Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
23.8 kB
(* Title: AVL Trees
Author: Tobias Nipkow and Cornelia Pusch,
converted to Isar by Gerwin Klein
contributions by Achim Brucker, Burkhart Wolff and Jan Smaus
delete formalization and a transformation to Isar by Ondrej Kuncar
Maintainer: Gerwin Klein <gerwin.klein at nicta.com.au>
see the file Changelog for a list of changes
*)
section "AVL Trees"
theory AVL
imports Main
begin
text \<open>
This is a monolithic formalization of AVL trees.
\<close>
subsection \<open>AVL tree type definition\<close>
datatype (set_of: 'a) tree = ET | MKT 'a "'a tree" "'a tree" nat
subsection \<open>Invariants and auxiliary functions\<close>
primrec height :: "'a tree \<Rightarrow> nat" where
"height ET = 0" |
"height (MKT x l r h) = max (height l) (height r) + 1"
primrec avl :: "'a tree \<Rightarrow> bool" where
"avl ET = True" |
"avl (MKT x l r h) =
((height l = height r \<or> height l = height r + 1 \<or> height r = height l + 1) \<and>
h = max (height l) (height r) + 1 \<and> avl l \<and> avl r)"
primrec is_ord :: "('a::order) tree \<Rightarrow> bool" where
"is_ord ET = True" |
"is_ord (MKT n l r h) =
((\<forall>n' \<in> set_of l. n' < n) \<and> (\<forall>n' \<in> set_of r. n < n') \<and> is_ord l \<and> is_ord r)"
subsection \<open>AVL interface and implementation\<close>
primrec is_in :: "('a::order) \<Rightarrow> 'a tree \<Rightarrow> bool" where
"is_in k ET = False" |
"is_in k (MKT n l r h) = (if k = n then True else
if k < n then (is_in k l)
else (is_in k r))"
primrec ht :: "'a tree \<Rightarrow> nat" where
"ht ET = 0" |
"ht (MKT x l r h) = h"
definition
mkt :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
"mkt x l r = MKT x l r (max (ht l) (ht r) + 1)"
fun mkt_bal_l where
"mkt_bal_l n l r = (
if ht l = ht r + 2 then (case l of
MKT ln ll lr _ \<Rightarrow> (if ht ll < ht lr
then case lr of
MKT lrn lrl lrr _ \<Rightarrow> mkt lrn (mkt ln ll lrl) (mkt n lrr r)
else mkt ln ll (mkt n lr r)))
else mkt n l r
)"
fun mkt_bal_r where
"mkt_bal_r n l r = (
if ht r = ht l + 2 then (case r of
MKT rn rl rr _ \<Rightarrow> (if ht rl > ht rr
then case rl of
MKT rln rll rlr _ \<Rightarrow> mkt rln (mkt n l rll) (mkt rn rlr rr)
else mkt rn (mkt n l rl) rr))
else mkt n l r
)"
primrec insert :: "'a::order \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
"insert x ET = MKT x ET ET 1" |
"insert x (MKT n l r h) =
(if x=n
then MKT n l r h
else if x<n
then mkt_bal_l n (insert x l) r
else mkt_bal_r n l (insert x r))"
fun delete_max where
"delete_max (MKT n l ET h) = (n,l)" |
"delete_max (MKT n l r h) = (
let (n',r') = delete_max r in
(n',mkt_bal_l n l r'))"
lemmas delete_max_induct = delete_max.induct[case_names ET MKT]
fun delete_root where
"delete_root (MKT n ET r h) = r" |
"delete_root (MKT n l ET h) = l" |
"delete_root (MKT n l r h) =
(let (new_n, l') = delete_max l in
mkt_bal_r new_n l' r
)"
lemmas delete_root_cases = delete_root.cases[case_names ET_t MKT_ET MKT_MKT]
primrec delete :: "'a::order \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
"delete _ ET = ET" |
"delete x (MKT n l r h) = (
if x = n then delete_root (MKT n l r h)
