Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
section \<open>Soundness theorem for the STRIPS semantics\<close> | |
text \<open>We prove the soundness theorem according to ~\cite{lifschitz1987semantics}.\<close> | |
theory Lifschitz_Consistency | |
imports PDDL_STRIPS_Semantics | |
begin | |
text \<open>States are modeled as valuations of our underlying predicate logic.\<close> | |
type_synonym state = "(predicate\<times>object list) valuation" | |
context ast_domain begin | |
text \<open>An action is a partial function from states to states. \<close> | |
type_synonym action = "state \<rightharpoonup> state" | |
text \<open>The Isabelle/HOL formula @{prop \<open>f s = Some s'\<close>} means | |
that \<open>f\<close> is applicable in state \<open>s\<close>, and the result is \<open>s'\<close>. \<close> | |
text \<open>Definition B (i)--(iv) in Lifschitz's paper~\cite{lifschitz1987semantics}\<close> | |
fun is_NegPredAtom where | |
"is_NegPredAtom (Not x) = is_predAtom x" | "is_NegPredAtom _ = False" | |
definition "close_eq s = (\<lambda>predAtm p xs \<Rightarrow> s (p,xs) | Eq a b \<Rightarrow> a=b)" | |
lemma close_eq_predAtm[simp]: "close_eq s (predAtm p xs) \<longleftrightarrow> s (p,xs)" | |
by (auto simp: close_eq_def) | |
lemma close_eq_Eq[simp]: "close_eq s (Eq a b) \<longleftrightarrow> a=b" | |
by (auto simp: close_eq_def) | |
abbreviation entail_eq :: "state \<Rightarrow> object atom formula \<Rightarrow> bool" (infix "\<Turnstile>\<^sub>=" 55) | |
where "entail_eq s f \<equiv> close_eq s \<Turnstile> f" | |
fun sound_opr :: "ground_action \<Rightarrow> action \<Rightarrow> bool" where | |
"sound_opr (Ground_Action pre (Effect add del)) f \<longleftrightarrow> | |
(\<forall>s. s \<Turnstile>\<^sub>= pre \<longrightarrow> | |
(\<exists>s'. f s = Some s' \<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set del \<and> s \<Turnstile>\<^sub>= atm \<longrightarrow> s' \<Turnstile>\<^sub>= atm) | |
\<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set add \<and> s \<Turnstile>\<^sub>= Not atm \<longrightarrow> s' \<Turnstile>\<^sub>= Not atm) | |
\<and> (\<forall>fmla. fmla \<in> set add \<longrightarrow> s' \<Turnstile>\<^sub>= fmla) | |
\<and> (\<forall>fmla. fmla \<in> set del \<and> fmla \<notin> set add \<longrightarrow> s' \<Turnstile>\<^sub>= (Not fmla)) | |
)) | |
\<and> (\<forall>fmla\<in>set add. is_predAtom fmla)" | |
lemma sound_opr_alt: | |
"sound_opr opr f = | |
((\<forall>s. s \<Turnstile>\<^sub>= (precondition opr) \<longrightarrow> | |
(\<exists>s'. f s = (Some s') | |
\<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set(dels (effect opr)) \<and> s \<Turnstile>\<^sub>= atm \<longrightarrow> s' \<Turnstile>\<^sub>= atm) | |
\<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set (adds (effect opr)) \<and> s \<Turnstile>\<^sub>= Not atm \<longrightarrow> s' \<Turnstile>\<^sub>= Not atm) | |
\<and> (\<forall>atm. atm \<in> set(adds (effect opr)) \<longrightarrow> s' \<Turnstile>\<^sub>= atm) | |
\<and> (\<forall>fmla. fmla \<in> set (dels (effect opr)) \<and> fmla \<notin> set(adds (effect opr)) \<longrightarrow> s' \<Turnstile>\<^sub>= (Not fmla)) | |
