Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Inductive definition of Hoare logic | |
Author: Tobias Nipkow, 2001/2006 | |
Maintainer: Tobias Nipkow | |
*) | |
theory Hoare imports Lang begin | |
subsection\<open>Hoare logic for partial correctness\<close> | |
text\<open>We continue our semantic approach by modelling assertions just | |
like boolean expressions, i.e.\ as functions:\<close> | |
type_synonym assn = "state \<Rightarrow> bool" | |
text\<open>Hoare triples are triples of the form \<open>{P} c {Q}\<close>, where | |
the assertions \<open>P\<close> and \<open>Q\<close> are the so-called pre and | |
postconditions. Such a triple is \emph{valid} (denoted by \<open>\<Turnstile>\<close>) | |
iff every (terminating) execution starting in a state satisfying \<open>P\<close> | |
ends up in a state satisfying \<open>Q\<close>:\<close> | |
definition | |
hoare_valid :: "assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<Turnstile> {(1_)}/ (_)/ {(1_)}" 50) where | |
"\<Turnstile> {P}c{Q} \<longleftrightarrow> (\<forall>s t. s -c\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q t)" | |
text\<open>\noindent | |
This notion of validity is called \emph{partial correctness} because | |
it does not require termination of @{term c}. | |
Provability in Hoare logic is indicated by \<open>\<turnstile>\<close> and defined | |
inductively:\<close> | |
inductive | |
hoare :: "assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<turnstile> ({(1_)}/ (_)/ {(1_)})" 50) | |
where | |
(*<*)Do:(*>*)"\<turnstile> {\<lambda>s. \<forall>t \<in> f s. P t} Do f {P}" | |
| (*<*)Semi:(*>*)"\<lbrakk> \<turnstile> {P}c1{Q}; \<turnstile> {Q}c2{R} \<rbrakk> \<Longrightarrow> \<turnstile> {P} c1;c2 {R}" | |
| (*<*)If:(*>*)"\<lbrakk> \<turnstile> {\<lambda>s. P s \<and> b s} c1 {Q}; \<turnstile> {\<lambda>s. P s \<and> \<not>b s} c2 {Q} \<rbrakk> | |
\<Longrightarrow> \<turnstile> {P} IF b THEN c1 ELSE c2 {Q}" | |
| (*<*)While:(*>*)"\<turnstile> {\<lambda>s. P s \<and> b s} c {P} \<Longrightarrow> \<turnstile> {P} WHILE b DO c {\<lambda>s. P s \<and> \<not>b s}" | |
| (*<*)Conseq:(*>*)"\<lbrakk> \<forall>s. P' s \<longrightarrow> P s; \<turnstile> {P}c{Q}; \<forall>s. Q s \<longrightarrow> Q' s \<rbrakk> \<Longrightarrow> \<turnstile> {P'}c{Q'}" | |
| (*<*)Local:(*>*) "\<lbrakk> \<And>s. P s \<Longrightarrow> P' s (f s); \<forall>s. \<turnstile> {P' s} c {Q \<circ> (g s)} \<rbrakk> \<Longrightarrow> | |
\<turnstile> {P} LOCAL f;c;g {Q}" | |
text\<open>Soundness is proved by induction on the derivation of @{prop"\<turnstile> | |
{P} c {Q}"}:\<close> | |
theorem hoare_sound: "\<turnstile> {P}c{Q} \<Longrightarrow> \<Turnstile> {P}c{Q}" | |
apply(unfold hoare_valid_def) | |
apply(erule hoare.induct) | |
apply blast | |
apply blast | |
apply clarsimp | |
apply clarify | |
apply(drule while_rule) | |
prefer 3 | |
apply (assumption, assumption, blast) | |
apply blast | |
apply clarify | |
apply(erule allE) | |
apply clarify | |
apply(erule allE) | |
apply(erule allE) | |
apply(erule impE) | |
apply assumption | |
apply simp | |
apply(erule mp) | |
apply(simp) | |
done | |
text\<open> | |
