Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /afp /Abstract-Rewriting /Abstract_Rewriting.thy
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
125 kB
(* Title: Abstract Rewriting
Author: Christian Sternagel <christian.sternagel@uibk.ac.at>
Rene Thiemann <rene.tiemann@uibk.ac.at>
Maintainer: Christian Sternagel and Rene Thiemann
License: LGPL
*)
(*
Copyright 2010 Christian Sternagel and René Thiemann
This file is part of IsaFoR/CeTA.
IsaFoR/CeTA is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
IsaFoR/CeTA is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with IsaFoR/CeTA. If not, see <http://www.gnu.org/licenses/>.
*)
section \<open>Abstract Rewrite Systems\<close>
theory Abstract_Rewriting
imports
"HOL-Library.Infinite_Set"
"Regular-Sets.Regexp_Method"
Seq
begin
(*FIXME: move*)
lemma trancl_mono_set:
"r \<subseteq> s \<Longrightarrow> r\<^sup>+ \<subseteq> s\<^sup>+"
by (blast intro: trancl_mono)
lemma relpow_mono:
fixes r :: "'a rel"
assumes "r \<subseteq> r'" shows "r ^^ n \<subseteq> r' ^^ n"
using assms by (induct n) auto
lemma refl_inv_image:
"refl R \<Longrightarrow> refl (inv_image R f)"
by (simp add: inv_image_def refl_on_def)
subsection \<open>Definitions\<close>
text \<open>Two elements are \emph{joinable} (and then have in the joinability relation)
w.r.t.\ @{term "A"}, iff they have a common reduct.\<close>
definition join :: "'a rel \<Rightarrow> 'a rel" ("(_\<^sup>\<down>)" [1000] 999) where
"A\<^sup>\<down> = A\<^sup>* O (A\<inverse>)\<^sup>*"
text \<open>Two elements are \emph{meetable} (and then have in the meetability relation)
w.r.t.\ @{term "A"}, iff they have a common ancestor.\<close>
definition meet :: "'a rel \<Rightarrow> 'a rel" ("(_\<^sup>\<up>)" [1000] 999) where
"A\<^sup>\<up> = (A\<inverse>)\<^sup>* O A\<^sup>*"
text \<open>The \emph{symmetric closure} of a relation allows steps in both directions.\<close>
abbreviation symcl :: "'a rel \<Rightarrow> 'a rel" ("(_\<^sup>\<leftrightarrow>)" [1000] 999) where
"A\<^sup>\<leftrightarrow> \<equiv> A \<union> A\<inverse>"
text \<open>A \emph{conversion} is a (possibly empty) sequence of steps in the symmetric closure.\<close>
definition conversion :: "'a rel \<Rightarrow> 'a rel" ("(_\<^sup>\<leftrightarrow>\<^sup>*)" [1000] 999) where
"A\<^sup>\<leftrightarrow>\<^sup>* = (A\<^sup>\<leftrightarrow>)\<^sup>*"
text \<open>The set of \emph{normal forms} of an ARS constitutes all the elements that do
not have any successors.\<close>
definition NF :: "'a rel \<Rightarrow> 'a set" where
"NF A = {a. A `` {a} = {}}"
definition normalizability :: "'a rel \<Rightarrow> 'a rel" ("(_\<^sup>!)" [1000] 999) where
"A\<^sup>! = {(a, b). (a, b) \<in> A\<^sup>* \<and> b \<in> NF A}"
notation (ASCII)
symcl ("(_^<->)" [1000] 999) and
conversion ("(_^<->*)" [1000] 999) and
normalizability ("(_^!)" [1000] 999)
lemma symcl_converse:
"(A\<^sup>\<leftrightarrow>)\<inverse> = A\<^sup>\<leftrightarrow>" by auto
lemma symcl_Un: "(A \<union> B)\<^sup>\<leftrightarrow> = A\<^sup>\<leftrightarrow> \<union> B\<^sup>\<leftrightarrow>" by auto
lemma no_step:
assumes "A `` {a} = {}" shows "a \<in> NF A"
using assms by (auto simp: NF_def)
lemma joinI:
"(a, c) \<in> A\<^sup>* \<Longrightarrow> (b, c) \<in> A\<^sup>* \<Longrightarrow> (a, b) \<in> A\<^sup>\<down>"
by (auto simp: join_def rtrancl_converse)
lemma joinI_left:
"(a, b) \<in> A\<^sup>* \<Longrightarrow> (a, b) \<in> A\<^sup>\<down>"
by (auto simp: join_def)
lemma joinI_right: "(b, a) \<in> A\<^sup>* \<Longrightarrow> (a, b) \<in> A\<^sup>\<down>"
by (rule joinI) auto
lemma joinE:
assumes "(a, b) \<in> A\<^sup>\<down>"
obtains c where "(a, c) \<in> A\<^sup>*" and "(b, c) \<in> A\<^sup>*"
using assms by (auto simp: join_def rtrancl_converse)
lemma joinD:
"(a, b) \<in> A\<^sup>\<down> \<Longrightarrow> \<exists>c. (a, c) \<in> A\<^sup>* \<and> (b, c) \<in> A\<^sup>*"
by (blast elim: joinE)
lemma meetI:
"(a, b) \<in> A\<^sup>* \<Longrightarrow> (a, c) \<in> A\<^sup>* \<Longrightarrow> (b, c) \<in> A\<^sup>\<up>"
by (auto simp: meet_def rtrancl_converse)
lemma meetE:
assumes "(b, c) \<in> A\<^sup>\<up>"
obtains a where "(a, b) \<in> A\<^sup>*" and "(a, c) \<in> A\<^sup>*"
using assms by (auto simp: meet_def rtrancl_converse)
lemma meetD: "(b, c) \<in> A\<^sup>\<up> \<Longrightarrow> \<exists>a. (a, b) \<in> A\<^sup>* \<and> (a, c) \<in> A\<^sup>*"
by (blast elim: meetE)
lemma conversionI: "(a, b) \<in> (A\<^sup>\<leftrightarrow>)\<^sup>* \<Longrightarrow> (a, b) \<in> A\<^sup>\<leftrightarrow>\<^sup>*"
by (simp add: conversion_def)
lemma conversion_refl [simp]: "(a, a) \<in> A\<^sup>\<leftrightarrow>\<^sup>*"
by (simp add: conversion_def)
lemma conversionI':
assumes "(a, b) \<in> A\<^sup>*" shows "(a, b) \<in> A\<^sup>\<leftrightarrow>\<^sup>*"
using assms
proof (induct)
case base then show ?case by simp
next
case (step b c)
then have "(b, c) \<in> A\<^sup>\<leftrightarrow>" by simp
with \<open>(a, b) \<in> A\<^sup>\<leftrightarrow>\<^sup>*\<close> show ?case unfolding conversion_def by (rule rtrancl.intros)
qed
lemma rtrancl_comp_trancl_conv:
"r\<^sup>* O r = r\<^sup>+" by regexp
lemma trancl_o_refl_is_trancl:
"r\<^sup>+ O r\<^sup>= = r\<^sup>+" by regexp
lemma conversionE:
"(a, b) \<in> A\<^sup>\<leftrightarrow>\<^sup>* \<Longrightarrow> ((a, b) \<in> (A\<^sup>\<leftrightarrow>)\<^sup>* \<Longrightarrow> P) \<Longrightarrow> P"
by (simp add: conversion_def)
text \<open>Later declarations are tried first for `proof' and `rule,' then have the ``main''
introduction\,/\, elimination rules for constants should be declared last.\<close>
declare joinI_left [intro]
declare joinI_right [intro]
declare joinI [intro]
declare joinD [dest]
declare joinE [elim]
declare meetI [intro]
declare meetD [dest]
declare meetE [elim]
declare conversionI' [intro]
declare conversionI [intro]
declare conversionE [elim]
lemma conversion_trans:
"trans (A\<^sup>\<leftrightarrow>\<^sup>*)"
unfolding trans_def
proof (intro allI impI)
fix a b c assume "(a, b) \<in> A\<^sup>\<leftrightarrow>\<^sup>*" and "(b, c) \<in> A\<^sup>\<leftrightarrow>\<^sup>*"
then show "(a, c) \<in> A\<^sup>\<leftrightarrow>\<^sup>*" unfolding conversion_def
proof (induct)
case base then show ?case by simp
next
case (step b c')
from \<open>(b, c') \<in> A\<^sup>\<leftrightarrow>\<close> and \<open>(c', c) \<in> (A\<^sup>\<leftrightarrow>)\<^sup>*\<close>
have "(b, c) \<in> (A\<^sup>\<leftrightarrow>)\<^sup>*" by (rule converse_rtrancl_into_rtrancl)
with step show ?case by simp
qed
qed
lemma conversion_sym:
"sym (A\<^sup>\<leftrightarrow>\<^sup>*)"
unfolding sym_def
proof (intro allI impI)
fix a b assume "(a, b) \<in> A\<^sup>\<leftrightarrow>\<^sup>*" then show "(b, a) \<in> A\<^sup>\<leftrightarrow>\<^sup>*" unfolding conversion_def
proof (induct)
case base then show ?case by simp
next
case (step b c)
then have "(c, b) \<in> A\<^sup>\<leftrightarrow>" by blast
from \<open>(c, b) \<in> A\<^sup>\<leftrightarrow>\<close> and \<open>(b, a) \<in> (A\<^sup>\<leftrightarrow>)\<^sup>*\<close>
show ?case by (rule converse_rtrancl_into_rtrancl)
qed
qed
lemma conversion_inv:
"(x, y) \<in> R\<^sup>\<leftrightarrow>\<^sup>* \<longleftrightarrow> (y, x) \<in> R\<^sup>\<leftrightarrow>\<^sup>*"
by (auto simp: conversion_def)
(metis (full_types) rtrancl_converseD symcl_converse)+
lemma conversion_converse [simp]:
"(A\<^sup>\<leftrightarrow>\<^sup>*)\<inverse> = A\<^sup>\<leftrightarrow>\<^sup>*"
by (metis conversion_sym sym_conv_converse_eq)
lemma conversion_rtrancl [simp]:
"(A\<^sup>\<leftrightarrow>\<^sup>*)\<^sup>* = A\<^sup>\<leftrightarrow>\<^sup>*"
by (metis conversion_def rtrancl_idemp)
lemma rtrancl_join_join:
assumes "(a, b) \<in> A\<^sup>*" and "(b, c) \<in> A\<^sup>\<down>" shows "(a, c) \<in> A\<^sup>\<down>"
proof -
from \<open>(b, c) \<in> A\<^sup>\<down>\<close> obtain b' where "(b, b') \<in> A\<^sup>*" and "(b', c) \<in> (A\<inverse>)\<^sup>*"
unfolding join_def by blast
with \<open>(a, b) \<in> A\<^sup>*\<close> have "(a, b') \<in> A\<^sup>*" by simp
with \<open>(b', c) \<in> (A\<inverse>)\<^sup>*\<close> show ?thesis unfolding join_def by blast
qed
lemma join_rtrancl_join:
assumes "(a, b) \<in> A\<^sup>\<down>" and "(c, b) \<in> A\<^sup>*" shows "(a, c) \<in> A\<^sup>\<down>"
proof -
from \<open>(c, b) \<in> A\<^sup>*\<close> have "(b, c) \<in> (A\<inverse>)\<^sup>*" unfolding rtrancl_converse by simp
from \<open>(a, b) \<in> A\<^sup>\<down>\<close> obtain a' where "(a, a') \<in> A\<^sup>*" and "(a', b) \<in> (A\<inverse>)\<^sup>*"
unfolding join_def by best
with \<open>(b, c) \<in> (A\<inverse>)\<^sup>*\<close> have "(a', c) \<in> (A\<inverse>)\<^sup>*" by simp
with \<open>(a, a') \<in> A\<^sup>*\<close> show ?thesis unfolding join_def by blast
qed
lemma NF_I: "(\<And>b. (a, b) \<notin> A) \<Longrightarrow> a \<in> NF A" by (auto intro: no_step)
lemma NF_E: "a \<in> NF A \<Longrightarrow> ((a, b) \<notin> A \<Longrightarrow> P) \<Longrightarrow> P" by (auto simp: NF_def)
declare NF_I [intro]
declare NF_E [elim]
lemma NF_no_step: "a \<in> NF A \<Longrightarrow> \<forall>b. (a, b) \<notin> A" by auto
lemma NF_anti_mono:
assumes "A \<subseteq> B" shows "NF B \<subseteq> NF A"
using assms by auto
lemma NF_iff_no_step: "a \<in> NF A = (\<forall>b. (a, b) \<notin> A)" by auto
lemma NF_no_trancl_step:
assumes "a \<in> NF A" shows "\<forall>b. (a, b) \<notin> A\<^sup>+"
proof -
from assms have "\<forall>b. (a, b) \<notin> A" by auto
show ?thesis
proof (intro allI notI)
fix b assume "(a, b) \<in> A\<^sup>+"
then show False by (induct) (auto simp: \<open>\<forall>b. (a, b) \<notin> A\<close>)
qed
qed
lemma NF_Id_on_fst_image [simp]: "NF (Id_on (fst ` A)) = NF A" by force
lemma fst_image_NF_Id_on [simp]: "fst ` R = Q \<Longrightarrow> NF (Id_on Q) = NF R" by force
lemma NF_empty [simp]: "NF {} = UNIV" by auto
lemma normalizability_I: "(a, b) \<in> A\<^sup>* \<Longrightarrow> b \<in> NF A \<Longrightarrow> (a, b) \<in> A\<^sup>!"
by (simp add: normalizability_def)
lemma normalizability_I': "(a, b) \<in> A\<^sup>* \<Longrightarrow> (b, c) \<in> A\<^sup>! \<Longrightarrow> (a, c) \<in> A\<^sup>!"
by (auto simp add: normalizability_def)
lemma normalizability_E: "(a, b) \<in> A\<^sup>! \<Longrightarrow> ((a, b) \<in> A\<^sup>* \<Longrightarrow> b \<in> NF A \<Longrightarrow> P) \<Longrightarrow> P"
by (simp add: normalizability_def)
declare normalizability_I' [intro]
declare normalizability_I [intro]
declare normalizability_E [elim]
subsection \<open>Properties of ARSs\<close>
text \<open>The following properties on (elements of) ARSs are defined: completeness,
Church-Rosser property, semi-completeness, strong normalization, unique normal
forms, Weak Church-Rosser property, and weak normalization.\<close>
definition CR_on :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool" where
"CR_on r A \<longleftrightarrow> (\<forall>a\<in>A. \<forall>b c. (a, b) \<in> r\<^sup>* \<and> (a, c) \<in> r\<^sup>* \<longrightarrow> (b, c) \<in> join r)"
abbreviation CR :: "'a rel \<Rightarrow> bool" where
"CR r \<equiv> CR_on r UNIV"
definition SN_on :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool" where
"SN_on r A \<longleftrightarrow> \<not> (\<exists>f. f 0 \<in> A \<and> chain r f)"
abbreviation SN :: "'a rel \<Rightarrow> bool" where
"SN r \<equiv> SN_on r UNIV"
text \<open>Alternative definition of @{term "SN"}.\<close>
lemma SN_def: "SN r = (\<forall>x. SN_on r {x})"
unfolding SN_on_def by blast
definition UNF_on :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool" where
"UNF_on r A \<longleftrightarrow> (\<forall>a\<in>A. \<forall>b c. (a, b) \<in> r\<^sup>! \<and> (a, c) \<in> r\<^sup>! \<longrightarrow> b = c)"
abbreviation UNF :: "'a rel \<Rightarrow> bool" where "UNF r \<equiv> UNF_on r UNIV"
definition WCR_on :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool" where
"WCR_on r A \<longleftrightarrow> (\<forall>a\<in>A. \<forall>b c. (a, b) \<in> r \<and> (a, c) \<in> r \<longrightarrow> (b, c) \<in> join r)"
abbreviation WCR :: "'a rel \<Rightarrow> bool" where "WCR r \<equiv> WCR_on r UNIV"
definition WN_on :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool" where
"WN_on r A \<longleftrightarrow> (\<forall>a\<in>A. \<exists>b. (a, b) \<in> r\<^sup>!)"
