File size: 14,535 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/-
Copyright (c) 2020 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Yaël Dillies
-/
import topology.sets.closeds

/-!
# Compact sets

We define a few types of compact sets in a topological space.

## Main Definitions

For a topological space `α`,
* `compacts α`: The type of compact sets.
* `nonempty_compacts α`: The type of non-empty compact sets.
* `positive_compacts α`: The type of compact sets with non-empty interior.
* `compact_opens α`: The type of compact open sets. This is a central object in the study of
  spectral spaces.
-/

open set

variables {α β : Type*} [topological_space α] [topological_space β]

namespace topological_space

/-! ### Compact sets -/

/-- The type of compact sets of a topological space. -/
structure compacts (α : Type*) [topological_space α] :=
(carrier : set α)
(compact' : is_compact carrier)

namespace compacts
variables {α}

instance : set_like (compacts α) α :=
{ coe := compacts.carrier,
  coe_injective' := λ s t h, by { cases s, cases t, congr' } }

lemma compact (s : compacts α) : is_compact (s : set α) := s.compact'

instance (K : compacts α) : compact_space K := is_compact_iff_compact_space.1 K.compact

instance : can_lift (set α) (compacts α) :=
{ coe := coe,
  cond := is_compact,
  prf := λ K hK, ⟨⟨K, hK⟩, rfl⟩ }

@[ext] protected lemma ext {s t : compacts α} (h : (s : set α) = t) : s = t := set_like.ext' h

@[simp] lemma coe_mk (s : set α) (h) : (mk s h : set α) = s := rfl

@[simp] lemma carrier_eq_coe (s : compacts α) : s.carrier = s := rfl

instance : has_sup (compacts α) := ⟨λ s t, ⟨s ∪ t, s.compact.union t.compact⟩⟩
instance [t2_space α] : has_inf (compacts α) := ⟨λ s t, ⟨s ∩ t, s.compact.inter t.compact⟩⟩
instance [compact_space α] : has_top (compacts α) := ⟨⟨univ, compact_univ⟩⟩
instance : has_bot (compacts α) := ⟨⟨∅, is_compact_empty⟩⟩

instance : semilattice_sup (compacts α) := set_like.coe_injective.semilattice_sup _ (λ _ _, rfl)

instance [t2_space α] : distrib_lattice (compacts α) :=
set_like.coe_injective.distrib_lattice _ (λ _ _, rfl) (λ _ _, rfl)

instance : order_bot (compacts α) := order_bot.lift (coe : _ → set α) (λ _ _, id) rfl

instance [compact_space α] : bounded_order (compacts α) :=
bounded_order.lift (coe : _ → set α) (λ _ _, id) rfl rfl

/-- The type of compact sets is inhabited, with default element the empty set. -/
instance : inhabited (compacts α) := ⟨⊥⟩

@[simp] lemma coe_sup (s t : compacts α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl
@[simp] lemma coe_inf [t2_space α] (s t : compacts α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl
@[simp] lemma coe_top [compact_space α] : (↑(⊤ : compacts α) : set α) = univ := rfl
@[simp] lemma coe_bot : (↑(⊥ : compacts α) : set α) = ∅ := rfl

@[simp] lemma coe_finset_sup {ι : Type*} {s : finset ι} {f : ι → compacts α} :
  (↑(s.sup f) : set α) = s.sup (λ i, f i) :=
begin
  classical,
  refine finset.induction_on s rfl (λ a s _ h, _),
  simp_rw [finset.sup_insert, coe_sup, sup_eq_union],
  congr',
end

/-- The image of a compact set under a continuous function. -/
protected def map (f : α → β) (hf : continuous f) (K : compacts α) : compacts β :=
⟨f '' K.1, K.2.image hf⟩

@[simp] lemma coe_map {f : α → β} (hf : continuous f) (s : compacts α) :
  (s.map f hf : set β) = f '' s := rfl

/-- A homeomorphism induces an equivalence on compact sets, by taking the image. -/
@[simp] protected def equiv (f : α ≃ₜ β) : compacts α ≃ compacts β :=
{ to_fun := compacts.map f f.continuous,
  inv_fun := compacts.map _ f.symm.continuous,
  left_inv := λ s, by { ext1, simp only [coe_map, ← image_comp, f.symm_comp_self, image_id] },
  right_inv := λ s, by { ext1, simp only [coe_map, ← image_comp, f.self_comp_symm, image_id] } }