Completeness is not quite as straightforward, but still easy. The | |
proof is best explained in terms of the \emph{weakest precondition}:\<close> | |
definition | |
wp :: "com \<Rightarrow> assn \<Rightarrow> assn" where | |
"wp c Q = (\<lambda>s. \<forall>t. s -c\<rightarrow> t \<longrightarrow> Q t)" | |
text\<open>\noindent Dijkstra calls this the weakest \emph{liberal} | |
precondition to emphasize that it corresponds to partial | |
correctness. We use ``weakest precondition'' all the time and let the | |
context determine if we talk about partial or total correctness --- | |
the latter is introduced further below. | |
The following lemmas about @{term wp} are easily derived: | |
\<close> | |
lemma [simp]: "wp (Do f) Q = (\<lambda>s. \<forall>t \<in> f s. Q(t))" | |
apply(unfold wp_def) | |
apply(rule ext) | |
apply blast | |
done | |
lemma [simp]: "wp (c\<^sub>1;c\<^sub>2) R = wp c\<^sub>1 (wp c\<^sub>2 R)" | |
apply(unfold wp_def) | |
apply(rule ext) | |
apply blast | |
done | |
lemma [simp]: | |
"wp (IF b THEN c\<^sub>1 ELSE c\<^sub>2) Q = (\<lambda>s. wp (if b s then c\<^sub>1 else c\<^sub>2) Q s)" | |
apply(unfold wp_def) | |
apply(rule ext) | |
apply auto | |
done | |
lemma wp_while: | |
"wp (WHILE b DO c) Q = | |
(\<lambda>s. if b s then wp (c;WHILE b DO c) Q s else Q s)" | |
apply(rule ext) | |
apply(unfold wp_def) | |
apply auto | |
apply(blast intro:exec.intros) | |
apply(simp add:unfold_while) | |
apply(blast intro:exec.intros) | |
apply(simp add:unfold_while) | |
done | |
lemma [simp]: | |
"wp (LOCAL f;c;g) Q = (\<lambda>s. wp c (Q o (g s)) (f s))" | |
apply(unfold wp_def) | |
apply(rule ext) | |
apply auto | |
done | |
lemma strengthen_pre: "\<lbrakk> \<forall>s. P' s \<longrightarrow> P s; \<turnstile> {P}c{Q} \<rbrakk> \<Longrightarrow> \<turnstile> {P'}c{Q}" | |
by(erule hoare.Conseq, assumption, blast) | |
lemma weaken_post: "\<lbrakk> \<turnstile> {P}c{Q}; \<forall>s. Q s \<longrightarrow> Q' s \<rbrakk> \<Longrightarrow> \<turnstile> {P}c{Q'}" | |
apply(rule hoare.Conseq) | |
apply(fast, assumption, assumption) | |
done | |
text\<open>By induction on @{term c} one can easily prove\<close> | |
lemma wp_is_pre[rule_format]: "\<turnstile> {wp c Q} c {Q}" | |
apply (induct c arbitrary: Q) | |
apply simp_all | |
apply(blast intro:hoare.Do hoare.Conseq) | |
apply(blast intro:hoare.Semi hoare.Conseq) | |
apply(blast intro:hoare.If hoare.Conseq) | |
apply(rule weaken_post) | |
apply(rule hoare.While) | |
apply(rule strengthen_pre) | |
prefer 2 | |
apply blast | |
apply(clarify) | |
apply(drule fun_eq_iff[THEN iffD1, OF wp_while, THEN spec, THEN iffD1]) | |
apply simp | |
apply(clarify) | |
apply(drule fun_eq_iff[THEN iffD1, OF wp_while, THEN spec, THEN iffD1]) | |
apply(simp split:if_split_asm) | |
apply(fast intro!: hoare.Local) | |
done | |
text\<open>\noindent | |
from which completeness follows more or less directly via the | |
rule of consequence:\<close> | |
theorem hoare_relative_complete: "\<Turnstile> {P}c{Q} \<Longrightarrow> \<turnstile> {P}c{Q}" | |
apply (rule strengthen_pre[OF _ wp_is_pre]) | |
apply(unfold hoare_valid_def wp_def) | |
apply blast | |
done | |
end | |