abbreviation WN :: "'a rel \<Rightarrow> bool" where
"WN r \<equiv> WN_on r UNIV"
lemmas CR_defs = CR_on_def
lemmas SN_defs = SN_on_def
lemmas UNF_defs = UNF_on_def
lemmas WCR_defs = WCR_on_def
lemmas WN_defs = WN_on_def
definition complete_on :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool" where
"complete_on r A \<longleftrightarrow> SN_on r A \<and> CR_on r A"
abbreviation complete :: "'a rel \<Rightarrow> bool" where
"complete r \<equiv> complete_on r UNIV"
definition semi_complete_on :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool" where
"semi_complete_on r A \<longleftrightarrow> WN_on r A \<and> CR_on r A"
abbreviation semi_complete :: "'a rel \<Rightarrow> bool" where
"semi_complete r \<equiv> semi_complete_on r UNIV"
lemmas complete_defs = complete_on_def
lemmas semi_complete_defs = semi_complete_on_def
text \<open>Unique normal forms with respect to conversion.\<close>
definition UNC :: "'a rel \<Rightarrow> bool" where
"UNC A \<longleftrightarrow> (\<forall>a b. a \<in> NF A \<and> b \<in> NF A \<and> (a, b) \<in> A\<^sup>\<leftrightarrow>\<^sup>* \<longrightarrow> a = b)"
lemma complete_onI:
"SN_on r A \<Longrightarrow> CR_on r A \<Longrightarrow> complete_on r A"
by (simp add: complete_defs)
lemma complete_onE:
"complete_on r A \<Longrightarrow> (SN_on r A \<Longrightarrow> CR_on r A \<Longrightarrow> P) \<Longrightarrow> P"
by (simp add: complete_defs)
lemma CR_onI:
"(\<And>a b c. a \<in> A \<Longrightarrow> (a, b) \<in> r\<^sup>* \<Longrightarrow> (a, c) \<in> r\<^sup>* \<Longrightarrow> (b, c) \<in> join r) \<Longrightarrow> CR_on r A"
by (simp add: CR_defs)
lemma CR_on_singletonI:
"(\<And>b c. (a, b) \<in> r\<^sup>* \<Longrightarrow> (a, c) \<in> r\<^sup>* \<Longrightarrow> (b, c) \<in> join r) \<Longrightarrow> CR_on r {a}"
by (simp add: CR_defs)
lemma CR_onE:
"CR_on r A \<Longrightarrow> a \<in> A \<Longrightarrow> ((b, c) \<in> join r \<Longrightarrow> P) \<Longrightarrow> ((a, b) \<notin> r\<^sup>* \<Longrightarrow> P) \<Longrightarrow> ((a, c) \<notin> r\<^sup>* \<Longrightarrow> P) \<Longrightarrow> P"
unfolding CR_defs by blast
lemma CR_onD:
"CR_on r A \<Longrightarrow> a \<in> A \<Longrightarrow> (a, b) \<in> r\<^sup>* \<Longrightarrow> (a, c) \<in> r\<^sup>* \<Longrightarrow> (b, c) \<in> join r"
by (blast elim: CR_onE)
lemma semi_complete_onI: "WN_on r A \<Longrightarrow> CR_on r A \<Longrightarrow> semi_complete_on r A"
by (simp add: semi_complete_defs)
lemma semi_complete_onE:
"semi_complete_on r A \<Longrightarrow> (WN_on r A \<Longrightarrow> CR_on r A \<Longrightarrow> P) \<Longrightarrow> P"
by (simp add: semi_complete_defs)
declare semi_complete_onI [intro]
declare semi_complete_onE [elim]
declare complete_onI [intro]
declare complete_onE [elim]
declare CR_onI [intro]
declare CR_on_singletonI [intro]
declare CR_onD [dest]
declare CR_onE [elim]
lemma UNC_I:
"(\<And>a b. a \<in> NF A \<Longrightarrow> b \<in> NF A \<Longrightarrow> (a, b) \<in> A\<^sup>\<leftrightarrow>\<^sup>* \<Longrightarrow> a = b) \<Longrightarrow> UNC A"
by (simp add: UNC_def)
lemma UNC_E:
"\<lbrakk>UNC A; a = b \<Longrightarrow> P; a \<notin> NF A \<Longrightarrow> P; b \<notin> NF A \<Longrightarrow> P; (a, b) \<notin> A\<^sup>\<leftrightarrow>\<^sup>* \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
unfolding UNC_def by blast
lemma UNF_onI: "(\<And>a b c. a \<in> A \<Longrightarrow> (a, b) \<in> r\<^sup>! \<Longrightarrow> (a, c) \<in> r\<^sup>! \<Longrightarrow> b = c) \<Longrightarrow> UNF_on r A"
by (simp add: UNF_defs)
lemma UNF_onE:
"UNF_on r A \<Longrightarrow> a \<in> A \<Longrightarrow> (b = c \<Longrightarrow> P) \<Longrightarrow> ((a, b) \<notin> r\<^sup>! \<Longrightarrow> P) \<Longrightarrow> ((a, c) \<notin> r\<^sup>! \<Longrightarrow> P) \<Longrightarrow> P"
unfolding UNF_on_def by blast
lemma UNF_onD:
"UNF_on r A \<Longrightarrow> a \<in> A \<Longrightarrow> (a, b) \<in> r\<^sup>! \<Longrightarrow> (a, c) \<in> r\<^sup>! \<Longrightarrow> b = c"
by (blast elim: UNF_onE)
declare UNF_onI [intro]
declare UNF_onD [dest]
declare UNF_onE [elim]
lemma SN_onI:
assumes "\<And>f. \<lbrakk>f 0 \<in> A; chain r f\<rbrakk> \<Longrightarrow> False"
shows "SN_on r A"
using assms unfolding SN_defs by blast
lemma SN_I: "(\<And>a. SN_on A {a}) \<Longrightarrow> SN A"
unfolding SN_on_def by blast
lemma SN_on_trancl_imp_SN_on:
assumes "SN_on (R\<^sup>+) T" shows "SN_on R T"
proof (rule ccontr)
assume "\<not> SN_on R T"
then obtain s where "s 0 \<in> T" and "chain R s" unfolding SN_defs by auto
then have "chain (R\<^sup>+) s" by auto
with \<open>s 0 \<in> T\<close> have "\<not> SN_on (R\<^sup>+) T" unfolding SN_defs by auto
with assms show False by simp
qed
lemma SN_onE:
assumes "SN_on r A"
and "\<not> (\<exists>f. f 0 \<in> A \<and> chain r f) \<Longrightarrow> P"
shows "P"
using assms unfolding SN_defs by simp
lemma not_SN_onE:
assumes "\<not> SN_on r A"
and "\<And>f. \<lbrakk>f 0 \<in> A; chain r f\<rbrakk> \<Longrightarrow> P"
shows "P"
using assms unfolding SN_defs by blast
declare SN_onI [intro]
declare SN_onE [elim]
declare not_SN_onE [Pure.elim, elim]
lemma refl_not_SN: "(x, x) \<in> R \<Longrightarrow> \<not> SN R"
unfolding SN_defs by force
lemma SN_on_irrefl:
assumes "SN_on r A"
shows "\<forall>a\<in>A. (a, a) \<notin> r"
proof (intro ballI notI)
fix a assume "a \<in> A" and "(a, a) \<in> r"
with assms show False unfolding SN_defs by auto
qed
lemma WCR_onI: "(\<And>a b c. a \<in> A \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> (a, c) \<in> r \<Longrightarrow> (b, c) \<in> join r) \<Longrightarrow> WCR_on r A"
by (simp add: WCR_defs)
lemma WCR_onE:
"WCR_on r A \<Longrightarrow> a \<in> A \<Longrightarrow> ((b, c) \<in> join r \<Longrightarrow> P) \<Longrightarrow> ((a, b) \<notin> r \<Longrightarrow> P) \<Longrightarrow> ((a, c) \<notin> r \<Longrightarrow> P) \<Longrightarrow> P"
unfolding WCR_on_def by blast
lemma SN_nat_bounded: "SN {(x, y :: nat). x < y \<and> y \<le> b}" (is "SN ?R")
proof
fix f
assume "chain ?R f"
then have steps: "\<And>i. (f i, f (Suc i)) \<in> ?R" ..
{
fix i
have inc: "f 0 + i \<le> f i"
proof (induct i)
case 0 then show ?case by auto
next
case (Suc i)
have "f 0 + Suc i \<le> f i + Suc 0" using Suc by simp
also have "... \<le> f (Suc i)" using steps [of i]
by auto
finally show ?case by simp
qed
}
from this [of "Suc b"] steps [of b]
show False by simp
qed
lemma WCR_onD:
"WCR_on r A \<Longrightarrow> a \<in> A \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> (a, c) \<in> r \<Longrightarrow> (b, c) \<in> join r"
by (blast elim: WCR_onE)
lemma WN_onI: "(\<And>a. a \<in> A \<Longrightarrow> \<exists>b. (a, b) \<in> r\<^sup>!) \<Longrightarrow> WN_on r A"
by (auto simp: WN_defs)
lemma WN_onE: "WN_on r A \<Longrightarrow> a \<in> A \<Longrightarrow> (\<And>b. (a, b) \<in> r\<^sup>! \<Longrightarrow> P) \<Longrightarrow> P"
unfolding WN_defs by blast
lemma WN_onD: "WN_on r A \<Longrightarrow> a \<in> A \<Longrightarrow> \<exists>b. (a, b) \<in> r\<^sup>!"
by (blast elim: WN_onE)
declare WCR_onI [intro]
declare WCR_onD [dest]
declare WCR_onE [elim]
declare WN_onI [intro]
declare WN_onD [dest]
declare WN_onE [elim]
text \<open>Restricting a relation @{term r} to those elements that are strongly
normalizing with respect to a relation @{term s}.\<close>
definition restrict_SN :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel" where
"restrict_SN r s = {(a, b) | a b. (a, b) \<in> r \<and> SN_on s {a}}"
lemma SN_restrict_SN_idemp [simp]: "SN (restrict_SN A A)"
by (auto simp: restrict_SN_def SN_defs)
lemma SN_on_Image:
assumes "SN_on r A"
shows "SN_on r (r `` A)"
proof
fix f
assume "f 0 \<in> r `` A" and chain: "chain r f"
then obtain a where "a \<in> A" and 1: "(a, f 0) \<in> r" by auto
let ?g = "case_nat a f"
from cons_chain [OF 1 chain] have "chain r ?g" .
moreover have "?g 0 \<in> A" by (simp add: \<open>a \<in> A\<close>)
ultimately have "\<not> SN_on r A" unfolding SN_defs by best
with assms show False by simp
qed
lemma SN_on_subset2:
assumes "A \<subseteq> B" and "SN_on r B"
shows "SN_on r A"
using assms unfolding SN_on_def by blast
lemma step_preserves_SN_on:
assumes 1: "(a, b) \<in> r"
and 2: "SN_on r {a}"
shows "SN_on r {b}"
using 1 and SN_on_Image [OF 2] and SN_on_subset2 [of "{b}" "r `` {a}"] by auto
lemma steps_preserve_SN_on: "(a, b) \<in> A\<^sup>* \<Longrightarrow> SN_on A {a} \<Longrightarrow> SN_on A {b}"
by (induct rule: rtrancl.induct) (auto simp: step_preserves_SN_on)
(*FIXME: move*)
lemma relpow_seq:
assumes "(x, y) \<in> r^^n"
shows "\<exists>f. f 0 = x \<and> f n = y \<and> (\<forall>i<n. (f i, f (Suc i)) \<in> r)"
using assms
proof (induct n arbitrary: y)
case 0 then show ?case by auto
next
case (Suc n)
then obtain z where "(x, z) \<in> r^^n" and "(z, y) \<in> r" by auto
from Suc(1)[OF \<open>(x, z) \<in> r^^n\<close>]
obtain f where "f 0 = x" and "f n = z" and seq: "\<forall>i<n. (f i, f (Suc i)) \<in> r" by auto
let ?n = "Suc n"
let ?f = "\<lambda>i. if i = ?n then y else f i"
have "?f ?n = y" by simp
from \<open>f 0 = x\<close> have "?f 0 = x" by simp
from seq have seq': "\<forall>i<n. (?f i, ?f (Suc i)) \<in> r" by auto
with \<open>f n = z\<close> and \<open>(z, y) \<in> r\<close> have "\<forall>i<?n. (?f i, ?f (Suc i)) \<in> r" by auto
with \<open>?f 0 = x\<close> and \<open>?f ?n = y\<close> show ?case by best
qed
lemma rtrancl_imp_seq:
assumes "(x, y) \<in> r\<^sup>*"
shows "\<exists>f n. f 0 = x \<and> f n = y \<and> (\<forall>i<n. (f i, f (Suc i)) \<in> r)"
using assms [unfolded rtrancl_power] and relpow_seq [of x y _ r] by blast
lemma SN_on_Image_rtrancl:
assumes "SN_on r A"
shows "SN_on r (r\<^sup>* `` A)"
proof
fix f
assume f0: "f 0 \<in> r\<^sup>* `` A" and chain: "chain r f"
then obtain a where a: "a \<in> A" and "(a, f 0) \<in> r\<^sup>*" by auto
then obtain n where "(a, f 0) \<in> r^^n" unfolding rtrancl_power by auto
show False
proof (cases n)
case 0
with \<open>(a, f 0) \<in> r^^n\<close> have "f 0 = a" by simp
then have "f 0 \<in> A" by (simp add: a)
with chain have "\<not> SN_on r A" by auto
with assms show False by simp
next
case (Suc m)
from relpow_seq [OF \<open>(a, f 0) \<in> r^^n\<close>]
obtain g where g0: "g 0 = a" and "g n = f 0"
and gseq: "\<forall>i<n. (g i, g (Suc i)) \<in> r" by auto
let ?f = "\<lambda>i. if i < n then g i else f (i - n)"
have "chain r ?f"
proof
fix i
{
assume "Suc i < n"
then have "(?f i, ?f (Suc i)) \<in> r" by (simp add: gseq)
}
moreover
{
assume "Suc i > n"
then have eq: "Suc (i - n) = Suc i - n" by arith
from chain have "(f (i - n), f (Suc (i - n))) \<in> r" by simp
then have "(f (i - n), f (Suc i - n)) \<in> r" by (simp add: eq)
with \<open>Suc i > n\<close> have "(?f i, ?f (Suc i)) \<in> r" by simp
}
moreover
{
assume "Suc i = n"
then have eq: "f (Suc i - n) = g n" by (simp add: \<open>g n = f 0\<close>)
from \<open>Suc i = n\<close> have eq': "i = n - 1" by arith
from gseq have "(g i, f (Suc i - n)) \<in> r" unfolding eq by (simp add: Suc eq')
then have "(?f i, ?f (Suc i)) \<in> r" using \<open>Suc i = n\<close> by simp
}
ultimately show "(?f i, ?f (Suc i)) \<in> r" by simp
qed
moreover have "?f 0 \<in> A"
proof (cases n)
case 0
with \<open>(a, f 0) \<in> r^^n\<close> have eq: "a = f 0" by simp
from a show ?thesis by (simp add: eq 0)
next
case (Suc m)
then show ?thesis by (simp add: a g0)
qed
ultimately have "\<not> SN_on r A" unfolding SN_defs by best
with assms show False by simp
qed
qed
(* FIXME: move somewhere else *)
declare subrelI [Pure.intro]
lemma restrict_SN_trancl_simp [simp]: "(restrict_SN A A)\<^sup>+ = restrict_SN (A\<^sup>+) A" (is "?lhs = ?rhs")
proof
show "?lhs \<subseteq> ?rhs"
proof
fix a b assume "(a, b) \<in> ?lhs" then show "(a, b) \<in> ?rhs"
unfolding restrict_SN_def by (induct rule: trancl.induct) auto
qed
next
show "?rhs \<subseteq> ?lhs"
proof
fix a b assume "(a, b) \<in> ?rhs"
then have "(a, b) \<in> A\<^sup>+" and "SN_on A {a}" unfolding restrict_SN_def by auto
then show "(a, b) \<in> ?lhs"
proof (induct rule: trancl.induct)
case (r_into_trancl x y) then show ?case unfolding restrict_SN_def by auto
next
case (trancl_into_trancl a b c)
then have IH: "(a, b) \<in> ?lhs" by auto
from trancl_into_trancl have "(a, b) \<in> A\<^sup>*" by auto
from this and \<open>SN_on A {a}\<close> have "SN_on A {b}" by (rule steps_preserve_SN_on)
with \<open>(b, c) \<in> A\<close> have "(b, c) \<in> ?lhs" unfolding restrict_SN_def by auto
with IH show ?case by simp
qed
qed
qed
lemma SN_imp_WN:
assumes "SN A" shows "WN A"
proof -
from \<open>SN A\<close> have "wf (A\<inverse>)" by (simp add: SN_defs wf_iff_no_infinite_down_chain)
show "WN A"
proof
fix a
show "\<exists>b. (a, b) \<in> A\<^sup>!" unfolding normalizability_def NF_def Image_def
by (rule wfE_min [OF \<open>wf (A\<inverse>)\<close>, of a "A\<^sup>* `` {a}", simplified])
(auto intro: rtrancl_into_rtrancl)
qed
qed
lemma UNC_imp_UNF:
assumes "UNC r" shows "UNF r"
proof - {
fix x y z assume "(x, y) \<in> r\<^sup>!" and "(x, z) \<in> r\<^sup>!"