\<and> (\<forall>a b. s \<Turnstile>\<^sub>= Atom (Eq a b) \<longrightarrow> s' \<Turnstile>\<^sub>= Atom (Eq a b)) | |
\<and> (\<forall>a b. s \<Turnstile>\<^sub>= Not (Atom (Eq a b)) \<longrightarrow> s' \<Turnstile>\<^sub>= Not (Atom (Eq a b))) | |
)) | |
\<and> (\<forall>fmla\<in>set(adds (effect opr)). is_predAtom fmla))" | |
by (cases "(opr,f)" rule: sound_opr.cases) auto | |
text \<open>Definition B (v)--(vii) in Lifschitz's paper~\cite{lifschitz1987semantics}\<close> | |
definition sound_system | |
:: "ground_action set | |
\<Rightarrow> world_model | |
\<Rightarrow> state | |
\<Rightarrow> (ground_action \<Rightarrow> action) | |
\<Rightarrow> bool" | |
where | |
"sound_system \<Sigma> M\<^sub>0 s\<^sub>0 f \<longleftrightarrow> | |
((\<forall>fmla\<in>close_world M\<^sub>0. s\<^sub>0 \<Turnstile>\<^sub>= fmla) | |
\<and> wm_basic M\<^sub>0 | |
\<and> (\<forall>\<alpha>\<in>\<Sigma>. sound_opr \<alpha> (f \<alpha>)))" | |
text \<open>Composing two actions\<close> | |
definition compose_action :: "action \<Rightarrow> action \<Rightarrow> action" where | |
"compose_action f1 f2 x = (case f2 x of Some y \<Rightarrow> f1 y | None \<Rightarrow> None)" | |
text \<open>Composing a list of actions\<close> | |
definition compose_actions :: "action list \<Rightarrow> action" where | |
"compose_actions fs \<equiv> fold compose_action fs Some" | |
text \<open>Composing a list of actions satisfies some natural lemmas: \<close> | |
lemma compose_actions_Nil[simp]: | |
"compose_actions [] = Some" unfolding compose_actions_def by auto | |
lemma compose_actions_Cons[simp]: | |
"f s = Some s' \<Longrightarrow> compose_actions (f#fs) s = compose_actions fs s'" | |
proof - | |
interpret monoid_add compose_action Some | |
apply unfold_locales | |
unfolding compose_action_def | |
by (auto split: option.split) | |
assume "f s = Some s'" | |
then show ?thesis | |
unfolding compose_actions_def | |
by (simp add: compose_action_def fold_plus_sum_list_rev) | |
qed | |
text \<open>Soundness Theorem in Lifschitz's paper~\cite{lifschitz1987semantics}.\<close> | |
theorem STRIPS_sema_sound: | |
assumes "sound_system \<Sigma> M\<^sub>0 s\<^sub>0 f" | |
\<comment> \<open>For a sound system \<open>\<Sigma>\<close>\<close> | |
assumes "set \<alpha>s \<subseteq> \<Sigma>" | |
\<comment> \<open>And a plan \<open>\<alpha>s\<close>\<close> | |
assumes "ground_action_path M\<^sub>0 \<alpha>s M'" | |
\<comment> \<open>Which is accepted by the system, yielding result \<open>M'\<close> | |
(called \<open>R(\<alpha>s)\<close> in Lifschitz's paper~\cite{lifschitz1987semantics}.)\<close> | |
obtains s' | |
\<comment> \<open>We have that \<open>f(\<alpha>s)\<close> is applicable | |
in initial state, yielding state \<open>s'\<close> (called \<open>f\<^sub>\<alpha>\<^sub>s(s\<^sub>0)\<close> in Lifschitz's paper~\cite{lifschitz1987semantics}.)\<close> | |
where "compose_actions (map f \<alpha>s) s\<^sub>0 = Some s'" | |
\<comment> \<open>The result world model \<open>M'\<close> is satisfied in state \<open>s'\<close>\<close> | |
and "\<forall>fmla\<in>close_world M'. s' \<Turnstile>\<^sub>= fmla" | |
proof - | |
have "(valuation M' \<Turnstile> fmla)" if "wm_basic M'" "fmla\<in>M'" for fmla | |