else if x < n then
let l' = delete x l in
mkt_bal_r n l' r
else
let r' = delete x r in
mkt_bal_l n l r'
)"
subsection \<open>Correctness proof\<close>
subsubsection \<open>Insertion maintains AVL balance\<close>
declare Let_def [simp]
lemma [simp]: "avl t \<Longrightarrow> ht t = height t"
by (induct t) simp_all
lemma height_mkt_bal_l:
"\<lbrakk> height l = height r + 2; avl l; avl r \<rbrakk> \<Longrightarrow>
height (mkt_bal_l n l r) = height r + 2 \<or>
height (mkt_bal_l n l r) = height r + 3"
by (cases l) (auto simp:mkt_def split:tree.split)
lemma height_mkt_bal_r:
"\<lbrakk> height r = height l + 2; avl l; avl r \<rbrakk> \<Longrightarrow>
height (mkt_bal_r n l r) = height l + 2 \<or>
height (mkt_bal_r n l r) = height l + 3"
by (cases r) (auto simp add:mkt_def split:tree.split)
lemma [simp]: "height(mkt x l r) = max (height l) (height r) + 1"
by (simp add: mkt_def)
lemma avl_mkt:
"\<lbrakk> avl l; avl r;
height l = height r \<or> height l = height r + 1 \<or> height r = height l + 1
\<rbrakk> \<Longrightarrow> avl(mkt x l r)"
by (auto simp add:max_def mkt_def)
lemma height_mkt_bal_l2:
"\<lbrakk> avl l; avl r; height l \<noteq> height r + 2 \<rbrakk> \<Longrightarrow>
height (mkt_bal_l n l r) = (1 + max (height l) (height r))"
by (cases l, cases r) simp_all
lemma height_mkt_bal_r2:
"\<lbrakk> avl l; avl r; height r \<noteq> height l + 2 \<rbrakk> \<Longrightarrow>
height (mkt_bal_r n l r) = (1 + max (height l) (height r))"
by (cases l, cases r) simp_all
lemma avl_mkt_bal_l:
assumes "avl l" "avl r" and "height l = height r \<or> height l = height r + 1
\<or> height r = height l + 1 \<or> height l = height r + 2"
shows "avl(mkt_bal_l n l r)"
proof(cases l)
case ET
with assms show ?thesis by (simp add: mkt_def)
next
case (MKT ln ll lr lh)
with assms show ?thesis
proof(cases "height l = height r + 2")
case True
from True MKT assms show ?thesis by (auto intro!: avl_mkt split: tree.split)
next
case False
with assms show ?thesis by (simp add: avl_mkt)
qed
qed
lemma avl_mkt_bal_r:
assumes "avl l" and "avl r" and "height l = height r \<or> height l = height r + 1
\<or> height r = height l + 1 \<or> height r = height l + 2"
shows "avl(mkt_bal_r n l r)"
proof(cases r)
case ET
with assms show ?thesis by (simp add: mkt_def)
next
case (MKT rn rl rr rh)
with assms show ?thesis
proof(cases "height r = height l + 2")
case True
from True MKT assms show ?thesis by (auto intro!: avl_mkt split: tree.split)
next
case False
with assms show ?thesis by (simp add: avl_mkt)
qed
qed
(* It apppears that these two properties need to be proved simultaneously: *)
text\<open>Insertion maintains the AVL property:\<close>
theorem avl_insert_aux:
assumes "avl t"
shows "avl(insert x t)"
"(height (insert x t) = height t \<or> height (insert x t) = height t + 1)"
using assms
proof (induction t)
case (MKT n l r h)
case 1
with MKT show ?case
proof(cases "x = n")
case True
with MKT 1 show ?thesis by simp
next
case False
with MKT 1 show ?thesis
proof(cases "x<n")
case True
with MKT 1 show ?thesis by (auto simp add:avl_mkt_bal_l simp del:mkt_bal_l.simps)
next
case False