then have "(x, y) \<in> r\<^sup>*" and "(x, z) \<in> r\<^sup>*" and "y \<in> NF r" and "z \<in> NF r" by auto
then have "(x, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" and "(x, z) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" by auto
then have "(z, x) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" using conversion_sym unfolding sym_def by best
with \<open>(x, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*\<close> have "(z, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" using conversion_trans unfolding trans_def by best
from assms and this and \<open>z \<in> NF r\<close> and \<open>y \<in> NF r\<close> have "z = y" unfolding UNC_def by auto
} then show ?thesis by auto
qed
lemma join_NF_imp_eq:
assumes "(x, y) \<in> r\<^sup>\<down>" and "x \<in> NF r" and "y \<in> NF r"
shows "x = y"
proof -
from \<open>(x, y) \<in> r\<^sup>\<down>\<close> obtain z where "(x, z)\<in>r\<^sup>*" and "(z, y)\<in>(r\<inverse>)\<^sup>*" unfolding join_def by auto
then have "(y, z) \<in> r\<^sup>*" unfolding rtrancl_converse by simp
from \<open>x \<in> NF r\<close> have "(x, z) \<notin> r\<^sup>+" using NF_no_trancl_step by best
then have "x = z" using rtranclD [OF \<open>(x, z) \<in> r\<^sup>*\<close>] by auto
from \<open>y \<in> NF r\<close> have "(y, z) \<notin> r\<^sup>+" using NF_no_trancl_step by best
then have "y = z" using rtranclD [OF \<open>(y, z) \<in> r\<^sup>*\<close>] by auto
with \<open>x = z\<close> show ?thesis by simp
qed
lemma rtrancl_Restr:
assumes "(x, y) \<in> (Restr r A)\<^sup>*"
shows "(x, y) \<in> r\<^sup>*"
using assms by induct auto
lemma join_mono:
assumes "r \<subseteq> s"
shows "r\<^sup>\<down> \<subseteq> s\<^sup>\<down>"
using rtrancl_mono [OF assms] by (auto simp: join_def rtrancl_converse)
lemma CR_iff_meet_subset_join: "CR r = (r\<^sup>\<up> \<subseteq> r\<^sup>\<down>)"
proof
assume "CR r" show "r\<^sup>\<up> \<subseteq> r\<^sup>\<down>"
proof (rule subrelI)
fix x y assume "(x, y) \<in> r\<^sup>\<up>"
then obtain z where "(z, x) \<in> r\<^sup>*" and "(z, y) \<in> r\<^sup>*" using meetD by best
with \<open>CR r\<close> show "(x, y) \<in> r\<^sup>\<down>" by (auto simp: CR_defs)
qed
next
assume "r\<^sup>\<up> \<subseteq> r\<^sup>\<down>" {
fix x y z assume "(x, y) \<in> r\<^sup>*" and "(x, z) \<in> r\<^sup>*"
then have "(y, z) \<in> r\<^sup>\<up>" unfolding meet_def rtrancl_converse by auto
with \<open>r\<^sup>\<up> \<subseteq> r\<^sup>\<down>\<close> have "(y, z) \<in> r\<^sup>\<down>" by auto
} then show "CR r" by (auto simp: CR_defs)
qed
lemma CR_divergence_imp_join:
assumes "CR r" and "(x, y) \<in> r\<^sup>*" and "(x, z) \<in> r\<^sup>*"
shows "(y, z) \<in> r\<^sup>\<down>"
using assms by auto
lemma join_imp_conversion: "r\<^sup>\<down> \<subseteq> r\<^sup>\<leftrightarrow>\<^sup>*"
proof
fix x z assume "(x, z) \<in> r\<^sup>\<down>"
then obtain y where "(x, y) \<in> r\<^sup>*" and "(z, y) \<in> r\<^sup>*" by auto
then have "(x, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" and "(z, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" by auto
from \<open>(z, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*\<close> have "(y, z) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" using conversion_sym unfolding sym_def by best
with \<open>(x, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*\<close> show "(x, z) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" using conversion_trans unfolding trans_def by best
qed
lemma meet_imp_conversion: "r\<^sup>\<up> \<subseteq> r\<^sup>\<leftrightarrow>\<^sup>*"
proof (rule subrelI)
fix y z assume "(y, z) \<in> r\<^sup>\<up>"
then obtain x where "(x, y) \<in> r\<^sup>*" and "(x, z) \<in> r\<^sup>*" by auto
then have "(x, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" and "(x, z) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" by auto
from \<open>(x, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*\<close> have "(y, x) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" using conversion_sym unfolding sym_def by best
with \<open>(x, z) \<in> r\<^sup>\<leftrightarrow>\<^sup>*\<close> show "(y, z) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" using conversion_trans unfolding trans_def by best
qed
lemma CR_imp_UNF:
assumes "CR r" shows "UNF r"
proof - {
fix x y z assume "(x, y) \<in> r\<^sup>!" and "(x, z) \<in> r\<^sup>!"
then have "(x, y) \<in> r\<^sup>*" and "y \<in> NF r" and "(x, z) \<in> r\<^sup>*" and "z \<in> NF r"
unfolding normalizability_def by auto
from assms and \<open>(x, y) \<in> r\<^sup>*\<close> and \<open>(x, z) \<in> r\<^sup>*\<close> have "(y, z) \<in> r\<^sup>\<down>"
by (rule CR_divergence_imp_join)
from this and \<open>y \<in> NF r\<close> and \<open>z \<in> NF r\<close> have "y = z" by (rule join_NF_imp_eq)
} then show ?thesis by auto
qed
lemma CR_iff_conversion_imp_join: "CR r = (r\<^sup>\<leftrightarrow>\<^sup>* \<subseteq> r\<^sup>\<down>)"
proof (intro iffI subrelI)
fix x y assume "CR r" and "(x, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*"
then obtain n where "(x, y) \<in> (r\<^sup>\<leftrightarrow>)^^n" unfolding conversion_def rtrancl_is_UN_relpow by auto
then show "(x, y) \<in> r\<^sup>\<down>"
proof (induct n arbitrary: x)
case 0
assume "(x, y) \<in> r\<^sup>\<leftrightarrow> ^^ 0" then have "x = y" by simp
show ?case unfolding \<open>x = y\<close> by auto
next
case (Suc n)
from \<open>(x, y) \<in> r\<^sup>\<leftrightarrow> ^^ Suc n\<close> obtain z where "(x, z) \<in> r\<^sup>\<leftrightarrow>" and "(z, y) \<in> r\<^sup>\<leftrightarrow> ^^ n"
using relpow_Suc_D2 by best
with Suc have "(z, y) \<in> r\<^sup>\<down>" by simp
from \<open>(x, z) \<in> r\<^sup>\<leftrightarrow>\<close> show ?case
proof
assume "(x, z) \<in> r" with \<open>(z, y) \<in> r\<^sup>\<down>\<close> show ?thesis by (auto intro: rtrancl_join_join)
next
assume "(x, z) \<in> r\<inverse>"
then have "(z, x) \<in> r\<^sup>*" by simp
from \<open>(z, y) \<in> r\<^sup>\<down>\<close> obtain z' where "(z, z') \<in> r\<^sup>*" and "(y, z') \<in> r\<^sup>*" by auto
from \<open>CR r\<close> and \<open>(z, x) \<in> r\<^sup>*\<close> and \<open>(z, z') \<in> r\<^sup>*\<close> have "(x, z') \<in> r\<^sup>\<down>"
by (rule CR_divergence_imp_join)
then obtain x' where "(x, x') \<in> r\<^sup>*" and "(z', x') \<in> r\<^sup>*" by auto
with \<open>(y, z') \<in> r\<^sup>*\<close> show ?thesis by auto
qed
qed
next
assume "r\<^sup>\<leftrightarrow>\<^sup>* \<subseteq> r\<^sup>\<down>" then show "CR r" unfolding CR_iff_meet_subset_join
using meet_imp_conversion by auto
qed
lemma CR_imp_conversionIff_join:
assumes "CR r" shows "r\<^sup>\<leftrightarrow>\<^sup>* = r\<^sup>\<down>"
proof
show "r\<^sup>\<leftrightarrow>\<^sup>* \<subseteq> r\<^sup>\<down>" using CR_iff_conversion_imp_join assms by auto
next
show "r\<^sup>\<down> \<subseteq> r\<^sup>\<leftrightarrow>\<^sup>*" by (rule join_imp_conversion)
qed
lemma sym_join: "sym (join r)" by (auto simp: sym_def)
lemma join_sym: "(s, t) \<in> A\<^sup>\<down> \<Longrightarrow> (t, s) \<in> A\<^sup>\<down>" by auto
lemma CR_join_left_I:
assumes "CR r" and "(x, y) \<in> r\<^sup>*" and "(x, z) \<in> r\<^sup>\<down>" shows "(y, z) \<in> r\<^sup>\<down>"
proof -
from \<open>(x, z) \<in> r\<^sup>\<down>\<close> obtain x' where "(x, x') \<in> r\<^sup>*" and "(z, x') \<in> r\<^sup>\<down>" by auto
from \<open>CR r\<close> and \<open>(x, x') \<in> r\<^sup>*\<close> and \<open>(x, y) \<in> r\<^sup>*\<close> have "(x, y) \<in> r\<^sup>\<down>" by auto
then have "(y, x) \<in> r\<^sup>\<down>" using join_sym by best
from \<open>CR r\<close> have "r\<^sup>\<leftrightarrow>\<^sup>* = r\<^sup>\<down>" by (rule CR_imp_conversionIff_join)
from \<open>(y, x) \<in> r\<^sup>\<down>\<close> and \<open>(x, z) \<in> r\<^sup>\<down>\<close> show ?thesis using conversion_trans
unfolding trans_def \<open>r\<^sup>\<leftrightarrow>\<^sup>* = r\<^sup>\<down>\<close> [symmetric] by best
qed
lemma CR_join_right_I:
assumes "CR r" and "(x, y) \<in> r\<^sup>\<down>" and "(y, z) \<in> r\<^sup>*" shows "(x, z) \<in> r\<^sup>\<down>"
proof -
have "r\<^sup>\<leftrightarrow>\<^sup>* = r\<^sup>\<down>" by (rule CR_imp_conversionIff_join [OF \<open>CR r\<close>])
from \<open>(y, z) \<in> r\<^sup>*\<close> have "(y, z) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" by auto
with \<open>(x, y) \<in> r\<^sup>\<down>\<close> show ?thesis unfolding \<open>r\<^sup>\<leftrightarrow>\<^sup>* = r\<^sup>\<down>\<close> [symmetric] using conversion_trans
unfolding trans_def by fast
qed
lemma NF_not_suc:
assumes "(x, y) \<in> r\<^sup>*" and "x \<in> NF r" shows "x = y"
proof -
from \<open>x \<in> NF r\<close> have "\<forall>y. (x, y) \<notin> r" using NF_no_step by auto
then have "x \<notin> Domain r" unfolding Domain_unfold by simp
from \<open>(x, y) \<in> r\<^sup>*\<close> show ?thesis unfolding Not_Domain_rtrancl [OF \<open>x \<notin> Domain r\<close>] by simp
qed
lemma semi_complete_imp_conversionIff_same_NF:
assumes "semi_complete r"
shows "((x, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*) = (\<forall>u v. (x, u) \<in> r\<^sup>! \<and> (y, v) \<in> r\<^sup>! \<longrightarrow> u = v)"
proof -
from assms have "WN r" and "CR r" unfolding semi_complete_defs by auto
then have "r\<^sup>\<leftrightarrow>\<^sup>* = r\<^sup>\<down>" using CR_imp_conversionIff_join by auto
show ?thesis
proof
assume "(x, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*"
from \<open>(x, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*\<close> have "(x, y) \<in> r\<^sup>\<down>" unfolding \<open>r\<^sup>\<leftrightarrow>\<^sup>* = r\<^sup>\<down>\<close> .
show "\<forall>u v. (x, u) \<in> r\<^sup>! \<and> (y, v) \<in> r\<^sup>! \<longrightarrow> u = v"
proof (intro allI impI, elim conjE)
fix u v assume "(x, u) \<in> r\<^sup>!" and "(y, v) \<in> r\<^sup>!"
then have "(x, u) \<in> r\<^sup>*" and "(y, v) \<in> r\<^sup>*" and "u \<in> NF r" and "v \<in> NF r" by auto
from \<open>CR r\<close> and \<open>(x, u) \<in> r\<^sup>*\<close> and \<open>(x, y) \<in> r\<^sup>\<down>\<close> have "(u, y) \<in> r\<^sup>\<down>"
by (auto intro: CR_join_left_I)
then have "(y, u) \<in> r\<^sup>\<down>" using join_sym by best
with \<open>(x, y) \<in> r\<^sup>\<down>\<close> have "(x, u) \<in> r\<^sup>\<down>" unfolding \<open>r\<^sup>\<leftrightarrow>\<^sup>* = r\<^sup>\<down>\<close> [symmetric]
using conversion_trans unfolding trans_def by best
from \<open>CR r\<close> and \<open>(x, y) \<in> r\<^sup>\<down>\<close> and \<open>(y, v) \<in> r\<^sup>*\<close> have "(x, v) \<in> r\<^sup>\<down>"
by (auto intro: CR_join_right_I)
then have "(v, x) \<in> r\<^sup>\<down>" using join_sym unfolding sym_def by best
with \<open>(x, u) \<in> r\<^sup>\<down>\<close> have "(v, u) \<in> r\<^sup>\<down>" unfolding \<open>r\<^sup>\<leftrightarrow>\<^sup>* = r\<^sup>\<down>\<close> [symmetric]
using conversion_trans unfolding trans_def by best
then obtain v' where "(v, v') \<in> r\<^sup>*" and "(u, v') \<in> r\<^sup>*" by auto
from \<open>(u, v') \<in> r\<^sup>*\<close> and \<open>u \<in> NF r\<close> have "u = v'" by (rule NF_not_suc)
from \<open>(v, v') \<in> r\<^sup>*\<close> and \<open>v \<in> NF r\<close> have "v = v'" by (rule NF_not_suc)
then show "u = v" unfolding \<open>u = v'\<close> by simp
qed
next
assume equal_NF:"\<forall>u v. (x, u) \<in> r\<^sup>! \<and> (y, v) \<in> r\<^sup>! \<longrightarrow> u = v"
from \<open>WN r\<close> obtain u where "(x, u) \<in> r\<^sup>!" by auto
from \<open>WN r\<close> obtain v where "(y, v) \<in> r\<^sup>!" by auto
from \<open>(x, u) \<in> r\<^sup>!\<close> and \<open>(y, v) \<in> r\<^sup>!\<close> have "u = v" using equal_NF by simp
from \<open>(x, u) \<in> r\<^sup>!\<close> and \<open>(y, v) \<in> r\<^sup>!\<close> have "(x, v) \<in> r\<^sup>*" and "(y, v) \<in> r\<^sup>*"
unfolding \<open>u = v\<close> by auto
then have "(x, v) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" and "(y, v) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" by auto
from \<open>(y, v) \<in> r\<^sup>\<leftrightarrow>\<^sup>*\<close> have "(v, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" using conversion_sym unfolding sym_def by best
with \<open>(x, v) \<in> r\<^sup>\<leftrightarrow>\<^sup>*\<close> show "(x, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*" using conversion_trans unfolding trans_def by best
qed
qed
lemma CR_imp_UNC:
assumes "CR r" shows "UNC r"
proof - {
fix x y assume "x \<in> NF r" and "y \<in> NF r" and "(x, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*"
have "r\<^sup>\<leftrightarrow>\<^sup>* = r\<^sup>\<down>" by (rule CR_imp_conversionIff_join [OF assms])
from \<open>(x, y) \<in> r\<^sup>\<leftrightarrow>\<^sup>*\<close> have "(x, y) \<in> r\<^sup>\<down>" unfolding \<open>r\<^sup>\<leftrightarrow>\<^sup>* = r\<^sup>\<down>\<close> by simp
then obtain x' where "(x, x') \<in> r\<^sup>*" and "(y, x') \<in> r\<^sup>*" by best
from \<open>(x, x') \<in> r\<^sup>*\<close> and \<open>x \<in> NF r\<close> have "x = x'" by (rule NF_not_suc)
from \<open>(y, x') \<in> r\<^sup>*\<close> and \<open>y \<in> NF r\<close> have "y = x'" by (rule NF_not_suc)
then have "x = y" unfolding \<open>x = x'\<close> by simp
} then show ?thesis by (auto simp: UNC_def)
qed
lemma WN_UNF_imp_CR:
assumes "WN r" and "UNF r" shows "CR r"
proof - {