/-- The image of a compact set under a homeomorphism can also be expressed as a preimage. -/
lemma equiv_to_fun_val (f : α ≃ₜ β) (K : compacts α) :
  (compacts.equiv f K).1 = f.symm ⁻¹' K.1 :=
congr_fun (image_eq_preimage_of_inverse f.left_inv f.right_inv) K.1

/-- The product of two `compacts`, as a `compacts` in the product space. -/
protected def prod (K : compacts α) (L : compacts β) : compacts (α × β) :=
{ carrier := (K : set α) ×ˢ (L : set β),
  compact' := is_compact.prod K.2 L.2 }

@[simp] lemma coe_prod (K : compacts α) (L : compacts β) :
  (K.prod L : set (α × β)) = (K : set α) ×ˢ (L : set β) := rfl

end compacts

/-! ### Nonempty compact sets -/

/-- The type of nonempty compact sets of a topological space. -/
structure nonempty_compacts (α : Type*) [topological_space α] extends compacts α :=
(nonempty' : carrier.nonempty)

namespace nonempty_compacts

instance : set_like (nonempty_compacts α) α :=
{ coe := λ s, s.carrier,
  coe_injective' := λ s t h, by { obtain ⟨⟨_, _⟩, _⟩ := s, obtain ⟨⟨_, _⟩, _⟩ := t, congr' } }

lemma compact (s : nonempty_compacts α) : is_compact (s : set α) := s.compact'
protected lemma nonempty (s : nonempty_compacts α) : (s : set α).nonempty := s.nonempty'

/-- Reinterpret a nonempty compact as a closed set. -/
def to_closeds [t2_space α] (s : nonempty_compacts α) : closeds α := ⟨s, s.compact.is_closed⟩

@[ext] protected lemma ext {s t : nonempty_compacts α} (h : (s : set α) = t) : s = t :=
set_like.ext' h

@[simp] lemma coe_mk (s : compacts α) (h) : (mk s h : set α) = s := rfl

@[simp] lemma carrier_eq_coe (s : nonempty_compacts α) : s.carrier = s := rfl

instance : has_sup (nonempty_compacts α) :=
⟨λ s t, ⟨s.to_compacts ⊔ t.to_compacts, s.nonempty.mono $ subset_union_left _ _⟩⟩
instance [compact_space α] [nonempty α] : has_top (nonempty_compacts α) := ⟨⟨⊤, univ_nonempty⟩⟩

instance : semilattice_sup (nonempty_compacts α) :=
set_like.coe_injective.semilattice_sup _ (λ _ _, rfl)

instance [compact_space α] [nonempty α] : order_top (nonempty_compacts α) :=
order_top.lift (coe : _ → set α) (λ _ _, id) rfl

@[simp] lemma coe_sup (s t : nonempty_compacts α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl
@[simp] lemma coe_top [compact_space α] [nonempty α] :
  (↑(⊤ : nonempty_compacts α) : set α) = univ := rfl

/-- In an inhabited space, the type of nonempty compact subsets is also inhabited, with
default element the singleton set containing the default element. -/
instance [inhabited α] : inhabited (nonempty_compacts α) :=
⟨{ carrier := {default}, compact' := is_compact_singleton, nonempty' := singleton_nonempty _ }⟩

instance to_compact_space {s : nonempty_compacts α} : compact_space s :=
is_compact_iff_compact_space.1 s.compact

instance to_nonempty {s : nonempty_compacts α} : nonempty s := s.nonempty.to_subtype

/-- The product of two `nonempty_compacts`, as a `nonempty_compacts` in the product space. -/
protected def prod (K : nonempty_compacts α) (L : nonempty_compacts β) :
  nonempty_compacts (α × β) :=
{ nonempty' := K.nonempty.prod L.nonempty,
  .. K.to_compacts.prod L.to_compacts }