using that apply (induction fmla) | |
by (auto simp: valuation_def wm_basic_def split: atom.split) | |
have "\<exists>s'. compose_actions (map f \<alpha>s) s\<^sub>0 = Some s' \<and> (\<forall>fmla\<in>close_world M'. s' \<Turnstile>\<^sub>= fmla)" | |
using assms | |
proof(induction \<alpha>s arbitrary: s\<^sub>0 M\<^sub>0 ) | |
case Nil | |
then show ?case by (auto simp add: close_world_def compose_action_def sound_system_def) | |
next | |
case ass: (Cons \<alpha> \<alpha>s) | |
then obtain pre add del where a: "\<alpha> = Ground_Action pre (Effect add del)" | |
using ground_action.exhaust ast_effect.exhaust by metis | |
let ?M\<^sub>1 = "execute_ground_action \<alpha> M\<^sub>0" | |
have "close_world M\<^sub>0 \<TTurnstile> precondition \<alpha>" | |
using ass(4) | |
by auto | |
moreover have s0_ent_cwM0: "\<forall>fmla\<in>(close_world M\<^sub>0). close_eq s\<^sub>0 \<Turnstile> fmla" | |
using ass(2) | |
unfolding sound_system_def | |
by auto | |
ultimately have s0_ent_alpha_precond: "close_eq s\<^sub>0 \<Turnstile> precondition \<alpha>" | |
unfolding entailment_def | |
by auto | |
then obtain s\<^sub>1 where s1: "(f \<alpha>) s\<^sub>0 = Some s\<^sub>1" | |
"(\<forall>atm. is_predAtom atm \<longrightarrow> atm \<notin> set(dels (effect \<alpha>)) | |
\<longrightarrow> close_eq s\<^sub>0 \<Turnstile> atm | |
\<longrightarrow> close_eq s\<^sub>1 \<Turnstile> atm)" | |
"(\<forall>fmla. fmla \<in> set(adds (effect \<alpha>)) | |
\<longrightarrow> close_eq s\<^sub>1 \<Turnstile> fmla)" | |
"(\<forall>atm. is_predAtom atm \<and> atm \<notin> set (adds (effect \<alpha>)) \<and> close_eq s\<^sub>0 \<Turnstile> Not atm \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> Not atm)" | |
"(\<forall>fmla. fmla \<in> set (dels (effect \<alpha>)) \<and> fmla \<notin> set(adds (effect \<alpha>)) \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> (Not fmla))" | |
"(\<forall>a b. close_eq s\<^sub>0 \<Turnstile> Atom (Eq a b) \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> Atom (Eq a b))" | |
"(\<forall>a b. close_eq s\<^sub>0 \<Turnstile> Not (Atom (Eq a b)) \<longrightarrow> close_eq s\<^sub>1 \<Turnstile> Not (Atom (Eq a b)))" | |
using ass(2-4) | |
unfolding sound_system_def sound_opr_alt by force | |
have "close_eq s\<^sub>1 \<Turnstile> fmla" if "fmla\<in>close_world ?M\<^sub>1" for fmla | |
using ass(2) | |
using that s1 s0_ent_cwM0 | |
unfolding sound_system_def execute_ground_action_def wm_basic_def | |
apply (auto simp: in_close_world_conv) | |
subgoal | |
by (metis (no_types, lifting) DiffE UnE a apply_effect.simps ground_action.sel(2) ast_effect.sel(1) ast_effect.sel(2) close_world_extensive subsetCE) | |
subgoal | |
by (metis Diff_iff Un_iff a ground_action.sel(2) ast_domain.apply_effect.simps ast_domain.close_eq_predAtm ast_effect.sel(1) ast_effect.sel(2) formula_semantics.simps(1) formula_semantics.simps(3) in_close_world_conv is_predAtom.simps(1)) | |
done | |
moreover have "(\<forall>atm. fmla \<noteq> formula.Atom atm) \<longrightarrow> s \<Turnstile> fmla" if "fmla\<in>?M\<^sub>1" for fmla s | |
proof- | |
have alpha: "(\<forall>s.\<forall>fmla\<in>set(adds (effect \<alpha>)). \<not> is_predAtom fmla \<longrightarrow> s \<Turnstile> fmla)" | |