fix x y z assume "(x, y) \<in> r\<^sup>*" and "(x, z) \<in> r\<^sup>*"
from assms obtain y' where "(y, y') \<in> r\<^sup>!" unfolding WN_defs by best
with \<open>(x, y) \<in> r\<^sup>*\<close> have "(x, y') \<in> r\<^sup>!" by auto
from assms obtain z' where "(z, z') \<in> r\<^sup>!" unfolding WN_defs by best
with \<open>(x, z) \<in> r\<^sup>*\<close> have "(x, z') \<in> r\<^sup>!" by auto
with \<open>(x, y') \<in> r\<^sup>!\<close> have "y' = z'" using \<open>UNF r\<close> unfolding UNF_defs by auto
from \<open>(y, y') \<in> r\<^sup>!\<close> and \<open>(z, z') \<in> r\<^sup>!\<close> have "(y, z) \<in> r\<^sup>\<down>" unfolding \<open>y' = z'\<close> by auto
} then show ?thesis by auto
qed
definition diamond :: "'a rel \<Rightarrow> bool" ("\<diamond>") where
"\<diamond> r \<longleftrightarrow> (r\<inverse> O r) \<subseteq> (r O r\<inverse>)"
lemma diamond_I [intro]: "(r\<inverse> O r) \<subseteq> (r O r\<inverse>) \<Longrightarrow> \<diamond> r" unfolding diamond_def by simp
lemma diamond_E [elim]: "\<diamond> r \<Longrightarrow> ((r\<inverse> O r) \<subseteq> (r O r\<inverse>) \<Longrightarrow> P) \<Longrightarrow> P"
unfolding diamond_def by simp
lemma diamond_imp_semi_confluence:
assumes "\<diamond> r" shows "(r\<inverse> O r\<^sup>*) \<subseteq> r\<^sup>\<down>"
proof (rule subrelI)
fix y z assume "(y, z) \<in> r\<inverse> O r\<^sup>*"
then obtain x where "(x, y) \<in> r" and "(x, z) \<in> r\<^sup>*" by best
then obtain n where "(x, z) \<in> r^^n" using rtrancl_imp_UN_relpow by best
with \<open>(x, y) \<in> r\<close> show "(y, z) \<in> r\<^sup>\<down>"
proof (induct n arbitrary: x z y)
case 0 then show ?case by auto
next
case (Suc n)
from \<open>(x, z) \<in> r^^Suc n\<close> obtain x' where "(x, x') \<in> r" and "(x', z) \<in> r^^n"
using relpow_Suc_D2 by best
with \<open>(x, y) \<in> r\<close> have "(y, x') \<in> (r\<inverse> O r)" by auto
with \<open>\<diamond> r\<close> have "(y, x') \<in> (r O r\<inverse>)" by auto
then obtain y' where "(x', y') \<in> r" and "(y, y') \<in> r" by best
with Suc and \<open>(x', z) \<in> r^^n\<close> have "(y', z) \<in> r\<^sup>\<down>" by auto
with \<open>(y, y') \<in> r\<close> show ?case by (auto intro: rtrancl_join_join)
qed
qed
lemma semi_confluence_imp_CR:
assumes "(r\<inverse> O r\<^sup>*) \<subseteq> r\<^sup>\<down>" shows "CR r"
proof - {
fix x y z assume "(x, y) \<in> r\<^sup>*" and "(x, z) \<in> r\<^sup>*"
then obtain n where "(x, z) \<in> r^^n" using rtrancl_imp_UN_relpow by best
with \<open>(x, y) \<in> r\<^sup>*\<close> have "(y, z) \<in> r\<^sup>\<down>"
proof (induct n arbitrary: x y z)
case 0 then show ?case by auto
next
case (Suc n)
from \<open>(x, z) \<in> r^^Suc n\<close> obtain x' where "(x, x') \<in> r" and "(x', z) \<in> r^^n"
using relpow_Suc_D2 by best
from \<open>(x, x') \<in> r\<close> and \<open>(x, y) \<in> r\<^sup>*\<close> have "(x', y) \<in> (r\<inverse> O r\<^sup>* )" by auto
with assms have "(x', y) \<in> r\<^sup>\<down>" by auto
then obtain y' where "(x', y') \<in> r\<^sup>*" and "(y, y') \<in> r\<^sup>*" by best
with Suc and \<open>(x', z) \<in> r^^n\<close> have "(y', z) \<in> r\<^sup>\<down>" by simp
then obtain u where "(z, u) \<in> r\<^sup>*" and "(y', u) \<in> r\<^sup>*" by best
from \<open>(y, y') \<in> r\<^sup>*\<close> and \<open>(y', u) \<in> r\<^sup>*\<close> have "(y, u) \<in> r\<^sup>*" by auto
with \<open>(z, u) \<in> r\<^sup>*\<close> show ?case by best
qed
} then show ?thesis by auto
qed
lemma diamond_imp_CR:
assumes "\<diamond> r" shows "CR r"
using assms by (rule diamond_imp_semi_confluence [THEN semi_confluence_imp_CR])
lemma diamond_imp_CR':
assumes "\<diamond> s" and "r \<subseteq> s" and "s \<subseteq> r\<^sup>*" shows "CR r"
unfolding CR_iff_meet_subset_join
proof -
from \<open>\<diamond> s\<close> have "CR s" by (rule diamond_imp_CR)
then have "s\<^sup>\<up> \<subseteq> s\<^sup>\<down>" unfolding CR_iff_meet_subset_join by simp
from \<open>r \<subseteq> s\<close> have "r\<^sup>* \<subseteq> s\<^sup>*" by (rule rtrancl_mono)
from \<open>s \<subseteq> r\<^sup>*\<close> have "s\<^sup>* \<subseteq> (r\<^sup>*)\<^sup>*" by (rule rtrancl_mono)
then have "s\<^sup>* \<subseteq> r\<^sup>*" by simp
with \<open>r\<^sup>* \<subseteq> s\<^sup>*\<close> have "r\<^sup>* = s\<^sup>*" by simp
show "r\<^sup>\<up> \<subseteq> r\<^sup>\<down>" unfolding meet_def join_def rtrancl_converse \<open>r\<^sup>* = s\<^sup>*\<close>
unfolding rtrancl_converse [symmetric] meet_def [symmetric]
join_def [symmetric] by (rule \<open>s\<^sup>\<up> \<subseteq> s\<^sup>\<down>\<close>)
qed
lemma SN_imp_minimal:
assumes "SN A"
shows "\<forall>Q x. x \<in> Q \<longrightarrow> (\<exists>z\<in>Q. \<forall>y. (z, y) \<in> A \<longrightarrow> y \<notin> Q)"
proof (rule ccontr)
assume "\<not> (\<forall>Q x. x \<in> Q \<longrightarrow> (\<exists>z\<in>Q. \<forall>y. (z, y) \<in> A \<longrightarrow> y \<notin> Q))"
then obtain Q x where "x \<in> Q" and "\<forall>z\<in>Q. \<exists>y. (z, y) \<in> A \<and> y \<in> Q" by auto
then have "\<forall>z. \<exists>y. z \<in> Q \<longrightarrow> (z, y) \<in> A \<and> y \<in> Q" by auto
then have "\<exists>f. \<forall>x. x \<in> Q \<longrightarrow> (x, f x) \<in> A \<and> f x \<in> Q" by (rule choice)
then obtain f where a:"\<forall>x. x \<in> Q \<longrightarrow> (x, f x) \<in> A \<and> f x \<in> Q" (is "\<forall>x. ?P x") by best
let ?S = "\<lambda>i. (f ^^ i) x"
have "?S 0 = x" by simp
have "\<forall>i. (?S i, ?S (Suc i)) \<in> A \<and> ?S (Suc i) \<in> Q"
proof
fix i show "(?S i, ?S (Suc i)) \<in> A \<and> ?S (Suc i) \<in> Q"
by (induct i) (auto simp: \<open>x \<in> Q\<close> a)
qed
with \<open>?S 0 = x\<close> have "\<exists>S. S 0 = x \<and> chain A S" by fast
with assms show False by auto
qed
lemma SN_on_imp_on_minimal:
assumes "SN_on r {x}"
shows "\<forall>Q. x \<in> Q \<longrightarrow> (\<exists>z\<in>Q. \<forall>y. (z, y) \<in> r \<longrightarrow> y \<notin> Q)"
proof (rule ccontr)
assume "\<not>(\<forall>Q. x \<in> Q \<longrightarrow> (\<exists>z\<in>Q. \<forall>y. (z, y) \<in> r \<longrightarrow> y \<notin> Q))"
then obtain Q where "x \<in> Q" and "\<forall>z\<in>Q. \<exists>y. (z, y) \<in> r \<and> y \<in> Q" by auto
then have "\<forall>z. \<exists>y. z \<in> Q \<longrightarrow> (z, y) \<in> r \<and> y \<in> Q" by auto
then have "\<exists>f. \<forall>x. x \<in> Q \<longrightarrow> (x, f x) \<in> r \<and> f x \<in> Q" by (rule choice)
then obtain f where a: "\<forall>x. x \<in> Q \<longrightarrow> (x, f x) \<in> r \<and> f x \<in> Q" (is "\<forall>x. ?P x") by best
let ?S = "\<lambda>i. (f ^^ i) x"
have "?S 0 = x" by simp
have "\<forall>i. (?S i,?S(Suc i)) \<in> r \<and> ?S(Suc i) \<in> Q"
proof
fix i show "(?S i,?S(Suc i)) \<in> r \<and> ?S(Suc i) \<in> Q" by (induct i) (auto simp:\<open>x \<in> Q\<close> a)
qed
with \<open>?S 0 = x\<close> have "\<exists>S. S 0 = x \<and> chain r S" by fast
with assms show False by auto
qed
lemma minimal_imp_wf:
assumes "\<forall>Q x. x \<in> Q \<longrightarrow> (\<exists>z\<in>Q. \<forall>y. (z, y) \<in> r \<longrightarrow> y \<notin> Q)"
shows "wf(r\<inverse>)"
proof (rule ccontr)
assume "\<not> wf(r\<inverse>)"
then have "\<exists>P. (\<forall>x. (\<forall>y. (x, y) \<in> r \<longrightarrow> P y) \<longrightarrow> P x) \<and> (\<exists>x. \<not> P x)" unfolding wf_def by simp
then obtain P x where suc:"\<forall>x. (\<forall>y. (x, y) \<in> r \<longrightarrow> P y) \<longrightarrow> P x" and "\<not> P x" by auto
let ?Q = "{x. \<not> P x}"
from \<open>\<not> P x\<close> have "x \<in> ?Q" by simp
from assms have "\<forall>x. x \<in> ?Q \<longrightarrow> (\<exists>z\<in>?Q. \<forall>y. (z, y) \<in> r \<longrightarrow> y \<notin> ?Q)" by (rule allE [where x = ?Q])
with \<open>x \<in> ?Q\<close> obtain z where "z \<in> ?Q" and min:" \<forall>y. (z, y) \<in> r \<longrightarrow> y \<notin> ?Q" by best
from \<open>z \<in> ?Q\<close> have "\<not> P z" by simp
with suc obtain y where "(z, y) \<in> r" and "\<not> P y" by best
then have "y \<in> ?Q" by simp
with \<open>(z, y) \<in> r\<close> and min show False by simp
qed
lemmas SN_imp_wf = SN_imp_minimal [THEN minimal_imp_wf]
lemma wf_imp_SN:
assumes "wf (A\<inverse>)" shows "SN A"
proof - {
fix a
let ?P = "\<lambda>a. \<not>(\<exists>S. S 0 = a \<and> chain A S)"
from \<open>wf (A\<inverse>)\<close> have "?P a"
proof induct
case (less a)
then have IH: "\<And>b. (a, b) \<in> A \<Longrightarrow> ?P b" by auto
show "?P a"
proof (rule ccontr)
assume "\<not> ?P a"
then obtain S where "S 0 = a" and "chain A S" by auto
then have "(S 0, S 1) \<in> A" by auto
with IH have "?P (S 1)" unfolding \<open>S 0 = a\<close> by auto
with \<open>chain A S\<close> show False by auto
qed
qed
then have "SN_on A {a}" unfolding SN_defs by auto
} then show ?thesis by fast
qed
lemma SN_nat_gt: "SN {(a, b :: nat) . a > b}"
proof -
from wf_less have "wf ({(x, y) . (x :: nat) > y}\<inverse>)" unfolding converse_unfold by auto
from wf_imp_SN [OF this] show ?thesis .
qed
lemma SN_iff_wf: "SN A = wf (A\<inverse>)" by (auto simp: SN_imp_wf wf_imp_SN)
lemma SN_imp_acyclic: "SN R \<Longrightarrow> acyclic R"
using wf_acyclic [of "R\<inverse>", unfolded SN_iff_wf [symmetric]] by auto
lemma SN_induct:
assumes sn: "SN r" and step: "\<And>a. (\<And>b. (a, b) \<in> r \<Longrightarrow> P b) \<Longrightarrow> P a"
shows "P a"
using sn unfolding SN_iff_wf proof induct
case (less a)
with step show ?case by best
qed
(* The same as well-founded induction, but in the 'correct' direction. *)
lemmas SN_induct_rule = SN_induct [consumes 1, case_names IH, induct pred: SN]
lemma SN_on_induct [consumes 2, case_names IH, induct pred: SN_on]:
assumes SN: "SN_on R A"
and "s \<in> A"
and imp: "\<And>t. (\<And>u. (t, u) \<in> R \<Longrightarrow> P u) \<Longrightarrow> P t"
shows "P s"
proof -
let ?R = "restrict_SN R R"
let ?P = "\<lambda>t. SN_on R {t} \<longrightarrow> P t"
have "SN_on R {s} \<longrightarrow> P s"
proof (rule SN_induct [OF SN_restrict_SN_idemp [of R], of ?P])
fix a
assume ind: "\<And>b. (a, b) \<in> ?R \<Longrightarrow> SN_on R {b} \<longrightarrow> P b"
show "SN_on R {a} \<longrightarrow> P a"
proof
assume SN: "SN_on R {a}"
show "P a"
proof (rule imp)
fix b
assume "(a, b) \<in> R"
with SN step_preserves_SN_on [OF this SN]
show "P b" using ind [of b] unfolding restrict_SN_def by auto
qed
qed
qed
with SN show "P s" using \<open>s \<in> A\<close> unfolding SN_on_def by blast
qed
(* link SN_on to acc / accp *)
lemma accp_imp_SN_on:
assumes "\<And>x. x \<in> A \<Longrightarrow> Wellfounded.accp g x"
shows "SN_on {(y, z). g z y} A"
proof - {
fix x assume "x \<in> A"
from assms [OF this]
have "SN_on {(y, z). g z y} {x}"
proof (induct rule: accp.induct)
case (accI x)
show ?case
proof
fix f
assume x: "f 0 \<in> {x}" and steps: "\<forall> i. (f i, f (Suc i)) \<in> {a. (\<lambda>(y, z). g z y) a}"
then have "g (f 1) x" by auto
from accI(2)[OF this] steps x show False unfolding SN_on_def by auto
qed
qed
}
then show ?thesis unfolding SN_on_def by blast
qed
lemma SN_on_imp_accp:
assumes "SN_on {(y, z). g z y} A"
shows "\<forall>x\<in>A. Wellfounded.accp g x"
proof
fix x assume "x \<in> A"
with assms show "Wellfounded.accp g x"
proof (induct rule: SN_on_induct)
case (IH x)
show ?case
proof
fix y
assume "g y x"
with IH show "Wellfounded.accp g y" by simp
qed
qed
qed
lemma SN_on_conv_accp:
"SN_on {(y, z). g z y} {x} = Wellfounded.accp g x"
using SN_on_imp_accp [of g "{x}"]
accp_imp_SN_on [of "{x}" g]
by auto
lemma SN_on_conv_acc: "SN_on {(y, z). (z, y) \<in> r} {x} \<longleftrightarrow> x \<in> Wellfounded.acc r"
unfolding SN_on_conv_accp accp_acc_eq ..
lemma acc_imp_SN_on:
assumes "x \<in> Wellfounded.acc r" shows "SN_on {(y, z). (z, y) \<in> r} {x}"
using assms unfolding SN_on_conv_acc by simp
lemma SN_on_imp_acc:
assumes "SN_on {(y, z). (z, y) \<in> r} {x}" shows "x \<in> Wellfounded.acc r"
using assms unfolding SN_on_conv_acc by simp
subsection \<open>Newman's Lemma\<close>
lemma rtrancl_len_E [elim]:
assumes "(x, y) \<in> r\<^sup>*" obtains n where "(x, y) \<in> r^^n"
using rtrancl_imp_UN_relpow [OF assms] by best
lemma relpow_Suc_E2' [elim]:
assumes "(x, z) \<in> A^^Suc n" obtains y where "(x, y) \<in> A" and "(y, z) \<in> A\<^sup>*"
proof -
assume assm: "\<And>y. (x, y) \<in> A \<Longrightarrow> (y, z) \<in> A\<^sup>* \<Longrightarrow> thesis"
from relpow_Suc_E2 [OF assms] obtain y where "(x, y) \<in> A" and "(y, z) \<in> A^^n" by auto
then have "(y, z) \<in> A\<^sup>*" using (*FIXME*) relpow_imp_rtrancl by auto
from assm [OF \<open>(x, y) \<in> A\<close> this] show thesis .
qed
lemmas SN_on_induct' [consumes 1, case_names IH] = SN_on_induct [OF _ singletonI]
lemma Newman_local:
assumes "SN_on r X" and WCR: "WCR_on r {x. SN_on r {x}}"
shows "CR_on r X"
proof - {
fix x
assume "x \<in> X"
with assms have "SN_on r {x}" unfolding SN_on_def by auto
with this have "CR_on r {x}"
proof (induct rule: SN_on_induct')
case (IH x) show ?case
proof
fix y z assume "(x, y) \<in> r\<^sup>*" and "(x, z) \<in> r\<^sup>*"
from \<open>(x, y) \<in> r\<^sup>*\<close> obtain m where "(x, y) \<in> r^^m" ..
from \<open>(x, z) \<in> r\<^sup>*\<close> obtain n where "(x, z) \<in> r^^n" ..
show "(y, z) \<in> r\<^sup>\<down>"
proof (cases n)
case 0
from \<open>(x, z) \<in> r^^n\<close> have eq: "x = z" by (simp add: 0)
from \<open>(x, y) \<in> r\<^sup>*\<close> show ?thesis unfolding eq ..