@[simp] lemma coe_prod (K : nonempty_compacts α) (L : nonempty_compacts β) :
  (K.prod L : set (α × β)) = (K : set α) ×ˢ (L : set β) := rfl

end nonempty_compacts

/-! ### Positive compact sets -/

/-- The type of compact sets with nonempty interior of a topological space.
See also `compacts` and `nonempty_compacts`. -/
structure positive_compacts (α : Type*) [topological_space α] extends compacts α :=
(interior_nonempty' : (interior carrier).nonempty)

namespace positive_compacts

instance : set_like (positive_compacts α) α :=
{ coe := λ s, s.carrier,
  coe_injective' := λ s t h, by { obtain ⟨⟨_, _⟩, _⟩ := s, obtain ⟨⟨_, _⟩, _⟩ := t, congr' } }

lemma compact (s : positive_compacts α) : is_compact (s : set α) := s.compact'
lemma interior_nonempty (s : positive_compacts α) : (interior (s : set α)).nonempty :=
s.interior_nonempty'

protected lemma nonempty (s : positive_compacts α) : (s : set α).nonempty :=
s.interior_nonempty.mono interior_subset

/-- Reinterpret a positive compact as a nonempty compact. -/
def to_nonempty_compacts (s : positive_compacts α) : nonempty_compacts α :=
⟨s.to_compacts, s.nonempty⟩

@[ext] protected lemma ext {s t : positive_compacts α} (h : (s : set α) = t) : s = t :=
set_like.ext' h

@[simp] lemma coe_mk (s : compacts α) (h) : (mk s h : set α) = s := rfl

@[simp] lemma carrier_eq_coe (s : positive_compacts α) : s.carrier = s := rfl

instance : has_sup (positive_compacts α) :=
⟨λ s t, ⟨s.to_compacts ⊔ t.to_compacts,
  s.interior_nonempty.mono $ interior_mono $ subset_union_left _ _⟩⟩

instance [compact_space α] [nonempty α] : has_top (positive_compacts α) :=
⟨⟨⊤, interior_univ.symm.subst univ_nonempty⟩⟩

instance : semilattice_sup (positive_compacts α) :=
set_like.coe_injective.semilattice_sup _ (λ _ _, rfl)

instance [compact_space α] [nonempty α] : order_top (positive_compacts α) :=
order_top.lift (coe : _ → set α) (λ _ _, id) rfl

@[simp] lemma coe_sup (s t : positive_compacts α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl
@[simp] lemma coe_top [compact_space α] [nonempty α] :
  (↑(⊤ : positive_compacts α) : set α) = univ := rfl

lemma _root_.exists_positive_compacts_subset [locally_compact_space α] {U : set α} (ho : is_open U)
  (hn : U.nonempty) : ∃ K : positive_compacts α, ↑K ⊆ U :=
let ⟨x, hx⟩ := hn, ⟨K, hKc, hxK, hKU⟩ := exists_compact_subset ho hx in ⟨⟨⟨K, hKc⟩, ⟨x, hxK⟩⟩, hKU⟩

instance [compact_space α] [nonempty α] : inhabited (positive_compacts α) := ⟨⊤⟩

/-- In a nonempty locally compact space, there exists a compact set with nonempty interior. -/
instance nonempty' [locally_compact_space α] [nonempty α] : nonempty (positive_compacts α) :=
nonempty_of_exists $ exists_positive_compacts_subset is_open_univ univ_nonempty

/-- The product of two `positive_compacts`, as a `positive_compacts` in the product space. -/
protected def prod (K : positive_compacts α) (L : positive_compacts β) :
  positive_compacts (α × β) :=
{ interior_nonempty' :=
  begin
    simp only [compacts.carrier_eq_coe, compacts.coe_prod, interior_prod_eq],
    exact K.interior_nonempty.prod L.interior_nonempty,
  end,
  .. K.to_compacts.prod L.to_compacts }

@[simp] lemma coe_prod (K : positive_compacts α) (L : positive_compacts β) :
  (K.prod L : set (α × β)) = (K : set α) ×ˢ (L : set β) := rfl

end positive_compacts

/-! ### Compact open sets -/

/-- The type of compact open sets of a topological space. This is useful in non Hausdorff contexts,
in particular spectral spaces. -/
structure compact_opens (α : Type*) [topological_space α] extends compacts α :=
(open' : is_open carrier)

namespace compact_opens

instance : set_like (compact_opens α) α :=
{ coe := λ s, s.carrier,
  coe_injective' := λ s t h, by { obtain ⟨⟨_, _⟩, _⟩ := s, obtain ⟨⟨_, _⟩, _⟩ := t, congr' } }

lemma compact (s : compact_opens α) : is_compact (s : set α) := s.compact'
lemma «open» (s : compact_opens α) : is_open (s : set α) := s.open'