with MKT 1 \<open>x\<noteq>n\<close> show ?thesis by (auto simp add:avl_mkt_bal_r simp del:mkt_bal_r.simps)
qed
qed
case 2
from 2 MKT show ?case
proof(cases "x = n")
case True
with MKT 1 show ?thesis by simp
next
case False
with MKT 1 show ?thesis
proof(cases "x<n")
case True
with MKT 2 show ?thesis
proof(cases "height (AVL.insert x l) = height r + 2")
case False with MKT 2 \<open>x < n\<close> show ?thesis by (auto simp del: mkt_bal_l.simps simp: height_mkt_bal_l2)
next
case True
then consider (a) "height (mkt_bal_l n (AVL.insert x l) r) = height r + 2"
| (b) "height (mkt_bal_l n (AVL.insert x l) r) = height r + 3"
using MKT 2 by (atomize_elim, intro height_mkt_bal_l) simp_all
then show ?thesis
proof cases
case a
with 2 \<open>x < n\<close> show ?thesis by (auto simp del: mkt_bal_l.simps)
next
case b
with True 1 MKT(2) \<open>x < n\<close> show ?thesis by (simp del: mkt_bal_l.simps) arith
qed
qed
next
case False
with MKT 2 show ?thesis
proof(cases "height (AVL.insert x r) = height l + 2")
case False with MKT 2 \<open>\<not>x < n\<close> show ?thesis by (auto simp del: mkt_bal_r.simps simp: height_mkt_bal_r2)
next
case True
then consider (a) "height (mkt_bal_r n l (AVL.insert x r)) = height l + 2"
| (b) "height (mkt_bal_r n l (AVL.insert x r)) = height l + 3"
using MKT 2 by (atomize_elim, intro height_mkt_bal_r) simp_all
then show ?thesis
proof cases
case a
with 2 \<open>\<not>x < n\<close> show ?thesis by (auto simp del: mkt_bal_r.simps)
next
case b
with True 1 MKT(4) \<open>\<not>x < n\<close> show ?thesis by (simp del: mkt_bal_r.simps) arith
qed
qed
qed
qed
qed simp_all
lemmas avl_insert = avl_insert_aux(1)
subsubsection \<open>Deletion maintains AVL balance\<close>
lemma avl_delete_max:
assumes "avl x" and "x \<noteq> ET"
shows "avl (snd (delete_max x))" "height x = height(snd (delete_max x)) \<or>
height x = height(snd (delete_max x)) + 1"
using assms
proof (induct x rule: delete_max_induct)
case (MKT n l rn rl rr rh h)
case 1
with MKT have "avl l" "avl (snd (delete_max (MKT rn rl rr rh)))" by auto
with 1 MKT have "avl (mkt_bal_l n l (snd (delete_max (MKT rn rl rr rh))))"
by (intro avl_mkt_bal_l) fastforce+
then show ?case
by (auto simp: height_mkt_bal_l height_mkt_bal_l2
linorder_class.max.absorb1 linorder_class.max.absorb2
split:prod.split simp del:mkt_bal_l.simps)
next
case (MKT n l rn rl rr rh h)
case 2
let ?r = "MKT rn rl rr rh"
let ?r' = "snd (delete_max ?r)"
from \<open>avl x\<close> MKT 2 have "avl l" and "avl ?r" by simp_all
then show ?case using MKT 2 height_mkt_bal_l[of l ?r' n] height_mkt_bal_l2[of l ?r' n]
apply (auto split:prod.splits simp del:avl.simps mkt_bal_l.simps) by arith+
qed auto
lemma avl_delete_root:
assumes "avl t" and "t \<noteq> ET"
shows "avl(delete_root t)"
using assms
proof (cases t rule:delete_root_cases)
case (MKT_MKT n ln ll lr lh rn rl rr rh h)
let ?l = "MKT ln ll lr lh"
let ?r = "MKT rn rl rr rh"
let ?l' = "snd (delete_max ?l)"
from \<open>avl t\<close> and MKT_MKT have "avl ?r" by simp
from \<open>avl t\<close> and MKT_MKT have "avl ?l" by simp
then have "avl(?l')" "height ?l = height(?l') \<or>
height ?l = height(?l') + 1" by (rule avl_delete_max,simp)+