using ass(2,3) | |
unfolding sound_system_def ast_domain.sound_opr_alt | |
by auto | |
then show ?thesis | |
using that | |
unfolding a execute_ground_action_def | |
using ass.prems(1)[unfolded sound_system_def] | |
by(cases fmla; fastforce simp: wm_basic_def) | |
qed | |
moreover have "(\<forall>opr\<in>\<Sigma>. sound_opr opr (f opr))" | |
using ass(2) unfolding sound_system_def | |
by (auto simp add:) | |
moreover have "wm_basic ?M\<^sub>1" | |
using ass(2,3) | |
unfolding sound_system_def execute_ground_action_def | |
thm sound_opr.cases | |
apply (cases "(\<alpha>,f \<alpha>)" rule: sound_opr.cases) | |
apply (auto simp: wm_basic_def) | |
done | |
ultimately have "sound_system \<Sigma> ?M\<^sub>1 s\<^sub>1 f" | |
unfolding sound_system_def | |
by (auto simp: wm_basic_def) | |
from ass.IH[OF this] ass.prems obtain s' where | |
"compose_actions (map f \<alpha>s) s\<^sub>1 = Some s' \<and> (\<forall>a\<in>close_world M'. s' \<Turnstile>\<^sub>= a)" | |
by auto | |
thus ?case by (auto simp: s1(1)) | |
qed | |
with that show ?thesis by blast | |
qed | |
text \<open>More compact notation of the soundness theorem.\<close> | |
theorem STRIPS_sema_sound_compact_version: | |
"sound_system \<Sigma> M\<^sub>0 s\<^sub>0 f \<Longrightarrow> set \<alpha>s \<subseteq> \<Sigma> | |
\<Longrightarrow> ground_action_path M\<^sub>0 \<alpha>s M' | |
\<Longrightarrow> \<exists>s'. compose_actions (map f \<alpha>s) s\<^sub>0 = Some s' | |
\<and> (\<forall>fmla\<in>close_world M'. s' \<Turnstile>\<^sub>= fmla)" | |
using STRIPS_sema_sound by metis | |
end \<comment> \<open>Context of \<open>ast_domain\<close>\<close> | |
subsection \<open>Soundness Theorem for PDDL\<close> | |
context wf_ast_problem begin | |
text \<open>Mapping world models to states\<close> | |
definition state_to_wm :: "state \<Rightarrow> world_model" | |
where "state_to_wm s = ({formula.Atom (predAtm p xs) | p xs. s (p,xs)})" | |
definition wm_to_state :: "world_model \<Rightarrow> state" | |
where "wm_to_state M = (\<lambda>(p,xs). (formula.Atom (predAtm p xs)) \<in> M)" | |
lemma wm_to_state_eq[simp]: "wm_to_state M (p, as) \<longleftrightarrow> Atom (predAtm p as) \<in> M" | |
by (auto simp: wm_to_state_def) | |
lemma wm_to_state_inv[simp]: "wm_to_state (state_to_wm s) = s" | |
by (auto simp: wm_to_state_def | |
state_to_wm_def image_def) | |
text \<open>Mapping AST action instances to actions\<close> | |
definition "pddl_opr_to_act g_opr s = ( | |
let M = state_to_wm s in | |
if (wm_to_state (close_world M)) \<Turnstile>\<^sub>= (precondition g_opr) then | |
Some (wm_to_state (apply_effect (effect g_opr) M)) | |
else | |
None)" | |
definition "close_eq_M M = (M \<inter> {Atom (predAtm p xs) | p xs. True }) \<union> {Atom (Eq a a) | a. True} \<union> {\<^bold>\<not>(Atom (Eq a b)) | a b. a\<noteq>b}" | |
lemma atom_in_wm_eq: | |
"s \<Turnstile>\<^sub>= (formula.Atom atm) | |
\<longleftrightarrow> ((formula.Atom atm) \<in> close_eq_M (state_to_wm s))" | |
by (auto simp: wm_to_state_def | |
state_to_wm_def image_def close_eq_M_def close_eq_def split: atom.splits) | |
lemma atom_in_wm_2_eq: | |
"close_eq (wm_to_state M) \<Turnstile> (formula.Atom atm) | |