next
case (Suc n')
from \<open>(x, z) \<in> r^^n\<close> [unfolded Suc] obtain t where "(x, t) \<in> r" and "(t, z) \<in> r\<^sup>*" ..
show ?thesis
proof (cases m)
case 0
from \<open>(x, y) \<in> r^^m\<close> have eq: "x = y" by (simp add: 0)
from \<open>(x, z) \<in> r\<^sup>*\<close> show ?thesis unfolding eq ..
next
case (Suc m')
from \<open>(x, y) \<in> r^^m\<close> [unfolded Suc] obtain s where "(x, s) \<in> r" and "(s, y) \<in> r\<^sup>*" ..
from WCR IH(2) have "WCR_on r {x}" unfolding WCR_on_def by auto
with \<open>(x, s) \<in> r\<close> and \<open>(x, t) \<in> r\<close> have "(s, t) \<in> r\<^sup>\<down>" by auto
then obtain u where "(s, u) \<in> r\<^sup>*" and "(t, u) \<in> r\<^sup>*" ..
from \<open>(x, s) \<in> r\<close> IH(2) have "SN_on r {s}" by (rule step_preserves_SN_on)
from IH(1)[OF \<open>(x, s) \<in> r\<close> this] have "CR_on r {s}" .
from this and \<open>(s, u) \<in> r\<^sup>*\<close> and \<open>(s, y) \<in> r\<^sup>*\<close> have "(u, y) \<in> r\<^sup>\<down>" by auto
then obtain v where "(u, v) \<in> r\<^sup>*" and "(y, v) \<in> r\<^sup>*" ..
from \<open>(x, t) \<in> r\<close> IH(2) have "SN_on r {t}" by (rule step_preserves_SN_on)
from IH(1)[OF \<open>(x, t) \<in> r\<close> this] have "CR_on r {t}" .
moreover from \<open>(t, u) \<in> r\<^sup>*\<close> and \<open>(u, v) \<in> r\<^sup>*\<close> have "(t, v) \<in> r\<^sup>*" by auto
ultimately have "(z, v) \<in> r\<^sup>\<down>" using \<open>(t, z) \<in> r\<^sup>*\<close> by auto
then obtain w where "(z, w) \<in> r\<^sup>*" and "(v, w) \<in> r\<^sup>*" ..
from \<open>(y, v) \<in> r\<^sup>*\<close> and \<open>(v, w) \<in> r\<^sup>*\<close> have "(y, w) \<in> r\<^sup>*" by auto
with \<open>(z, w) \<in> r\<^sup>*\<close> show ?thesis by auto
qed
qed
qed
qed
}
then show ?thesis unfolding CR_on_def by blast
qed
lemma Newman: "SN r \<Longrightarrow> WCR r \<Longrightarrow> CR r"
using Newman_local [of r UNIV]
unfolding WCR_on_def by auto
lemma Image_SN_on:
assumes "SN_on r (r `` A)"
shows "SN_on r A"
proof
fix f
assume "f 0 \<in> A" and chain: "chain r f"
then have "f (Suc 0) \<in> r `` A" by auto
with assms have "SN_on r {f (Suc 0)}" by (auto simp add: \<open>f 0 \<in> A\<close> SN_defs)
moreover have "\<not> SN_on r {f (Suc 0)}"
proof -
have "f (Suc 0) \<in> {f (Suc 0)}" by simp
moreover from chain have "chain r (f \<circ> Suc)" by auto
ultimately show ?thesis by auto
qed
ultimately show False by simp
qed
lemma SN_on_Image_conv: "SN_on r (r `` A) = SN_on r A"
using SN_on_Image and Image_SN_on by blast
text \<open>If all successors are terminating, then the current element is also terminating.\<close>
lemma step_reflects_SN_on:
assumes "(\<And>b. (a, b) \<in> r \<Longrightarrow> SN_on r {b})"
shows "SN_on r {a}"
using assms and Image_SN_on [of r "{a}"] by (auto simp: SN_defs)
lemma SN_on_all_reducts_SN_on_conv:
"SN_on r {a} = (\<forall>b. (a, b) \<in> r \<longrightarrow> SN_on r {b})"
using SN_on_Image_conv [of r "{a}"] by (auto simp: SN_defs)
lemma SN_imp_SN_trancl: "SN R \<Longrightarrow> SN (R\<^sup>+)"
unfolding SN_iff_wf by (rule wf_converse_trancl)
lemma SN_trancl_imp_SN:
assumes "SN (R\<^sup>+)" shows "SN R"
using assms by (rule SN_on_trancl_imp_SN_on)
lemma SN_trancl_SN_conv: "SN (R\<^sup>+) = SN R"
using SN_trancl_imp_SN [of R] SN_imp_SN_trancl [of R] by blast
lemma SN_inv_image: "SN R \<Longrightarrow> SN (inv_image R f)" unfolding SN_iff_wf by simp
lemma SN_subset: "SN R \<Longrightarrow> R' \<subseteq> R \<Longrightarrow> SN R'" unfolding SN_defs by blast
lemma SN_pow_imp_SN:
assumes "SN (A^^Suc n)" shows "SN A"
proof (rule ccontr)
assume "\<not> SN A"
then obtain S where "chain A S" unfolding SN_defs by auto
from chain_imp_relpow [OF this]
have step: "\<And>i. (S i, S (i + (Suc n))) \<in> A^^Suc n" .
let ?T = "\<lambda>i. S (i * (Suc n))"
have "chain (A^^Suc n) ?T"
proof
fix i show "(?T i, ?T (Suc i)) \<in> A^^Suc n" unfolding mult_Suc
using step [of "i * Suc n"] by (simp only: add.commute)
qed
then have "\<not> SN (A^^Suc n)" unfolding SN_defs by fast
with assms show False by simp
qed
(* TODO: move to Isabelle Library? *)
lemma pow_Suc_subset_trancl: "R^^(Suc n) \<subseteq> R\<^sup>+"
using trancl_power [of _ R] by blast
lemma SN_imp_SN_pow:
assumes "SN R" shows "SN (R^^Suc n)"
using SN_subset [where R="R\<^sup>+", OF SN_imp_SN_trancl [OF assms] pow_Suc_subset_trancl] by simp
(*FIXME: needed in HOL/Wellfounded.thy*)
lemma SN_pow: "SN R \<longleftrightarrow> SN (R ^^ Suc n)"
by (rule iffI, rule SN_imp_SN_pow, assumption, rule SN_pow_imp_SN, assumption)
lemma SN_on_trancl:
assumes "SN_on r A" shows "SN_on (r\<^sup>+) A"
using assms
proof (rule contrapos_pp)
let ?r = "restrict_SN r r"
assume "\<not> SN_on (r\<^sup>+) A"
then obtain f where "f 0 \<in> A" and chain: "chain (r\<^sup>+) f" by auto
have "SN ?r" by (rule SN_restrict_SN_idemp)
then have "SN (?r\<^sup>+)" by (rule SN_imp_SN_trancl)
have "\<forall>i. (f 0, f i) \<in> r\<^sup>*"
proof
fix i show "(f 0, f i) \<in> r\<^sup>*"
proof (induct i)
case 0 show ?case ..
next
case (Suc i)
from chain have "(f i, f (Suc i)) \<in> r\<^sup>+" ..
with Suc show ?case by auto
qed
qed
with assms have "\<forall>i. SN_on r {f i}"
using steps_preserve_SN_on [of "f 0" _ r]
and \<open>f 0 \<in> A\<close>
and SN_on_subset2 [of "{f 0}" "A"] by auto
with chain have "chain (?r\<^sup>+) f"
unfolding restrict_SN_trancl_simp
unfolding restrict_SN_def by auto
then have "\<not> SN_on (?r\<^sup>+) {f 0}" by auto
with \<open>SN (?r\<^sup>+)\<close> have False by (simp add: SN_defs)
then show "\<not> SN_on r A" by simp
qed
lemma SN_on_trancl_SN_on_conv: "SN_on (R\<^sup>+) T = SN_on R T"
using SN_on_trancl_imp_SN_on [of R] SN_on_trancl [of R] by blast
text \<open>Restrict an ARS to elements of a given set.\<close>
definition "restrict" :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a rel" where
"restrict r S = {(x, y). x \<in> S \<and> y \<in> S \<and> (x, y) \<in> r}"
lemma SN_on_restrict:
assumes "SN_on r A"
shows "SN_on (restrict r S) A" (is "SN_on ?r A")
proof (rule ccontr)
assume "\<not> SN_on ?r A"
then have "\<exists>f. f 0 \<in> A \<and> chain ?r f" by auto
then have "\<exists>f. f 0 \<in> A \<and> chain r f" unfolding restrict_def by auto
with \<open>SN_on r A\<close> show False by auto
qed
lemma restrict_rtrancl: "(restrict r S)\<^sup>* \<subseteq> r\<^sup>*" (is "?r\<^sup>* \<subseteq> r\<^sup>*")
proof - {
fix x y assume "(x, y) \<in> ?r\<^sup>*" then have "(x, y) \<in> r\<^sup>*" unfolding restrict_def by induct auto
} then show ?thesis by auto
qed
lemma rtrancl_Image_step:
assumes "a \<in> r\<^sup>* `` A"
and "(a, b) \<in> r\<^sup>*"
shows "b \<in> r\<^sup>* `` A"
proof -
from assms(1) obtain c where "c \<in> A" and "(c, a) \<in> r\<^sup>*" by auto
with assms have "(c, b) \<in> r\<^sup>*" by auto
with \<open>c \<in> A\<close> show ?thesis by auto
qed
lemma WCR_SN_on_imp_CR_on:
assumes "WCR r" and "SN_on r A" shows "CR_on r A"
proof -
let ?S = "r\<^sup>* `` A"
let ?r = "restrict r ?S"
have "\<forall>x. SN_on ?r {x}"
proof
fix y have "y \<notin> ?S \<or> y \<in> ?S" by simp
then show "SN_on ?r {y}"
proof
assume "y \<notin> ?S" then show ?thesis unfolding restrict_def by auto
next
assume "y \<in> ?S"
then have "y \<in> r\<^sup>* `` A" by simp
with SN_on_Image_rtrancl [OF \<open>SN_on r A\<close>]
have "SN_on r {y}" using SN_on_subset2 [of "{y}" "r\<^sup>* `` A"] by blast
then show ?thesis by (rule SN_on_restrict)
qed
qed
then have "SN ?r" unfolding SN_defs by auto
{
fix x y assume "(x, y) \<in> r\<^sup>*" and "x \<in> ?S" and "y \<in> ?S"
then obtain n where "(x, y) \<in> r^^n" and "x \<in> ?S" and "y \<in> ?S"
using rtrancl_imp_UN_relpow by best
then have "(x, y) \<in> ?r\<^sup>*"
proof (induct n arbitrary: x y)
case 0 then show ?case by simp
next
case (Suc n)
from \<open>(x, y) \<in> r^^Suc n\<close> obtain x' where "(x, x') \<in> r" and "(x', y) \<in> r^^n"
using relpow_Suc_D2 by best
then have "(x, x') \<in> r\<^sup>*" by simp
with \<open>x \<in> ?S\<close> have "x' \<in> ?S" by (rule rtrancl_Image_step)
with Suc and \<open>(x', y) \<in> r^^n\<close> have "(x', y) \<in> ?r\<^sup>*" by simp
from \<open>(x, x') \<in> r\<close> and \<open>x \<in> ?S\<close> and \<open>x' \<in> ?S\<close> have "(x, x') \<in> ?r"
unfolding restrict_def by simp
with \<open>(x', y) \<in> ?r\<^sup>*\<close> show ?case by simp
qed
}
then have a:"\<forall>x y. (x, y) \<in> r\<^sup>* \<and> x \<in> ?S \<and> y \<in> ?S \<longrightarrow> (x, y) \<in> ?r\<^sup>*" by simp
{
fix x' y z assume "(x', y) \<in> ?r" and "(x', z) \<in> ?r"
then have "x' \<in> ?S" and "y \<in> ?S" and "z \<in> ?S" and "(x', y) \<in> r" and "(x', z) \<in> r"
unfolding restrict_def by auto
with \<open>WCR r\<close> have "(y, z) \<in> r\<^sup>\<down>" by auto
then obtain u where "(y, u) \<in> r\<^sup>*" and "(z, u) \<in> r\<^sup>*" by auto
from \<open>x' \<in> ?S\<close> obtain x where "x \<in> A" and "(x, x') \<in> r\<^sup>*" by auto
from \<open>(x', y) \<in> r\<close> have "(x', y) \<in> r\<^sup>*" by auto
with \<open>(y, u) \<in> r\<^sup>*\<close> have "(x', u) \<in> r\<^sup>*" by auto
with \<open>(x, x') \<in> r\<^sup>*\<close> have "(x, u) \<in> r\<^sup>*" by simp
then have "u \<in> ?S" using \<open>x \<in> A\<close> by auto
from \<open>y \<in> ?S\<close> and \<open>u \<in> ?S\<close> and \<open>(y, u) \<in> r\<^sup>*\<close> have "(y, u) \<in> ?r\<^sup>*" using a by auto
from \<open>z \<in> ?S\<close> and \<open>u \<in> ?S\<close> and \<open>(z, u) \<in> r\<^sup>*\<close> have "(z, u) \<in> ?r\<^sup>*" using a by auto
with \<open>(y, u) \<in> ?r\<^sup>*\<close> have "(y, z) \<in> ?r\<^sup>\<down>" by auto
}
then have "WCR ?r" by auto
have "CR ?r" using Newman [OF \<open>SN ?r\<close> \<open>WCR ?r\<close>] by simp
{
fix x y z assume "x \<in> A" and "(x, y) \<in> r\<^sup>*" and "(x, z) \<in> r\<^sup>*"
then have "y \<in> ?S" and "z \<in> ?S" by auto
have "x \<in> ?S" using \<open>x \<in> A\<close> by auto
from a and \<open>(x, y) \<in> r\<^sup>*\<close> and \<open>x \<in> ?S\<close> and \<open>y \<in> ?S\<close> have "(x, y) \<in> ?r\<^sup>*" by simp
from a and \<open>(x, z) \<in> r\<^sup>*\<close> and \<open>x \<in> ?S\<close> and \<open>z \<in> ?S\<close> have "(x, z) \<in> ?r\<^sup>*" by simp
with \<open>CR ?r\<close> and \<open>(x, y) \<in> ?r\<^sup>*\<close> have "(y, z) \<in> ?r\<^sup>\<down>" by auto
then obtain u where "(y, u) \<in> ?r\<^sup>*" and "(z, u) \<in> ?r\<^sup>*" by best
then have "(y, u) \<in> r\<^sup>*" and "(z, u) \<in> r\<^sup>*" using restrict_rtrancl by auto
then have "(y, z) \<in> r\<^sup>\<down>" by auto
}
then show ?thesis by auto
qed
lemma SN_on_Image_normalizable:
assumes "SN_on r A"
shows "\<forall>a\<in>A. \<exists>b. b \<in> r\<^sup>! `` A"
proof
fix a assume a: "a \<in> A"
show "\<exists>b. b \<in> r\<^sup>! `` A"
proof (rule ccontr)
assume "\<not> (\<exists>b. b \<in> r\<^sup>! `` A)"
then have A: "\<forall>b. (a, b) \<in> r\<^sup>* \<longrightarrow> b \<notin> NF r" using a by auto
then have "a \<notin> NF r" by auto
let ?Q = "{c. (a, c) \<in> r\<^sup>* \<and> c \<notin> NF r}"
have "a \<in> ?Q" using \<open>a \<notin> NF r\<close> by simp
have "\<forall>c\<in>?Q. \<exists>b. (c, b) \<in> r \<and> b \<in> ?Q"
proof
fix c
assume "c \<in> ?Q"
then have "(a, c) \<in> r\<^sup>*" and "c \<notin> NF r" by auto
then obtain d where "(c, d) \<in> r" by auto
with \<open>(a, c) \<in> r\<^sup>*\<close> have "(a, d) \<in> r\<^sup>*" by simp
with A have "d \<notin> NF r" by simp
with \<open>(c, d) \<in> r\<close> and \<open>(a, c) \<in> r\<^sup>*\<close>
show "\<exists>b. (c, b) \<in> r \<and> b \<in> ?Q" by auto
qed
with \<open>a \<in> ?Q\<close> have "a \<in> ?Q \<and> (\<forall>c\<in>?Q. \<exists>b. (c, b) \<in> r \<and> b \<in> ?Q)" by auto
then have "\<exists>Q. a \<in> Q \<and> (\<forall>c\<in>Q. \<exists>b. (c, b) \<in> r \<and> b \<in> Q)" by (rule exI [of _ "?Q"])
then have "\<not> (\<forall>Q. a \<in> Q \<longrightarrow> (\<exists>c\<in>Q. \<forall>b. (c, b) \<in> r \<longrightarrow> b \<notin> Q))" by simp
with SN_on_imp_on_minimal [of r a] have "\<not> SN_on r {a}" by blast
with assms and \<open>a \<in> A\<close> and SN_on_subset2 [of "{a}" A r] show False by simp
qed
qed
lemma SN_on_imp_normalizability:
assumes "SN_on r {a}" shows "\<exists>b. (a, b) \<in> r\<^sup>!"