with \<open>avl t\<close> MKT_MKT have "height ?l' = height ?r \<or> height ?l' = height ?r + 1
\<or> height ?r = height ?l' + 1 \<or> height ?r = height ?l' + 2" by fastforce
with \<open>avl ?l'\<close> \<open>avl ?r\<close> have "avl(mkt_bal_r (fst(delete_max ?l)) ?l' ?r)"
by (rule avl_mkt_bal_r)
with MKT_MKT show ?thesis by (auto split:prod.splits simp del:mkt_bal_r.simps)
qed simp_all
lemma height_delete_root:
assumes "avl t" and "t \<noteq> ET"
shows "height t = height(delete_root t) \<or> height t = height(delete_root t) + 1"
using assms
proof (cases t rule: delete_root_cases)
case (MKT_MKT n ln ll lr lh rn rl rr rh h)
let ?l = "MKT ln ll lr lh"
let ?r = "MKT rn rl rr rh"
let ?l' = "snd (delete_max ?l)"
let ?t' = "mkt_bal_r (fst(delete_max ?l)) ?l' ?r"
from \<open>avl t\<close> and MKT_MKT have "avl ?r" by simp
from \<open>avl t\<close> and MKT_MKT have "avl ?l" by simp
then have "avl(?l')" by (rule avl_delete_max,simp)
have l'_height: "height ?l = height ?l' \<or> height ?l = height ?l' + 1" using \<open>avl ?l\<close> by (intro avl_delete_max) auto
have t_height: "height t = 1 + max (height ?l) (height ?r)" using \<open>avl t\<close> MKT_MKT by simp
have "height t = height ?t' \<or> height t = height ?t' + 1" using \<open>avl t\<close> MKT_MKT
proof(cases "height ?r = height ?l' + 2")
case False
show ?thesis using l'_height t_height False by (subst height_mkt_bal_r2[OF \<open>avl ?l'\<close> \<open>avl ?r\<close> False])+ arith
next
case True
show ?thesis
proof(cases rule: disjE[OF height_mkt_bal_r[OF True \<open>avl ?l'\<close> \<open>avl ?r\<close>, of "fst (delete_max ?l)"]])
case 1
then show ?thesis using l'_height t_height True by arith
next
case 2
then show ?thesis using l'_height t_height True by arith
qed
qed
thus ?thesis using MKT_MKT by (auto split:prod.splits simp del:mkt_bal_r.simps)
qed simp_all
text\<open>Deletion maintains the AVL property:\<close>
theorem avl_delete_aux:
assumes "avl t"
shows "avl(delete x t)" and "height t = (height (delete x t)) \<or> height t = height (delete x t) + 1"
using assms
proof (induct t)
case (MKT n l r h)
case 1
with MKT show ?case
proof(cases "x = n")
case True
with MKT 1 show ?thesis by (auto simp:avl_delete_root)
next
case False
with MKT 1 show ?thesis
proof(cases "x<n")
case True
with MKT 1 show ?thesis by (auto simp add:avl_mkt_bal_r simp del:mkt_bal_r.simps)
next
case False
with MKT 1 \<open>x\<noteq>n\<close> show ?thesis by (auto simp add:avl_mkt_bal_l simp del:mkt_bal_l.simps)
qed
qed
case 2
with MKT show ?case
proof(cases "x = n")
case True
with 1 have "height (MKT n l r h) = height(delete_root (MKT n l r h))
\<or> height (MKT n l r h) = height(delete_root (MKT n l r h)) + 1"
by (subst height_delete_root,simp_all)
with True show ?thesis by simp
next
case False
with MKT 1 show ?thesis
proof(cases "x<n")
case True
show ?thesis
proof(cases "height r = height (delete x l) + 2")
case False with MKT 1 \<open>x < n\<close> show ?thesis by auto
next
case True
then consider (a) "height (mkt_bal_r n (delete x l) r) = height (delete x l) + 2"
| (b) "height (mkt_bal_r n (delete x l) r) = height (delete x l) + 3"