/-- Reinterpret a compact open as an open. -/
@[simps] def to_opens (s : compact_opens α) : opens α := ⟨s, s.open⟩

/-- Reinterpret a compact open as a clopen. -/
@[simps] def to_clopens [t2_space α] (s : compact_opens α) : clopens α :=
⟨s, s.open, s.compact.is_closed⟩

@[ext] protected lemma ext {s t : compact_opens α} (h : (s : set α) = t) : s = t := set_like.ext' h

@[simp] lemma coe_mk (s : compacts α) (h) : (mk s h : set α) = s := rfl

instance : has_sup (compact_opens α) :=
⟨λ s t, ⟨s.to_compacts ⊔ t.to_compacts, s.open.union t.open⟩⟩
instance [t2_space α] : has_inf (compact_opens α) :=
⟨λ s t, ⟨s.to_compacts ⊓ t.to_compacts, s.open.inter t.open⟩⟩
instance [compact_space α] : has_top (compact_opens α) := ⟨⟨⊤, is_open_univ⟩⟩
instance : has_bot (compact_opens α) := ⟨⟨⊥, is_open_empty⟩⟩
instance [t2_space α] : has_sdiff (compact_opens α) :=
⟨λ s t, ⟨⟨s \ t, s.compact.diff t.open⟩, s.open.sdiff t.compact.is_closed⟩⟩
instance [t2_space α] [compact_space α] : has_compl (compact_opens α) :=
⟨λ s, ⟨⟨sᶜ, s.open.is_closed_compl.is_compact⟩, s.compact.is_closed.is_open_compl⟩⟩

instance : semilattice_sup (compact_opens α) :=
set_like.coe_injective.semilattice_sup _ (λ _ _, rfl)

instance : order_bot (compact_opens α) := order_bot.lift (coe : _ → set α) (λ _ _, id) rfl

instance [t2_space α] : generalized_boolean_algebra (compact_opens α) :=
set_like.coe_injective.generalized_boolean_algebra _ (λ _ _, rfl) (λ _ _, rfl) rfl (λ _ _, rfl)

instance [compact_space α] : bounded_order (compact_opens α) :=
bounded_order.lift (coe : _ → set α) (λ _ _, id) rfl rfl

instance [t2_space α] [compact_space α] : boolean_algebra (compact_opens α) :=
set_like.coe_injective.boolean_algebra _ (λ _ _, rfl) (λ _ _, rfl) rfl rfl (λ _, rfl) (λ _ _, rfl)

@[simp] lemma coe_sup (s t : compact_opens α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl
@[simp] lemma coe_inf [t2_space α] (s t : compact_opens α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl
@[simp] lemma coe_top [compact_space α] : (↑(⊤ : compact_opens α) : set α) = univ := rfl
@[simp] lemma coe_bot : (↑(⊥ : compact_opens α) : set α) = ∅ := rfl
@[simp] lemma coe_sdiff [t2_space α] (s t : compact_opens α) : (↑(s \ t) : set α) = s \ t := rfl
@[simp] lemma coe_compl [t2_space α] [compact_space α] (s : compact_opens α) : (↑sᶜ : set α) = sᶜ :=
rfl

instance : inhabited (compact_opens α) := ⟨⊥⟩

/-- The image of a compact open under a continuous open map. -/
@[simps] def map (f : α → β) (hf : continuous f) (hf' : is_open_map f) (s : compact_opens α) :
  compact_opens β :=
⟨s.to_compacts.map f hf, hf' _ s.open⟩

@[simp] lemma coe_map {f : α → β} (hf : continuous f) (hf' : is_open_map f) (s : compact_opens α) :
  (s.map f hf hf' : set β) = f '' s := rfl

/-- The product of two `compact_opens`, as a `compact_opens` in the product space. -/
protected def prod (K : compact_opens α) (L : compact_opens β) :
  compact_opens (α × β) :=
{ open' := K.open.prod L.open,
  .. K.to_compacts.prod L.to_compacts }

@[simp] lemma coe_prod (K : compact_opens α) (L : compact_opens β) :
  (K.prod L : set (α × β)) = (K : set α) ×ˢ (L : set β) := rfl

end compact_opens
end topological_space