using SN_on_Image_normalizable [OF assms] by auto
subsection \<open>Commutation\<close>
definition commute :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> bool" where
"commute r s \<longleftrightarrow> ((r\<inverse>)\<^sup>* O s\<^sup>*) \<subseteq> (s\<^sup>* O (r\<inverse>)\<^sup>*)"
lemma CR_iff_self_commute: "CR r = commute r r"
unfolding commute_def CR_iff_meet_subset_join meet_def join_def
by simp
(* FIXME: move somewhere else *)
lemma rtrancl_imp_rtrancl_UN:
assumes "(x, y) \<in> r\<^sup>*" and "r \<in> I"
shows "(x, y) \<in> (\<Union>r\<in>I. r)\<^sup>*" (is "(x, y) \<in> ?r\<^sup>*")
using assms proof induct
case base then show ?case by simp
next
case (step y z)
then have "(x, y) \<in> ?r\<^sup>*" by simp
from \<open>(y, z) \<in> r\<close> and \<open>r \<in> I\<close> have "(y, z) \<in> ?r\<^sup>*" by auto
with \<open>(x, y) \<in> ?r\<^sup>*\<close> show ?case by auto
qed
definition quasi_commute :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> bool" where
"quasi_commute r s \<longleftrightarrow> (s O r) \<subseteq> r O (r \<union> s)\<^sup>*"
lemma rtrancl_union_subset_rtrancl_union_trancl: "(r \<union> s\<^sup>+)\<^sup>* = (r \<union> s)\<^sup>*"
proof
show "(r \<union> s\<^sup>+)\<^sup>* \<subseteq> (r \<union> s)\<^sup>*"
proof (rule subrelI)
fix x y assume "(x, y) \<in> (r \<union> s\<^sup>+)\<^sup>*"
then show "(x, y) \<in> (r \<union> s)\<^sup>*"
proof (induct)
case base then show ?case by auto
next
case (step y z)
then have "(y, z) \<in> r \<or> (y, z) \<in> s\<^sup>+" by auto
then have "(y, z) \<in> (r \<union> s)\<^sup>*"
proof
assume "(y, z) \<in> r" then show ?thesis by auto
next
assume "(y, z) \<in> s\<^sup>+"
then have "(y, z) \<in> s\<^sup>*" by auto
then have "(y, z) \<in> r\<^sup>* \<union> s\<^sup>*" by auto
then show ?thesis using rtrancl_Un_subset by auto
qed
with \<open>(x, y) \<in> (r \<union> s)\<^sup>*\<close> show ?case by simp
qed
qed
next
show "(r \<union> s)\<^sup>* \<subseteq> (r \<union> s\<^sup>+)\<^sup>*"
proof (rule subrelI)
fix x y assume "(x, y) \<in> (r \<union> s)\<^sup>*"
then show "(x, y) \<in> (r \<union> s\<^sup>+)\<^sup>*"
proof (induct)
case base then show ?case by auto
next
case (step y z)
then have "(y, z) \<in> (r \<union> s\<^sup>+)\<^sup>*" by auto
with \<open>(x, y) \<in> (r \<union> s\<^sup>+)\<^sup>*\<close> show ?case by auto
qed
qed
qed
lemma qc_imp_qc_trancl:
assumes "quasi_commute r s" shows "quasi_commute r (s\<^sup>+)"
unfolding quasi_commute_def
proof (rule subrelI)
fix x z assume "(x, z) \<in> s\<^sup>+ O r"
then obtain y where "(x, y) \<in> s\<^sup>+" and "(y, z) \<in> r" by best
then show "(x, z) \<in> r O (r \<union> s\<^sup>+)\<^sup>*"
proof (induct arbitrary: z)
case (base y)
then have "(x, z) \<in> (s O r)" by auto
with assms have "(x, z) \<in> r O (r \<union> s)\<^sup>*" unfolding quasi_commute_def by auto
then show ?case using rtrancl_union_subset_rtrancl_union_trancl by auto
next
case (step a b)
then have "(a, z) \<in> (s O r)" by auto
with assms have "(a, z) \<in> r O (r \<union> s)\<^sup>*" unfolding quasi_commute_def by auto
then obtain u where "(a, u) \<in> r" and "(u, z) \<in> (r \<union> s)\<^sup>*" by best
then have "(u, z) \<in> (r \<union> s\<^sup>+)\<^sup>*" using rtrancl_union_subset_rtrancl_union_trancl by auto
from \<open>(a, u) \<in> r\<close> and step have "(x, u) \<in> r O (r \<union> s\<^sup>+)\<^sup>*" by auto
then obtain v where "(x, v) \<in> r" and "(v, u) \<in> (r \<union> s\<^sup>+)\<^sup>*" by best
with \<open>(u, z) \<in> (r \<union> s\<^sup>+)\<^sup>*\<close> have "(v, z) \<in> (r \<union> s\<^sup>+)\<^sup>*" by auto
with \<open>(x, v) \<in> r\<close> show ?case by auto
qed
qed
lemma steps_reflect_SN_on:
assumes "\<not> SN_on r {b}" and "(a, b) \<in> r\<^sup>*"
shows "\<not> SN_on r {a}"
using SN_on_Image_rtrancl [of r "{a}"]
and assms and SN_on_subset2 [of "{b}" "r\<^sup>* `` {a}" r] by blast
lemma chain_imp_not_SN_on:
assumes "chain r f"
shows "\<not> SN_on r {f i}"
proof -
let ?f = "\<lambda>j. f (i + j)"
have "?f 0 \<in> {f i}" by simp
moreover have "chain r ?f" using assms by auto
ultimately have "?f 0 \<in> {f i} \<and> chain r ?f" by blast
then have "\<exists>g. g 0 \<in> {f i} \<and> chain r g" by (rule exI [of _ "?f"])
then show ?thesis unfolding SN_defs by auto
qed
lemma quasi_commute_imp_SN:
assumes "SN r" and "SN s" and "quasi_commute r s"
shows "SN (r \<union> s)"
proof -
have "quasi_commute r (s\<^sup>+)" by (rule qc_imp_qc_trancl [OF \<open>quasi_commute r s\<close>])
let ?B = "{a. \<not> SN_on (r \<union> s) {a}}"
{
assume "\<not> SN(r \<union> s)"
then obtain a where "a \<in> ?B" unfolding SN_defs by fast
from \<open>SN r\<close> have "\<forall>Q x. x \<in> Q \<longrightarrow> (\<exists>z\<in>Q. \<forall>y. (z, y) \<in> r \<longrightarrow> y \<notin> Q)"
by (rule SN_imp_minimal)
then have "\<forall>x. x \<in> ?B \<longrightarrow> (\<exists>z\<in>?B. \<forall>y. (z, y) \<in> r \<longrightarrow> y \<notin> ?B)" by (rule spec [where x = ?B])
with \<open>a \<in> ?B\<close> obtain b where "b \<in> ?B" and min: "\<forall>y. (b, y) \<in> r \<longrightarrow> y \<notin> ?B" by auto
from \<open>b \<in> ?B\<close> obtain S where "S 0 = b" and
chain: "chain (r \<union> s) S" unfolding SN_on_def by auto
let ?S = "\<lambda>i. S(Suc i)"
have "?S 0 = S 1" by simp
from chain have "chain (r \<union> s) ?S" by auto
with \<open>?S 0 = S 1\<close> have "\<not> SN_on (r \<union> s) {S 1}" unfolding SN_on_def by auto
from \<open>S 0 = b\<close> and chain have "(b, S 1) \<in> r \<union> s" by auto
with min and \<open>\<not> SN_on (r \<union> s) {S 1}\<close> have "(b, S 1) \<in> s" by auto
let ?i = "LEAST i. (S i, S(Suc i)) \<notin> s"
{
assume "chain s S"
with \<open>S 0 = b\<close> have "\<not> SN_on s {b}" unfolding SN_on_def by auto
with \<open>SN s\<close> have False unfolding SN_defs by auto
}
then have ex: "\<exists>i. (S i, S(Suc i)) \<notin> s" by auto
then have "(S ?i, S(Suc ?i)) \<notin> s" by (rule LeastI_ex)
with chain have "(S ?i, S(Suc ?i)) \<in> r" by auto
have ini: "\<forall>i<?i. (S i, S(Suc i)) \<in> s" using not_less_Least by auto
{
fix i assume "i < ?i" then have "(b, S(Suc i)) \<in> s\<^sup>+"
proof (induct i)
case 0 then show ?case using \<open>(b, S 1) \<in> s\<close> and \<open>S 0 = b\<close> by auto
next
case (Suc k)
then have "(b, S(Suc k)) \<in> s\<^sup>+" and "Suc k < ?i" by auto
with \<open>\<forall>i<?i. (S i, S(Suc i)) \<in> s\<close> have "(S(Suc k), S(Suc(Suc k))) \<in> s" by fast
with \<open>(b, S(Suc k)) \<in> s\<^sup>+\<close> show ?case by auto
qed
}
then have pref: "\<forall>i<?i. (b, S(Suc i)) \<in> s\<^sup>+" by auto
from \<open>(b, S 1) \<in> s\<close> and \<open>S 0 = b\<close> have "(S 0, S(Suc 0)) \<in> s" by auto
{
assume "?i = 0"
from ex have "(S ?i, S(Suc ?i)) \<notin> s" by (rule LeastI_ex)
with \<open>(S 0, S(Suc 0)) \<in> s\<close> have False unfolding \<open>?i = 0\<close> by simp
}
then have "0 < ?i" by auto
then obtain j where "?i = Suc j" unfolding gr0_conv_Suc by best
with ini have "(S(?i-Suc 0), S(Suc(?i-Suc 0))) \<in> s" by auto
with pref have "(b, S(Suc j)) \<in> s\<^sup>+" unfolding \<open>?i = Suc j\<close> by auto
then have "(b, S ?i) \<in> s\<^sup>+" unfolding \<open>?i = Suc j\<close> by auto
with \<open>(S ?i, S(Suc ?i)) \<in> r\<close> have "(b, S(Suc ?i)) \<in> (s\<^sup>+ O r)" by auto
with \<open>quasi_commute r (s\<^sup>+)\<close> have "(b, S(Suc ?i)) \<in> r O (r \<union> s\<^sup>+)\<^sup>*"
unfolding quasi_commute_def by auto
then obtain c where "(b, c) \<in> r" and "(c, S(Suc ?i)) \<in> (r \<union> s\<^sup>+)\<^sup>*" by best
from \<open>(b, c) \<in> r\<close> have "(b, c) \<in> (r \<union> s)\<^sup>*" by auto
from chain_imp_not_SN_on [of S "r \<union> s"]
and chain have "\<not> SN_on (r \<union> s) {S (Suc ?i)}" by auto
from \<open>(c, S(Suc ?i)) \<in> (r \<union> s\<^sup>+)\<^sup>*\<close> have "(c, S(Suc ?i)) \<in> (r \<union> s)\<^sup>*"
unfolding rtrancl_union_subset_rtrancl_union_trancl by auto
with steps_reflect_SN_on [of "r \<union> s"]
and \<open>\<not> SN_on (r \<union> s) {S(Suc ?i)}\<close> have "\<not> SN_on (r \<union> s) {c}" by auto
then have "c \<in> ?B" by simp
with \<open>(b, c) \<in> r\<close> and min have False by auto
}
then show ?thesis by auto
qed
subsection \<open>Strong Normalization\<close>
lemma non_strict_into_strict:
assumes compat: "NS O S \<subseteq> S"
and steps: "(s, t) \<in> (NS\<^sup>*) O S"
shows "(s, t) \<in> S"
using steps proof
fix x u z
assume "(s, t) = (x, z)" and "(x, u) \<in> NS\<^sup>*" and "(u, z) \<in> S"
then have "(s, u) \<in> NS\<^sup>*" and "(u, t) \<in> S" by auto
then show ?thesis
proof (induct rule:rtrancl.induct)
case (rtrancl_refl x) then show ?case .
next
case (rtrancl_into_rtrancl a b c)
with compat show ?case by auto
qed
qed
lemma comp_trancl:
assumes "R O S \<subseteq> S" shows "R O S\<^sup>+ \<subseteq> S\<^sup>+"
proof (rule subrelI)
fix w z assume "(w, z) \<in> R O S\<^sup>+"
then obtain x where R_step: "(w, x) \<in> R" and S_seq: "(x, z) \<in> S\<^sup>+" by best
from tranclD [OF S_seq] obtain y where S_step: "(x, y) \<in> S" and S_seq': "(y, z) \<in> S\<^sup>*" by auto
from R_step and S_step have "(w, y) \<in> R O S" by auto
with assms have "(w, y) \<in> S" by auto
with S_seq' show "(w, z) \<in> S\<^sup>+" by simp
qed
lemma comp_rtrancl_trancl:
assumes comp: "R O S \<subseteq> S"
and seq: "(s, t) \<in> (R \<union> S)\<^sup>* O S"
shows "(s, t) \<in> S\<^sup>+"
using seq proof
fix x u z
assume "(s, t) = (x, z)" and "(x, u) \<in> (R \<union> S)\<^sup>*" and "(u, z) \<in> S"
then have "(s, u) \<in> (R \<union> S)\<^sup>*" and "(u, t) \<in> S\<^sup>+" by auto
then show ?thesis
proof (induct rule: rtrancl.induct)
case (rtrancl_refl x) then show ?case .
next
case (rtrancl_into_rtrancl a b c)
then have "(b, c) \<in> R \<union> S" by simp
then show ?case
proof
assume "(b, c) \<in> S"
with rtrancl_into_rtrancl
have "(b, t) \<in> S\<^sup>+" by simp
with rtrancl_into_rtrancl show ?thesis by simp
next
assume "(b, c) \<in> R"
with comp_trancl [OF comp] rtrancl_into_rtrancl
show ?thesis by auto
qed
qed
qed
lemma trancl_union_right: "r\<^sup>+ \<subseteq> (s \<union> r)\<^sup>+"
proof (rule subrelI)
fix x y assume "(x, y) \<in> r\<^sup>+" then show "(x, y) \<in> (s \<union> r)\<^sup>+"
proof (induct)
case base then show ?case by auto
next
case (step a b)
then have "(a, b) \<in> (s \<union> r)\<^sup>+" by auto
with \<open>(x, a) \<in> (s \<union> r)\<^sup>+\<close> show ?case by auto
qed
qed
lemma restrict_SN_subset: "restrict_SN R S \<subseteq> R"
proof (rule subrelI)
fix a b assume "(a, b) \<in> restrict_SN R S" then show "(a, b) \<in> R" unfolding restrict_SN_def by simp
qed
lemma chain_Un_SN_on_imp_first_step:
assumes "chain (R \<union> S) t" and "SN_on S {t 0}"
shows "\<exists>i. (t i, t (Suc i)) \<in> R \<and> (\<forall>j<i. (t j, t (Suc j)) \<in> S \<and> (t j, t (Suc j)) \<notin> R)"
proof -
from \<open>SN_on S {t 0}\<close> obtain i where "(t i, t (Suc i)) \<notin> S" by blast
with assms have "(t i, t (Suc i)) \<in> R" (is "?P i") by auto
let ?i = "Least ?P"
from \<open>?P i\<close> have "?P ?i" by (rule LeastI)
have "\<forall>j<?i. (t j, t (Suc j)) \<notin> R" using not_less_Least by auto
moreover with assms have "\<forall>j<?i. (t j, t (Suc j)) \<in> S" by best
ultimately have "\<forall>j<?i. (t j, t (Suc j)) \<in> S \<and> (t j, t (Suc j)) \<notin> R" by best
with \<open>?P ?i\<close> show ?thesis by best
qed
lemma first_step:
assumes C: "C = A \<union> B" and steps: "(x, y) \<in> C\<^sup>*" and Bstep: "(y, z) \<in> B"
shows "\<exists>y. (x, y) \<in> A\<^sup>* O B"
using steps
proof (induct rule: converse_rtrancl_induct)
case base
show ?case using Bstep by auto
next
case (step u x)
from step(1)[unfolded C]
show ?case
proof
assume "(u, x) \<in> B"
then show ?thesis by auto
next
assume ux: "(u, x) \<in> A"
from step(3) obtain y where "(x, y) \<in> A\<^sup>* O B" by auto
then obtain z where "(x, z) \<in> A\<^sup>*" and step: "(z, y) \<in> B" by auto
with ux have "(u, z) \<in> A\<^sup>*" by auto
with step have "(u, y) \<in> A\<^sup>* O B" by auto
then show ?thesis by auto
qed
qed
lemma first_step_O:
assumes C: "C = A \<union> B" and steps: "(x, y) \<in> C\<^sup>* O B"
shows "\<exists> y. (x, y) \<in> A\<^sup>* O B"
proof -
from steps obtain z where "(x, z) \<in> C\<^sup>*" and "(z, y) \<in> B" by auto
from first_step [OF C this] show ?thesis .