using MKT 2 by (atomize_elim, intro height_mkt_bal_r) auto
then show ?thesis
proof cases
case a
with \<open>x < n\<close> MKT 2 show ?thesis by auto
next
case b
with \<open>x < n\<close> MKT 2 show ?thesis by auto
qed
qed
next
case False
show ?thesis
proof(cases "height l = height (delete x r) + 2")
case False with MKT 1 \<open>\<not>x < n\<close> \<open>x \<noteq> n\<close> show ?thesis by auto
next
case True
then consider (a) "height (mkt_bal_l n l (delete x r)) = height (delete x r) + 2"
| (b) "height (mkt_bal_l n l (delete x r)) = height (delete x r) + 3"
using MKT 2 by (atomize_elim, intro height_mkt_bal_l) auto
then show ?thesis
proof cases
case a
with \<open>\<not>x < n\<close> \<open>x \<noteq> n\<close> MKT 2 show ?thesis by auto
next
case b
with \<open>\<not>x < n\<close> \<open>x \<noteq> n\<close> MKT 2 show ?thesis by auto
qed
qed
qed
qed
qed simp_all
lemmas avl_delete = avl_delete_aux(1)
subsubsection \<open>Correctness of insertion\<close>
lemma set_of_mkt_bal_l:
"\<lbrakk> avl l; avl r \<rbrakk> \<Longrightarrow>
set_of (mkt_bal_l n l r) = Set.insert n (set_of l \<union> set_of r)"
by (auto simp: mkt_def split:tree.splits)
lemma set_of_mkt_bal_r:
"\<lbrakk> avl l; avl r \<rbrakk> \<Longrightarrow>
set_of (mkt_bal_r n l r) = Set.insert n (set_of l \<union> set_of r)"
by (auto simp: mkt_def split:tree.splits)
text\<open>Correctness of @{const insert}:\<close>
theorem set_of_insert:
"avl t \<Longrightarrow> set_of(insert x t) = Set.insert x (set_of t)"
by (induct t)
(auto simp: avl_insert set_of_mkt_bal_l set_of_mkt_bal_r simp del:mkt_bal_l.simps mkt_bal_r.simps)
subsubsection \<open>Correctness of deletion\<close>
fun rightmost_item :: "'a tree \<Rightarrow> 'a" where
"rightmost_item (MKT n l ET h) = n" |
"rightmost_item (MKT n l r h) = rightmost_item r"
lemma avl_dist:
"\<lbrakk> avl(MKT n l r h); is_ord(MKT n l r h); x \<in> set_of l \<rbrakk> \<Longrightarrow>
x \<notin> set_of r"
by fastforce
lemma avl_dist2:
"\<lbrakk> avl(MKT n l r h); is_ord(MKT n l r h); x \<in> set_of l \<or> x \<in> set_of r \<rbrakk> \<Longrightarrow>
x \<noteq> n"
by auto
lemma ritem_in_rset: "r \<noteq> ET \<Longrightarrow> rightmost_item r \<in> set_of r"
by(induct r rule:rightmost_item.induct) auto
lemma ritem_greatest_in_rset:
"\<lbrakk> r \<noteq> ET; is_ord r \<rbrakk> \<Longrightarrow>
\<forall>x. x \<in> set_of r \<longrightarrow> x \<noteq> rightmost_item r \<longrightarrow> x < rightmost_item r"
proof(induct r rule:rightmost_item.induct)
case (2 n l rn rl rr rh h)
show ?case (is "\<forall>x. ?P x")
proof
fix x
from 2 have "is_ord (MKT rn rl rr rh)" by auto
moreover from 2 have "n < rightmost_item (MKT rn rl rr rh)"
by (metis is_ord.simps(2) ritem_in_rset tree.simps(2))
moreover from 2 have "x \<in> set_of l \<longrightarrow> x < rightmost_item (MKT rn rl rr rh)"
by (metis calculation(2) is_ord.simps(2) xt1(10))
ultimately show "?P x" using 2 by simp
qed
qed auto
lemma ritem_not_in_ltree:
"\<lbrakk> avl(MKT n l r h); is_ord(MKT n l r h); r \<noteq> ET \<rbrakk> \<Longrightarrow>
rightmost_item r \<notin> set_of l"
by (metis avl_dist ritem_in_rset)
lemma set_of_delete_max:
