[simp, norm_cast] lemma coe_Inf {S : set (closeds α)} : (↑(Inf S) : set α) = ⋂ i ∈ S, ↑i := rfl

@[simp, norm_cast] lemma coe_finset_sup (f : ι → closeds α) (s : finset ι) :
  (↑(s.sup f) : set α) = s.sup (coe ∘ f) :=
map_finset_sup (⟨⟨coe, coe_sup⟩, coe_bot⟩ : sup_bot_hom (closeds α) (set α)) _ _

@[simp, norm_cast] lemma coe_finset_inf (f : ι → closeds α) (s : finset ι) :
  (↑(s.inf f) : set α) = s.inf (coe ∘ f) :=
map_finset_inf (⟨⟨coe, coe_inf⟩, coe_top⟩ : inf_top_hom (closeds α) (set α)) _ _

lemma infi_def {ι} (s : ι → closeds α) : (⨅ i, s i) = ⟨⋂ i, s i, is_closed_Inter $ λ i, (s i).2⟩ :=
by { ext, simp only [infi, coe_Inf, bInter_range], refl }

@[simp] lemma infi_mk {ι} (s : ι → set α) (h : ∀ i, is_closed (s i)) :
  (⨅ i, ⟨s i, h i⟩ : closeds α) = ⟨⋂ i, s i, is_closed_Inter h⟩ :=
by simp [infi_def]

@[simp, norm_cast] lemma coe_infi {ι} (s : ι → closeds α) :
  ((⨅ i, s i : closeds α) : set α) = ⋂ i, s i :=
by simp [infi_def]

@[simp] lemma mem_infi {ι} {x : α} {s : ι → closeds α} : x ∈ infi s ↔ ∀ i, x ∈ s i :=
by simp [←set_like.mem_coe]

@[simp] lemma mem_Inf {S : set (closeds α)} {x : α} : x ∈ Inf S ↔ ∀ s ∈ S, x ∈ s :=
by simp_rw [Inf_eq_infi, mem_infi]

instance : coframe (closeds α) :=
{ Inf := Inf,
  infi_sup_le_sup_Inf := λ a s,
    (set_like.coe_injective $ by simp only [coe_sup, coe_infi, coe_Inf, set.union_Inter₂]).le,
  ..closeds.complete_lattice }

end closeds

/-- The complement of a closed set as an open set. -/
@[simps] def closeds.compl (s : closeds α) : opens α := ⟨sᶜ, s.2.is_open_compl⟩

/-- The complement of an open set as a closed set. -/
@[simps] def opens.compl (s : opens α) : closeds α := ⟨sᶜ, s.2.is_closed_compl⟩

lemma closeds.compl_compl (s : closeds α) : s.compl.compl = s := closeds.ext (compl_compl s)
lemma opens.compl_compl (s : opens α) : s.compl.compl = s := opens.ext (compl_compl s)

lemma closeds.compl_bijective : function.bijective (@closeds.compl α _) :=
function.bijective_iff_has_inverse.mpr ⟨opens.compl, closeds.compl_compl, opens.compl_compl⟩
lemma opens.compl_bijective : function.bijective (@opens.compl α _) :=
function.bijective_iff_has_inverse.mpr ⟨closeds.compl, opens.compl_compl, closeds.compl_compl⟩

/-! ### Clopen sets -/

/-- The type of clopen sets of a topological space. -/
structure clopens (α : Type*) [topological_space α] :=
(carrier : set α)
(clopen' : is_clopen carrier)

namespace clopens

instance : set_like (clopens α) α :=
{ coe := λ s, s.carrier,
  coe_injective' := λ s t h, by { cases s, cases t, congr' } }

lemma clopen (s : clopens α) : is_clopen (s : set α) := s.clopen'

/-- Reinterpret a compact open as an open. -/
@[simps] def to_opens (s : clopens α) : opens α := ⟨s, s.clopen.is_open⟩

@[ext] protected lemma ext {s t : clopens α} (h : (s : set α) = t) : s = t := set_like.ext' h

@[simp] lemma coe_mk (s : set α) (h) : (mk s h : set α) = s := rfl

instance : has_sup (clopens α) := ⟨λ s t, ⟨s ∪ t, s.clopen.union t.clopen⟩⟩
instance : has_inf (clopens α) := ⟨λ s t, ⟨s ∩ t, s.clopen.inter t.clopen⟩⟩
instance : has_top (clopens α) := ⟨⟨⊤, is_clopen_univ⟩⟩
instance : has_bot (clopens α) := ⟨⟨⊥, is_clopen_empty⟩⟩
instance : has_sdiff (clopens α) := ⟨λ s t, ⟨s \ t, s.clopen.diff t.clopen⟩⟩
instance : has_compl (clopens α) := ⟨λ s, ⟨sᶜ, s.clopen.compl⟩⟩

instance : boolean_algebra (clopens α) :=
set_like.coe_injective.boolean_algebra _ (λ _ _, rfl) (λ _ _, rfl) rfl rfl (λ _, rfl) (λ _ _, rfl)

@[simp] lemma coe_sup (s t : clopens α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl
@[simp] lemma coe_inf (s t : clopens α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl
@[simp] lemma coe_top : (↑(⊤ : clopens α) : set α) = univ := rfl
@[simp] lemma coe_bot : (↑(⊥ : clopens α) : set α) = ∅ := rfl
@[simp] lemma coe_sdiff (s t : clopens α) : (↑(s \ t) : set α) = s \ t := rfl
@[simp] lemma coe_compl (s : clopens α) : (↑sᶜ : set α) = sᶜ := rfl

instance : inhabited (clopens α) := ⟨⊥⟩

end clopens
end topological_space