qed
lemma firstStep:
assumes LSR: "L = S \<union> R" and xyL: "(x, y) \<in> L\<^sup>*"
shows "(x, y) \<in> R\<^sup>* \<or> (x, y) \<in> R\<^sup>* O S O L\<^sup>*"
proof (cases "(x, y) \<in> R\<^sup>*")
case True
then show ?thesis by simp
next
case False
let ?SR = "S \<union> R"
from xyL and LSR have "(x, y) \<in> ?SR\<^sup>*" by simp
from this and False have "(x, y) \<in> R\<^sup>* O S O ?SR\<^sup>*"
proof (induct rule: rtrancl_induct)
case base then show ?case by simp
next
case (step y z)
then show ?case
proof (cases "(x, y) \<in> R\<^sup>*")
case False with step have "(x, y) \<in> R\<^sup>* O S O ?SR\<^sup>*" by simp
from this obtain u where xu: "(x, u) \<in> R\<^sup>* O S" and uy: "(u, y) \<in> ?SR\<^sup>*" by force
from \<open>(y, z) \<in> ?SR\<close> have "(y, z) \<in> ?SR\<^sup>*" by auto
with uy have "(u, z) \<in> ?SR\<^sup>*" by (rule rtrancl_trans)
with xu show ?thesis by auto
next
case True
have "(y, z) \<in> S"
proof (rule ccontr)
assume "(y, z) \<notin> S" with \<open>(y, z) \<in> ?SR\<close> have "(y, z) \<in> R" by auto
with True have "(x, z) \<in> R\<^sup>*" by auto
with \<open>(x, z) \<notin> R\<^sup>*\<close> show False ..
qed
with True show ?thesis by auto
qed
qed
with LSR show ?thesis by simp
qed
lemma non_strict_ending:
assumes chain: "chain (R \<union> S) t"
and comp: "R O S \<subseteq> S"
and SN: "SN_on S {t 0}"
shows "\<exists>j. \<forall>i\<ge>j. (t i, t (Suc i)) \<in> R - S"
proof (rule ccontr)
assume "\<not> ?thesis"
with chain have "\<forall>i. \<exists>j. j \<ge> i \<and> (t j, t (Suc j)) \<in> S" by blast
from choice [OF this] obtain f where S_steps: "\<forall>i. i \<le> f i \<and> (t (f i), t (Suc (f i))) \<in> S" ..
let ?t = "\<lambda>i. t (((Suc \<circ> f) ^^ i) 0)"
have S_chain: "\<forall>i. (t i, t (Suc (f i))) \<in> S\<^sup>+"
proof
fix i
from S_steps have leq: "i\<le>f i" and step: "(t(f i), t(Suc(f i))) \<in> S" by auto
from chain_imp_rtrancl [OF chain leq] have "(t i, t(f i)) \<in> (R \<union> S)\<^sup>*" .
with step have "(t i, t(Suc(f i))) \<in> (R \<union> S)\<^sup>* O S" by auto
from comp_rtrancl_trancl [OF comp this] show "(t i, t(Suc(f i))) \<in> S\<^sup>+" .
qed
then have "chain (S\<^sup>+) ?t"by simp
moreover have "SN_on (S\<^sup>+) {?t 0}" using SN_on_trancl [OF SN] by simp
ultimately show False unfolding SN_defs by best
qed
lemma SN_on_subset1:
assumes "SN_on r A" and "s \<subseteq> r"
shows "SN_on s A"
using assms unfolding SN_defs by blast
lemmas SN_on_mono = SN_on_subset1
lemma rtrancl_fun_conv:
"((s, t) \<in> R\<^sup>*) = (\<exists> f n. f 0 = s \<and> f n = t \<and> (\<forall> i < n. (f i, f (Suc i)) \<in> R))"
unfolding rtrancl_is_UN_relpow using relpow_fun_conv [where R = R]
by auto
lemma compat_tr_compat:
assumes "NS O S \<subseteq> S" shows "NS\<^sup>* O S \<subseteq> S"
using non_strict_into_strict [where S = S and NS = NS] assms by blast
lemma right_comp_S [simp]:
assumes "(x, y) \<in> S O (S O S\<^sup>* O NS\<^sup>* \<union> NS\<^sup>*)"
shows "(x, y) \<in> (S O S\<^sup>* O NS\<^sup>*)"
proof-
from assms have "(x, y) \<in> (S O S O S\<^sup>* O NS\<^sup>*) \<union> (S O NS\<^sup>*)" by auto
then have xy:"(x, y) \<in> (S O (S O S\<^sup>*) O NS\<^sup>*) \<union> (S O NS\<^sup>*)" by auto
have "S O S\<^sup>* \<subseteq> S\<^sup>*" by auto
with xy have "(x, y) \<in> (S O S\<^sup>* O NS\<^sup>*) \<union> (S O NS\<^sup>*)" by auto
then show "(x, y) \<in> (S O S\<^sup>* O NS\<^sup>*)" by auto
qed
lemma compatible_SN:
assumes SN: "SN S"
and compat: "NS O S \<subseteq> S"
shows "SN (S O S\<^sup>* O NS\<^sup>*)" (is "SN ?A")
proof
fix F assume chain: "chain ?A F"
from compat compat_tr_compat have tr_compat: "NS\<^sup>* O S \<subseteq> S" by blast
have "\<forall>i. (\<exists>y z. (F i, y) \<in> S \<and> (y, z) \<in> S\<^sup>* \<and> (z, F (Suc i)) \<in> NS\<^sup>*)"
proof
fix i
from chain have "(F i, F (Suc i)) \<in> (S O S\<^sup>* O NS\<^sup>*)" by auto
then show "\<exists> y z. (F i, y) \<in> S \<and> (y, z) \<in> S\<^sup>* \<and> (z, F (Suc i)) \<in> NS\<^sup>*"
unfolding relcomp_def (*FIXME:relcomp_unfold*) using mem_Collect_eq by auto
qed
then have "\<exists> f. (\<forall> i. (\<exists> z. (F i, f i) \<in> S \<and> ((f i, z) \<in> S\<^sup>*) \<and>(z, F (Suc i)) \<in> NS\<^sup>*))"
by (rule choice)
then obtain f
where "\<forall> i. (\<exists> z. (F i, f i) \<in> S \<and> ((f i, z) \<in> S\<^sup>*) \<and>(z, F (Suc i)) \<in> NS\<^sup>*)" ..
then have "\<exists> g. \<forall> i. (F i, f i) \<in> S \<and> (f i, g i) \<in> S\<^sup>* \<and> (g i, F (Suc i)) \<in> NS\<^sup>*"
by (rule choice)
then obtain g where "\<forall> i. (F i, f i) \<in> S \<and> (f i, g i) \<in> S\<^sup>* \<and> (g i, F (Suc i)) \<in> NS\<^sup>*" ..
then have "\<forall> i. (f i, g i) \<in> S\<^sup>* \<and> (g i, F (Suc i)) \<in> NS\<^sup>* \<and> (F (Suc i), f (Suc i)) \<in> S"
by auto
then have "\<forall> i. (f i, g i) \<in> S\<^sup>* \<and> (g i, f (Suc i)) \<in> S" unfolding relcomp_def (*FIXME*)
using tr_compat by auto
then have all:"\<forall> i. (f i, g i) \<in> S\<^sup>* \<and> (g i, f (Suc i)) \<in> S\<^sup>+" by auto
have "\<forall> i. (f i, f (Suc i)) \<in> S\<^sup>+"
proof
fix i
from all have "(f i, g i) \<in> S\<^sup>* \<and> (g i, f (Suc i)) \<in> S\<^sup>+" ..
then show "(f i, f (Suc i)) \<in> S\<^sup>+" using transitive_closure_trans by auto
qed
then have "\<exists>x. f 0 = x \<and> chain (S\<^sup>+) f"by auto
then obtain x where "f 0 = x \<and> chain (S\<^sup>+) f" by auto
then have "\<exists>f. f 0 = x \<and> chain (S\<^sup>+) f" by auto
then have "\<not> SN_on (S\<^sup>+) {x}" by auto
then have "\<not> SN (S\<^sup>+)" unfolding SN_defs by auto
then have wfSconv:"\<not> wf ((S\<^sup>+)\<inverse>)" using SN_iff_wf by auto
from SN have "wf (S\<inverse>)" using SN_imp_wf [where?r=S] by simp
with wf_converse_trancl wfSconv show False by auto
qed
lemma compatible_rtrancl_split:
assumes compat: "NS O S \<subseteq> S"
and steps: "(x, y) \<in> (NS \<union> S)\<^sup>*"
shows "(x, y) \<in> S O S\<^sup>* O NS\<^sup>* \<union> NS\<^sup>*"
proof-
from steps have "\<exists> n. (x, y) \<in> (NS \<union> S)^^n" using rtrancl_imp_relpow [where ?R="NS \<union> S"] by auto
then obtain n where "(x, y) \<in> (NS \<union> S)^^n" by auto
then show "(x, y) \<in> S O S\<^sup>* O NS\<^sup>* \<union> NS\<^sup>*"
proof (induct n arbitrary: x, simp)
case (Suc m)
assume "(x, y) \<in> (NS \<union> S)^^(Suc m)"
then have "\<exists> z. (x, z) \<in> (NS \<union> S) \<and> (z, y) \<in> (NS \<union> S)^^m"
using relpow_Suc_D2 [where ?R="NS \<union> S"] by auto
then obtain z where xz:"(x, z) \<in> (NS \<union> S)" and zy:"(z, y) \<in> (NS \<union> S)^^m" by auto
with Suc have zy:"(z, y) \<in> S O S\<^sup>* O NS\<^sup>* \<union> NS\<^sup>*" by auto
then show "(x, y) \<in> S O S\<^sup>* O NS\<^sup>* \<union> NS\<^sup>*"
proof (cases "(x, z) \<in> NS")
case True
from compat compat_tr_compat have trCompat: "NS\<^sup>* O S \<subseteq> S" by blast
from zy True have "(x, y) \<in> (NS O S O S\<^sup>* O NS\<^sup>*) \<union> (NS O NS\<^sup>*)" by auto
then have "(x, y) \<in> ((NS O S) O S\<^sup>* O NS\<^sup>*) \<union> (NS O NS\<^sup>*)" by auto
then have "(x, y) \<in> ((NS\<^sup>* O S) O S\<^sup>* O NS\<^sup>*) \<union> (NS O NS\<^sup>*)" by auto
with trCompat have xy:"(x, y) \<in> (S O S\<^sup>* O NS\<^sup>*) \<union> (NS O NS\<^sup>*)" by auto
have "NS O NS\<^sup>* \<subseteq> NS\<^sup>*" by auto
with xy show "(x, y) \<in> (S O S\<^sup>* O NS\<^sup>*) \<union> NS\<^sup>*" by auto
next
case False
with xz have xz:"(x, z) \<in> S" by auto
with zy have "(x, y) \<in> S O (S O S\<^sup>* O NS\<^sup>* \<union> NS\<^sup>*)" by auto
then show "(x, y) \<in> (S O S\<^sup>* O NS\<^sup>*) \<union> NS\<^sup>*" using right_comp_S by simp
qed
qed
qed
lemma compatible_conv:
assumes compat: "NS O S \<subseteq> S"
shows "(NS \<union> S)\<^sup>* O S O (NS \<union> S)\<^sup>* = S O S\<^sup>* O NS\<^sup>*"
proof -
let ?NSuS = "NS \<union> S"
let ?NSS = "S O S\<^sup>* O NS\<^sup>*"
let ?midS = "?NSuS\<^sup>* O S O ?NSuS\<^sup>*"
have one: "?NSS \<subseteq> ?midS" by regexp
have "?NSuS\<^sup>* O S \<subseteq> (?NSS \<union> NS\<^sup>*) O S"
using compatible_rtrancl_split [where S = S and NS = NS] compat by blast
also have "\<dots> \<subseteq> ?NSS O S \<union> NS\<^sup>* O S" by auto
also have "\<dots> \<subseteq> ?NSS O S \<union> S" using compat compat_tr_compat [where S = S and NS = NS] by auto
also have "\<dots> \<subseteq> S O ?NSuS\<^sup>*" by regexp
finally have "?midS \<subseteq> S O ?NSuS\<^sup>* O ?NSuS\<^sup>*" by blast
also have "\<dots> \<subseteq> S O ?NSuS\<^sup>*" by regexp
also have "\<dots> \<subseteq> S O (?NSS \<union> NS\<^sup>*)"
using compatible_rtrancl_split [where S = S and NS = NS] compat by blast
also have "\<dots> \<subseteq> ?NSS" by regexp
finally have two: "?midS \<subseteq> ?NSS" .
from one two show ?thesis by auto
qed
lemma compatible_SN':
assumes compat: "NS O S \<subseteq> S" and SN: "SN S"
shows "SN((NS \<union> S)\<^sup>* O S O (NS \<union> S)\<^sup>*)"
using compatible_conv [where S = S and NS = NS]
compatible_SN [where S = S and NS = NS] assms by force
lemma rtrancl_diff_decomp:
assumes "(x, y) \<in> A\<^sup>* - B\<^sup>*"
shows "(x, y) \<in> A\<^sup>* O (A - B) O A\<^sup>*"
proof-
from assms have A: "(x, y) \<in> A\<^sup>*" and B:"(x, y) \<notin> B\<^sup>*" by auto
from A have "\<exists> k. (x, y) \<in> A^^k" by (rule rtrancl_imp_relpow)
then obtain k where Ak:"(x, y) \<in> A^^k" by auto
from Ak B show "(x, y) \<in> A\<^sup>* O (A - B) O A\<^sup>*"
proof (induct k arbitrary: x)
case 0
with \<open>(x, y) \<notin> B\<^sup>*\<close> 0 show ?case using ccontr by auto
next
case (Suc i)
then have B:"(x, y) \<notin> B\<^sup>*" and ASk:"(x, y) \<in> A ^^ Suc i" by auto
from ASk have "\<exists>z. (x, z) \<in> A \<and> (z, y) \<in> A ^^ i" using relpow_Suc_D2 [where ?R=A] by auto
then obtain z where xz:"(x, z) \<in> A" and "(z, y) \<in> A ^^ i" by auto
then have zy:"(z, y) \<in> A\<^sup>*" using relpow_imp_rtrancl by auto
from xz show "(x, y) \<in> A\<^sup>* O (A - B) O A\<^sup>*"
proof (cases "(x, z) \<in> B")
case False
with xz zy show "(x, y) \<in> A\<^sup>* O (A - B) O A\<^sup>*" by auto
next
case True
then have "(x, z) \<in> B\<^sup>*" by auto
have "\<lbrakk>(x, z) \<in> B\<^sup>*; (z, y) \<in> B\<^sup>*\<rbrakk> \<Longrightarrow> (x, y) \<in> B\<^sup>*" using rtrancl_trans [of x z B] by auto
with \<open>(x, z) \<in> B\<^sup>*\<close> \<open>(x, y) \<notin> B\<^sup>*\<close> have "(z, y) \<notin> B\<^sup>*" by auto
with Suc \<open>(z, y) \<in> A ^^ i\<close> have "(z, y) \<in> A\<^sup>* O (A - B) O A\<^sup>*" by auto
with xz have xy:"(x, y) \<in> A O A\<^sup>* O (A - B) O A\<^sup>*" by auto
have "A O A\<^sup>* O (A - B) O A\<^sup>* \<subseteq> A\<^sup>* O (A - B) O A\<^sup>*" by regexp
from this xy show "(x, y) \<in> A\<^sup>* O (A - B) O A\<^sup>*"
using subsetD [where ?A="A O A\<^sup>* O (A - B) O A\<^sup>*"] by auto
qed
qed
qed
lemma SN_empty [simp]: "SN {}" by auto
lemma SN_on_weakening:
assumes "SN_on R1 A"
shows "SN_on (R1 \<inter> R2) A"
proof -
{
assume "\<exists>S. S 0 \<in> A \<and> chain (R1 \<inter> R2) S"
then obtain S where
S0: "S 0 \<in> A" and
SN: "chain (R1 \<inter> R2) S"
by auto
from SN have SN': "chain R1 S" by simp
with S0 and assms have "False" by auto
}
then show ?thesis by force
qed
(* an explicit version of infinite reduction *)
definition ideriv :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> bool" where
"ideriv R S as \<longleftrightarrow> (\<forall>i. (as i, as (Suc i)) \<in> R \<union> S) \<and> (INFM i. (as i, as (Suc i)) \<in> R)"
lemma ideriv_mono: "R \<subseteq> R' \<Longrightarrow> S \<subseteq> S' \<Longrightarrow> ideriv R S as \<Longrightarrow> ideriv R' S' as"
unfolding ideriv_def INFM_nat by blast
fun
shift :: "(nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a"
where
"shift f j = (\<lambda> i. f (i+j))"
lemma ideriv_split:
assumes ideriv: "ideriv R S as"
and nideriv: "\<not> ideriv (D \<inter> (R \<union> S)) (R \<union> S - D) as"
shows "\<exists> i. ideriv (R - D) (S - D) (shift as i)"
proof -
have RS: "R - D \<union> (S - D) = R \<union> S - D" by auto
from ideriv [unfolded ideriv_def]
have as: "\<And> i. (as i, as (Suc i)) \<in> R \<union> S"
and inf: "INFM i. (as i, as (Suc i)) \<in> R" by auto
show ?thesis
proof (cases "INFM i. (as i, as (Suc i)) \<in> D \<inter> (R \<union> S)")
case True
have "ideriv (D \<inter> (R \<union> S)) (R \<union> S - D) as"
unfolding ideriv_def
using as True by auto
with nideriv show ?thesis ..