"\<lbrakk> avl t; is_ord t; t\<noteq>ET \<rbrakk> \<Longrightarrow>
set_of (snd(delete_max t)) = (set_of t) - {rightmost_item t}"
proof (induct t rule: delete_max_induct)
case (MKT n l rn rl rr rh h)
let ?r = "MKT rn rl rr rh"
from MKT have "avl l" and "avl ?r" by simp_all
let ?t' = "mkt_bal_l n l (snd (delete_max ?r))"
from MKT have "avl (snd(delete_max ?r))" by (auto simp add: avl_delete_max)
with MKT ritem_not_in_ltree[of n l ?r h]
have "set_of ?t' = (set_of l) \<union> (set_of ?r) - {rightmost_item ?r} \<union> {n}"
by (auto simp add:set_of_mkt_bal_l simp del: mkt_bal_l.simps)
moreover have "n \<notin> {rightmost_item ?r}"
by (metis MKT(2) MKT(3) avl_dist2 ritem_in_rset singletonE tree.simps(3))
ultimately show ?case
by (auto simp add:insert_Diff_if split:prod.splits simp del: mkt_bal_l.simps)
qed auto
lemma fst_delete_max_eq_ritem:
"t\<noteq>ET \<Longrightarrow> fst(delete_max t) = rightmost_item t"
by (induct t rule:rightmost_item.induct) (auto split:prod.splits)
lemma set_of_delete_root:
assumes "t = MKT n l r h" and "avl t" and "is_ord t"
shows "set_of (delete_root t) = (set_of t) - {n}"
using assms
proof(cases t rule:delete_root_cases)
case(MKT_MKT n ln ll lr lh rn rl rr rh h)
let ?t' = "mkt_bal_r (fst (delete_max l)) (snd (delete_max l)) r"
from assms MKT_MKT have "avl l" and "avl r" and "is_ord l" and "l\<noteq>ET" by auto
moreover from MKT_MKT assms have "avl (snd(delete_max l))"
by (auto simp add: avl_delete_max)
ultimately have "set_of ?t' = (set_of l) \<union> (set_of r)"
by (fastforce simp add: Set.insert_Diff ritem_in_rset fst_delete_max_eq_ritem
set_of_delete_max set_of_mkt_bal_r simp del: mkt_bal_r.simps)
moreover from MKT_MKT assms(1) have "set_of (delete_root t) = set_of ?t'"
by (simp split:prod.split del:mkt_bal_r.simps)
moreover from MKT_MKT assms have "(set_of t) - {n} = set_of l \<union> set_of r"
by (metis Diff_insert_absorb UnE avl_dist2 tree.set(2) tree.inject)
ultimately show ?thesis using MKT_MKT assms(1)
by (simp del: delete_root.simps)
qed auto
text\<open>Correctness of @{const delete}:\<close>
theorem set_of_delete:
"\<lbrakk> avl t; is_ord t \<rbrakk> \<Longrightarrow> set_of (delete x t) = (set_of t) - {x}"
proof (induct t)
case (MKT n l r h)
then show ?case
proof(cases "x = n")
case True
with MKT set_of_delete_root[of "MKT n l r h"] show ?thesis by simp
next
case False
with MKT show ?thesis
proof(cases "x<n")
case True
with True MKT show ?thesis
by (force simp: avl_delete set_of_mkt_bal_r[of "(delete x l)" r n] simp del:mkt_bal_r.simps)
next
case False
with False MKT \<open>x\<noteq>n\<close> show ?thesis
by (force simp: avl_delete set_of_mkt_bal_l[of l "(delete x r)" n] simp del:mkt_bal_l.simps)
qed
qed
qed simp
subsubsection \<open>Correctness of lookup\<close>
theorem is_in_correct: "is_ord t \<Longrightarrow> is_in k t = (k : set_of t)"
by (induct t) auto
subsubsection \<open>Insertion maintains order\<close>
lemma is_ord_mkt_bal_l:
"is_ord(MKT n l r h) \<Longrightarrow> is_ord (mkt_bal_l n l r)"
by (cases l) (auto simp: mkt_def split:tree.splits intro: order_less_trans)
lemma is_ord_mkt_bal_r: "is_ord(MKT n l r h) \<Longrightarrow> is_ord (mkt_bal_r n l r)"