\<longleftrightarrow> ((formula.Atom atm) \<in> close_eq_M M)" | |
by (auto simp: wm_to_state_def | |
state_to_wm_def image_def close_eq_def close_eq_M_def split:atom.splits) | |
lemma not_dels_preserved: | |
assumes "f \<notin> (set d)" " f \<in> M" | |
shows "f \<in> apply_effect (Effect a d) M" | |
using assms | |
by auto | |
lemma adds_satisfied: | |
assumes "f \<in> (set a)" | |
shows "f \<in> apply_effect (Effect a d) M" | |
using assms | |
by auto | |
lemma dels_unsatisfied: | |
assumes "f \<in> (set d)" "f \<notin> set a" | |
shows "f \<notin> apply_effect (Effect a d) M" | |
using assms | |
by auto | |
lemma dels_unsatisfied_2: | |
assumes "f \<in> set (dels eff)" "f \<notin> set (adds eff)" | |
shows "f \<notin> apply_effect eff M" | |
using assms | |
by (cases eff; auto) | |
lemma wf_fmla_atm_is_atom: "wf_fmla_atom objT f \<Longrightarrow> is_predAtom f" | |
by (cases f rule: wf_fmla_atom.cases) auto | |
lemma wf_act_adds_are_atoms: | |
assumes "wf_effect_inst effs" "ae \<in> set (adds effs)" | |
shows "is_predAtom ae" | |
using assms | |
by (cases effs) (auto simp: wf_fmla_atom_alt) | |
lemma wf_act_adds_dels_atoms: | |
assumes "wf_effect_inst effs" "ae \<in> set (dels effs)" | |
shows "is_predAtom ae" | |
using assms | |
by (cases effs) (auto simp: wf_fmla_atom_alt) | |
lemma to_state_close_from_state_eq[simp]: "wm_to_state (close_world (state_to_wm s)) = s" | |
by (auto simp: wm_to_state_def close_world_def | |
state_to_wm_def image_def) | |
lemma wf_eff_pddl_ground_act_is_sound_opr: | |
assumes "wf_effect_inst (effect g_opr)" | |
shows "sound_opr g_opr ((pddl_opr_to_act g_opr))" | |
unfolding sound_opr_alt | |
apply(cases g_opr; safe) | |
subgoal for pre eff s | |
apply (rule exI[where x="wm_to_state(apply_effect eff (state_to_wm s))"]) | |
apply (auto simp: pddl_opr_to_act_def Let_def split:if_splits) | |
subgoal for atm | |
by (cases eff; cases atm; auto simp: close_eq_def wm_to_state_def state_to_wm_def split: atom.splits) | |
subgoal for atm | |
by (cases eff; cases atm; auto simp: close_eq_def wm_to_state_def state_to_wm_def split: atom.splits) | |
subgoal for atm | |
using assms | |
by (cases eff; cases atm; force simp: close_eq_def wm_to_state_def state_to_wm_def split: atom.splits) | |
subgoal for fmla | |
using assms | |
by (cases eff; cases fmla rule: wf_fmla_atom.cases; force simp: close_eq_def wm_to_state_def state_to_wm_def split: atom.splits) | |
done | |
subgoal for pre eff fmla | |
using assms | |
by (cases eff; cases fmla rule: wf_fmla_atom.cases; force) | |
done | |
lemma wf_eff_impt_wf_eff_inst: "wf_effect objT eff \<Longrightarrow> wf_effect_inst eff" | |
by (cases eff; auto simp add: wf_fmla_atom_alt) | |
lemma wf_pddl_ground_act_is_sound_opr: | |
assumes "wf_ground_action g_opr" | |
shows "sound_opr g_opr (pddl_opr_to_act g_opr)" | |
using wf_eff_impt_wf_eff_inst wf_eff_pddl_ground_act_is_sound_opr assms | |
by (cases g_opr; auto) | |
lemma wf_action_schema_sound_inst: | |
assumes "action_params_match act args" "wf_action_schema act" | |
shows "sound_opr | |
(instantiate_action_schema act args) | |
((pddl_opr_to_act (instantiate_action_schema act args)))" | |
using | |
wf_pddl_ground_act_is_sound_opr[ | |
OF wf_instantiate_action_schema[OF assms]] | |
by blast | |
lemma wf_plan_act_is_sound: | |
assumes "wf_plan_action (PAction n args)" | |
shows "sound_opr | |
(instantiate_action_schema (the (resolve_action_schema n)) args) | |
((pddl_opr_to_act | |
(instantiate_action_schema (the (resolve_action_schema n)) args)))" | |
using assms | |
using wf_action_schema_sound_inst wf_eff_pddl_ground_act_is_sound_opr | |
by (auto split: option.splits) | |
lemma wf_plan_act_is_sound': | |
assumes "wf_plan_action \<pi>" | |
shows "sound_opr | |
(resolve_instantiate \<pi>) | |
((pddl_opr_to_act (resolve_instantiate \<pi>)))" | |
using assms wf_plan_act_is_sound | |
by (cases \<pi>; auto ) | |
lemma wf_world_model_has_atoms: "f\<in>M \<Longrightarrow> wf_world_model M \<Longrightarrow> is_predAtom f" | |
using wf_fmla_atm_is_atom | |
unfolding wf_world_model_def | |
by auto | |
lemma wm_to_state_works_for_wf_wm_closed: | |
"wf_world_model M \<Longrightarrow> fmla\<in>close_world M \<Longrightarrow> close_eq (wm_to_state M) \<Turnstile> fmla" | |
apply (cases fmla rule: wf_fmla_atom.cases) | |
by (auto simp: wf_world_model_def close_eq_def wm_to_state_def close_world_def) | |
lemma wm_to_state_works_for_wf_wm: "wf_world_model M \<Longrightarrow> fmla\<in>M \<Longrightarrow> close_eq (wm_to_state M) \<Turnstile> fmla" | |
apply (cases fmla rule: wf_fmla_atom.cases) | |
by (auto simp: wf_world_model_def close_eq_def wm_to_state_def) | |
lemma wm_to_state_works_for_I_closed: | |
assumes "x \<in> close_world I" | |
shows "close_eq (wm_to_state I) \<Turnstile> x" | |
apply (rule wm_to_state_works_for_wf_wm_closed) | |
using assms wf_I by auto | |
lemma wf_wm_imp_basic: "wf_world_model M \<Longrightarrow> wm_basic M" | |
by (auto simp: wf_world_model_def wm_basic_def wf_fmla_atm_is_atom) | |
theorem wf_plan_sound_system: | |
assumes "\<forall>\<pi>\<in> set \<pi>s. wf_plan_action \<pi>" | |
shows "sound_system | |
(set (map resolve_instantiate \<pi>s)) | |
I | |
(wm_to_state I) | |
((\<lambda>\<alpha>. pddl_opr_to_act \<alpha>))" | |
unfolding sound_system_def | |
proof(intro conjI ballI) | |
show "close_eq(wm_to_state I) \<Turnstile> x" if "x \<in> close_world I" for x | |
using that[unfolded in_close_world_conv] | |
wm_to_state_works_for_I_closed wm_to_state_works_for_wf_wm | |
by (auto simp: wf_I) | |
show "wm_basic I" using wf_wm_imp_basic[OF wf_I] . | |
show "sound_opr \<alpha> (pddl_opr_to_act \<alpha>)" if "\<alpha> \<in> set (map resolve_instantiate \<pi>s)" for \<alpha> | |
using that | |
using wf_plan_act_is_sound' assms | |
by auto | |
qed | |
theorem wf_plan_soundness_theorem: | |
assumes "plan_action_path I \<pi>s M" | |
defines "\<alpha>s \<equiv> map (pddl_opr_to_act \<circ> resolve_instantiate) \<pi>s" | |
defines "s\<^sub>0 \<equiv> wm_to_state I" | |
shows "\<exists>s'. compose_actions \<alpha>s s\<^sub>0 = Some s' \<and> (\<forall>\<phi>\<in>close_world M. s' \<Turnstile>\<^sub>= \<phi>)" | |
apply (rule STRIPS_sema_sound) | |
apply (rule wf_plan_sound_system) | |
using assms | |
unfolding plan_action_path_def | |
by (auto simp add: image_def) | |
end \<comment> \<open>Context of \<open>wf_ast_problem\<close>\<close> | |
end | |