by (cases r) (auto simp: mkt_def split:tree.splits intro: order_less_trans)
text\<open>If the order is linear, @{const insert} maintains the order:\<close>
theorem is_ord_insert:
"\<lbrakk> avl t; is_ord t \<rbrakk> \<Longrightarrow> is_ord(insert (x::'a::linorder) t)"
by (induct t) (simp_all add:is_ord_mkt_bal_l is_ord_mkt_bal_r avl_insert set_of_insert
linorder_not_less order_neq_le_trans del:mkt_bal_l.simps mkt_bal_r.simps)
subsubsection \<open>Deletion maintains order\<close>
lemma is_ord_delete_max:
"\<lbrakk> avl t; is_ord t; t\<noteq>ET \<rbrakk> \<Longrightarrow> is_ord(snd(delete_max t))"
proof(induct t rule:delete_max_induct)
case(MKT n l rn rl rr rh h)
let ?r = "MKT rn rl rr rh"
let ?r' = "snd(delete_max ?r)"
from MKT have "\<forall>h. is_ord(MKT n l ?r' h)" by (auto simp: set_of_delete_max)
moreover from MKT have "avl(?r')" by (auto simp: avl_delete_max)
moreover note MKT is_ord_mkt_bal_l[of n l ?r']
ultimately show ?case by (auto split:prod.splits simp del:is_ord.simps mkt_bal_l.simps)
qed auto
lemma is_ord_delete_root:
assumes "avl t" and "is_ord t" and "t \<noteq> ET"
shows "is_ord (delete_root t)"
using assms
proof(cases t rule:delete_root_cases)
case(MKT_MKT n ln ll lr lh rn rl rr rh h)
let ?l = "MKT ln ll lr lh"
let ?r = "MKT rn rl rr rh"
let ?l' = "snd (delete_max ?l)"
let ?n' = "fst (delete_max ?l)"
from assms MKT_MKT have "\<forall>h. is_ord(MKT ?n' ?l' ?r h)"
proof -
from assms MKT_MKT have "is_ord ?l'" by (auto simp add: is_ord_delete_max)
moreover from assms MKT_MKT have "is_ord ?r" by auto
moreover from assms MKT_MKT have "\<forall>x. x \<in> set_of ?r \<longrightarrow> ?n' < x"
by (metis fst_delete_max_eq_ritem is_ord.simps(2) order_less_trans ritem_in_rset
tree.simps(3))
moreover from assms MKT_MKT ritem_greatest_in_rset have "\<forall>x. x \<in> set_of ?l' \<longrightarrow> x < ?n'"
by (metis Diff_iff avl.simps(2) fst_delete_max_eq_ritem is_ord.simps(2)
set_of_delete_max singleton_iff tree.simps(3))
ultimately show ?thesis by auto
qed
moreover from assms MKT_MKT have "avl ?r" by simp
moreover from assms MKT_MKT have "avl ?l'" by (simp add: avl_delete_max)
moreover note MKT_MKT is_ord_mkt_bal_r[of ?n' ?l' ?r]
ultimately show ?thesis by (auto simp del:mkt_bal_r.simps is_ord.simps split:prod.splits)
qed simp_all
text\<open>If the order is linear, @{const delete} maintains the order:\<close>
theorem is_ord_delete:
"\<lbrakk> avl t; is_ord t \<rbrakk> \<Longrightarrow> is_ord (delete x t)"
proof (induct t)
case (MKT n l r h)
then show ?case
proof(cases "x = n")
case True
with MKT is_ord_delete_root[of "MKT n l r h"] show ?thesis by simp
next
case False
with MKT show ?thesis
proof(cases "x<n")
case True
with True MKT have "\<forall>h. is_ord (MKT n (delete x l) r h)" by (auto simp:set_of_delete)
with True MKT is_ord_mkt_bal_r[of n "(delete x l)" r] show ?thesis
by (auto simp add: avl_delete)
next
case False
with False MKT have "\<forall>h. is_ord (MKT n l (delete x r) h)" by (auto simp:set_of_delete)
with False MKT is_ord_mkt_bal_l[of n l "(delete x r)"] \<open>x\<noteq>n\<close> show ?thesis by (simp add: avl_delete)
qed
qed
qed simp
end