next
case False
from False [unfolded INFM_nat]
obtain i where Dn: "\<And> j. i < j \<Longrightarrow> (as j, as (Suc j)) \<notin> D \<inter> (R \<union> S)"
by auto
from Dn as have as: "\<And> j. i < j \<Longrightarrow> (as j, as (Suc j)) \<in> R \<union> S - D" by auto
show ?thesis
proof (rule exI [of _ "Suc i"], unfold ideriv_def RS, insert as, intro conjI, simp, unfold INFM_nat, intro allI)
fix m
from inf [unfolded INFM_nat] obtain j where j: "j > Suc i + m"
and R: "(as j, as (Suc j)) \<in> R" by auto
with as [of j] have RD: "(as j, as (Suc j)) \<in> R - D" by auto
show "\<exists> j > m. (shift as (Suc i) j, shift as (Suc i) (Suc j)) \<in> R - D"
by (rule exI [of _ "j - Suc i"], insert j RD, auto)
qed
qed
qed
lemma ideriv_SN:
assumes SN: "SN S"
and compat: "NS O S \<subseteq> S"
and R: "R \<subseteq> NS \<union> S"
shows "\<not> ideriv (S \<inter> R) (R - S) as"
proof
assume "ideriv (S \<inter> R) (R - S) as"
with R have steps: "\<forall> i. (as i, as (Suc i)) \<in> NS \<union> S"
and inf: "INFM i. (as i, as (Suc i)) \<in> S \<inter> R" unfolding ideriv_def by auto
from non_strict_ending [OF steps compat] SN
obtain i where i: "\<And> j. j \<ge> i \<Longrightarrow> (as j, as (Suc j)) \<in> NS - S" by fast
from inf [unfolded INFM_nat] obtain j where "j > i" and "(as j, as (Suc j)) \<in> S" by auto
with i [of j] show False by auto
qed
lemma Infm_shift: "(INFM i. P (shift f n i)) = (INFM i. P (f i))" (is "?S = ?O")
proof
assume ?S
show ?O
unfolding INFM_nat_le
proof
fix m
from \<open>?S\<close> [unfolded INFM_nat_le]
obtain k where k: "k \<ge> m" and p: "P (shift f n k)" by auto
show "\<exists> k \<ge> m. P (f k)"
by (rule exI [of _ "k + n"], insert k p, auto)
qed
next
assume ?O
show ?S
unfolding INFM_nat_le
proof
fix m
from \<open>?O\<close> [unfolded INFM_nat_le]
obtain k where k: "k \<ge> m + n" and p: "P (f k)" by auto
show "\<exists> k \<ge> m. P (shift f n k)"
by (rule exI [of _ "k - n"], insert k p, auto)
qed
qed
lemma rtrancl_list_conv:
"(s, t) \<in> R\<^sup>* \<longleftrightarrow>
(\<exists> ts. last (s # ts) = t \<and> (\<forall>i<length ts. ((s # ts) ! i, (s # ts) ! Suc i) \<in> R))" (is "?l = ?r")
proof
assume ?r
then obtain ts where "last (s # ts) = t \<and> (\<forall>i<length ts. ((s # ts) ! i, (s # ts) ! Suc i) \<in> R)" ..
then show ?l
proof (induct ts arbitrary: s, simp)
case (Cons u ll)
then have "last (u # ll) = t \<and> (\<forall>i<length ll. ((u # ll) ! i, (u # ll) ! Suc i) \<in> R)" by auto
from Cons(1)[OF this] have rec: "(u, t) \<in> R\<^sup>*" .
from Cons have "(s, u) \<in> R" by auto
with rec show ?case by auto
qed
next
assume ?l
from rtrancl_imp_seq [OF this]
obtain S n where s: "S 0 = s" and t: "S n = t" and steps: "\<forall> i<n. (S i, S (Suc i)) \<in> R" by auto
let ?ts = "map (\<lambda> i. S (Suc i)) [0 ..< n]"
show ?r
proof (rule exI [of _ ?ts], intro conjI,
cases n, simp add: s [symmetric] t [symmetric], simp add: t [symmetric])
show "\<forall> i < length ?ts. ((s # ?ts) ! i, (s # ?ts) ! Suc i) \<in> R"
proof (intro allI impI)
fix i
assume i: "i < length ?ts"
then show "((s # ?ts) ! i, (s # ?ts) ! Suc i) \<in> R"
proof (cases i, simp add: s [symmetric] steps)
case (Suc j)
with i steps show ?thesis by simp
qed
qed
qed
qed
lemma SN_reaches_NF:
assumes "SN_on r {x}"
shows "\<exists>y. (x, y) \<in> r\<^sup>* \<and> y \<in> NF r"
using assms
proof (induct rule: SN_on_induct')
case (IH x)
show ?case
proof (cases "x \<in> NF r")
case True
then show ?thesis by auto
next
case False
then obtain y where step: "(x, y) \<in> r" by auto
from IH [OF this] obtain z where steps: "(y, z) \<in> r\<^sup>*" and NF: "z \<in> NF r" by auto
show ?thesis
by (intro exI, rule conjI [OF _ NF], insert step steps, auto)
qed
qed
lemma SN_WCR_reaches_NF:
assumes SN: "SN_on r {x}"
and WCR: "WCR_on r {x. SN_on r {x}}"
shows "\<exists>! y. (x, y) \<in> r\<^sup>* \<and> y \<in> NF r"
proof -
from SN_reaches_NF [OF SN] obtain y where steps: "(x, y) \<in> r\<^sup>*" and NF: "y \<in> NF r" by auto
show ?thesis
proof(rule, rule conjI [OF steps NF])
fix z
assume steps': "(x, z) \<in> r\<^sup>* \<and> z \<in> NF r"
from Newman_local [OF SN WCR] have "CR_on r {x}" by auto
from CR_onD [OF this _ steps] steps' have "(y, z) \<in> r\<^sup>\<down>" by simp
from join_NF_imp_eq [OF this NF] steps' show "z = y" by simp
qed
qed
definition some_NF :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a" where
"some_NF r x = (SOME y. (x, y) \<in> r\<^sup>* \<and> y \<in> NF r)"
lemma some_NF:
assumes SN: "SN_on r {x}"
shows "(x, some_NF r x) \<in> r\<^sup>* \<and> some_NF r x \<in> NF r"
using someI_ex [OF SN_reaches_NF [OF SN]]
unfolding some_NF_def .
lemma some_NF_WCR:
assumes SN: "SN_on r {x}"
and WCR: "WCR_on r {x. SN_on r {x}}"
and steps: "(x, y) \<in> r\<^sup>*"
and NF: "y \<in> NF r"
shows "y = some_NF r x"
proof -
let ?p = "\<lambda> y. (x, y) \<in> r\<^sup>* \<and> y \<in> NF r"
from SN_WCR_reaches_NF [OF SN WCR]
have one: "\<exists>! y. ?p y" .
from steps NF have y: "?p y" ..
from some_NF [OF SN] have some: "?p (some_NF r x)" .
from one some y show ?thesis by auto
qed
lemma some_NF_UNF:
assumes UNF: "UNF r"
and steps: "(x, y) \<in> r\<^sup>*"
and NF: "y \<in> NF r"
shows "y = some_NF r x"
proof -
let ?p = "\<lambda> y. (x, y) \<in> r\<^sup>* \<and> y \<in> NF r"
from steps NF have py: "?p y" by simp
then have pNF: "?p (some_NF r x)" unfolding some_NF_def
by (rule someI)
from py have y: "(x, y) \<in> r\<^sup>!" by auto
from pNF have nf: "(x, some_NF r x) \<in> r\<^sup>!" by auto
from UNF [unfolded UNF_on_def] y nf show ?thesis by auto
qed
definition "the_NF A a = (THE b. (a, b) \<in> A\<^sup>!)"
context
fixes A
assumes SN: "SN A" and CR: "CR A"
begin
lemma the_NF: "(a, the_NF A a) \<in> A\<^sup>!"
proof -
obtain b where ab: "(a, b) \<in> A\<^sup>!" using SN by (meson SN_imp_WN UNIV_I WN_onE)
moreover have "(a, c) \<in> A\<^sup>! \<Longrightarrow> c = b" for c
using CR and ab by (meson CR_divergence_imp_join join_NF_imp_eq normalizability_E)
ultimately have "\<exists>!b. (a, b) \<in> A\<^sup>!" by blast
then show ?thesis unfolding the_NF_def by (rule theI')
qed
lemma the_NF_NF: "the_NF A a \<in> NF A"
using the_NF by (auto simp: normalizability_def)
lemma the_NF_step:
assumes "(a, b) \<in> A"
shows "the_NF A a = the_NF A b"
using the_NF and assms
by (meson CR SN SN_imp_WN conversionI' r_into_rtrancl semi_complete_imp_conversionIff_same_NF semi_complete_onI)
lemma the_NF_steps:
assumes "(a, b) \<in> A\<^sup>*"
shows "the_NF A a = the_NF A b"
using assms by (induct) (auto dest: the_NF_step)
lemma the_NF_conv:
assumes "(a, b) \<in> A\<^sup>\<leftrightarrow>\<^sup>*"
shows "the_NF A a = the_NF A b"
using assms
by (meson CR WN_on_def the_NF semi_complete_imp_conversionIff_same_NF semi_complete_onI)
end
definition weak_diamond :: "'a rel \<Rightarrow> bool" ("w\<diamond>") where
"w\<diamond> r \<longleftrightarrow> (r\<inverse> O r) - Id \<subseteq> (r O r\<inverse>)"
lemma weak_diamond_imp_CR:
assumes wd: "w\<diamond> r"
shows "CR r"
proof (rule semi_confluence_imp_CR, rule)
fix x y
assume "(x, y) \<in> r\<inverse> O r\<^sup>*"
then obtain z where step: "(z, x) \<in> r" and steps: "(z, y) \<in> r\<^sup>*" by auto
from steps
have "\<exists> u. (x, u) \<in> r\<^sup>* \<and> (y, u) \<in> r\<^sup>="
proof (induct)
case base
show ?case
by (rule exI [of _ x], insert step, auto)
next
case (step y' y)
from step(3) obtain u where xu: "(x, u) \<in> r\<^sup>*" and y'u: "(y', u) \<in> r\<^sup>=" by auto
from y'u have "(y', u) \<in> r \<or> y' = u" by auto
then show ?case
proof
assume y'u: "y' = u"
with xu step(2) have xy: "(x, y) \<in> r\<^sup>*" by auto
show ?thesis
by (intro exI conjI, rule xy, simp)
next
assume "(y', u) \<in> r"
with step(2) have uy: "(u, y) \<in> r\<inverse> O r" by auto
show ?thesis
proof (cases "u = y")
case True
show ?thesis
by (intro exI conjI, rule xu, unfold True, simp)
next
case False
with uy
wd [unfolded weak_diamond_def] obtain u' where uu': "(u, u') \<in> r"
and yu': "(y, u') \<in> r" by auto
from xu uu' have xu: "(x, u') \<in> r\<^sup>*" by auto
show ?thesis
by (intro exI conjI, rule xu, insert yu', auto)
qed
qed
qed
then show "(x, y) \<in> r\<^sup>\<down>" by auto
qed
lemma steps_imp_not_SN_on:
fixes t :: "'a \<Rightarrow> 'b"
and R :: "'b rel"
assumes steps: "\<And> x. (t x, t (f x)) \<in> R"
shows "\<not> SN_on R {t x}"
proof
let ?U = "range t"
assume "SN_on R {t x}"
from SN_on_imp_on_minimal [OF this, rule_format, of ?U]
obtain tz where tz: "tz \<in> range t" and min: "\<And> y. (tz, y) \<in> R \<Longrightarrow> y \<notin> range t" by auto
from tz obtain z where tz: "tz = t z" by auto
from steps [of z] min [of "t (f z)"] show False unfolding tz by auto
qed
lemma steps_imp_not_SN:
fixes t :: "'a \<Rightarrow> 'b"
and R :: "'b rel"
assumes steps: "\<And> x. (t x, t (f x)) \<in> R"
shows "\<not> SN R"
proof -
from steps_imp_not_SN_on [of t f R, OF steps]
show ?thesis unfolding SN_def by blast
qed
lemma steps_map:
assumes fg: "\<And>t u R . P t \<Longrightarrow> Q R \<Longrightarrow> (t, u) \<in> R \<Longrightarrow> P u \<and> (f t, f u) \<in> g R"
and t: "P t"
and R: "Q R"
and S: "Q S"
shows "((t, u) \<in> R\<^sup>* \<longrightarrow> (f t, f u) \<in> (g R)\<^sup>*)
\<and> ((t, u) \<in> R\<^sup>* O S O R\<^sup>* \<longrightarrow> (f t, f u) \<in> (g R)\<^sup>* O (g S) O (g R)\<^sup>*)"
proof -
{
fix t u
assume "(t, u) \<in> R\<^sup>*" and "P t"
then have "P u \<and> (f t, f u) \<in> (g R)\<^sup>*"
proof (induct)
case (step u v)
from step(3)[OF step(4)] have Pu: "P u" and steps: "(f t, f u) \<in> (g R)\<^sup>*" by auto
from fg [OF Pu R step(2)] have Pv: "P v" and step: "(f u, f v) \<in> g R" by auto
with steps have "(f t, f v) \<in> (g R)\<^sup>*" by auto
with Pv show ?case by simp
qed simp
} note main = this
note maint = main [OF _ t]
from maint [of u] have one: "(t, u) \<in> R\<^sup>* \<longrightarrow> (f t, f u) \<in> (g R)\<^sup>*" by simp
show ?thesis
proof (rule conjI [OF one impI])
assume "(t, u) \<in> R\<^sup>* O S O R\<^sup>*"
then obtain s v where ts: "(t, s) \<in> R\<^sup>*" and sv: "(s, v) \<in> S" and vu: "(v, u) \<in> R\<^sup>*" by auto
from maint [OF ts] have Ps: "P s" and ts: "(f t, f s) \<in> (g R)\<^sup>*" by auto
from fg [OF Ps S sv] have Pv: "P v" and sv: "(f s, f v) \<in> g S" by auto
from main [OF vu Pv] have vu: "(f v, f u) \<in> (g R)\<^sup>*" by auto
from ts sv vu show "(f t, f u) \<in> (g R)\<^sup>* O g S O (g R)\<^sup>*" by auto
qed
qed
subsection \<open>Terminating part of a relation\<close>
inductive_set
SN_part :: "'a rel \<Rightarrow> 'a set"
for r :: "'a rel"
where
SN_partI: "(\<And>y. (x, y) \<in> r \<Longrightarrow> y \<in> SN_part r) \<Longrightarrow> x \<in> SN_part r"
text \<open>The accessible part of a relation is the same as the terminating part
(just two names for the same definition -- modulo argument order). See
@{thm accI}.\<close>
text \<open>Characterization of @{const SN_on} via terminating part.\<close>
lemma SN_on_SN_part_conv:
"SN_on r A \<longleftrightarrow> A \<subseteq> SN_part r"
proof -
{
fix x assume "SN_on r A" and "x \<in> A"
then have "x \<in> SN_part r" by (induct) (auto intro: SN_partI)
} moreover {
fix x assume "x \<in> A" and "A \<subseteq> SN_part r"
then have "x \<in> SN_part r" by auto
then have "SN_on r {x}" by (induct) (auto intro: step_reflects_SN_on)
} ultimately show ?thesis by (force simp: SN_defs)
qed
text \<open>Special case for ``full'' termination.\<close>
lemma SN_SN_part_UNIV_conv:
"SN r \<longleftrightarrow> SN_part r = UNIV"
using SN_on_SN_part_conv [of r UNIV] by auto
lemma closed_imp_rtrancl_closed: assumes L: "L \<subseteq> A"
and R: "R `` A \<subseteq> A"
shows "{t | s. s \<in> L \<and> (s,t) \<in> R^*} \<subseteq> A"
proof -
{
fix s t
assume "(s,t) \<in> R^*" and "s \<in> L"
hence "t \<in> A"
by (induct, insert L R, auto)
}
thus ?thesis by auto
qed
lemma trancl_steps_relpow: assumes "a \<subseteq> b^+"
shows "(x,y) \<in> a^^n \<Longrightarrow> \<exists> m. m \<ge> n \<and> (x,y) \<in> b^^m"
proof (induct n arbitrary: y)
case 0 thus ?case by (intro exI[of _ 0], auto)
next
case (Suc n z)
from Suc(2) obtain y where xy: "(x,y) \<in> a ^^ n" and yz: "(y,z) \<in> a" by auto
from Suc(1)[OF xy] obtain m where m: "m \<ge> n" and xy: "(x,y) \<in> b ^^ m" by auto
from yz assms have "(y,z) \<in> b^+" by auto
from this[unfolded trancl_power] obtain k where k: "k > 0" and yz: "(y,z) \<in> b ^^ k" by auto
from xy yz have "(x,z) \<in> b ^^ (m + k)" unfolding relpow_add by auto
with k m show ?case by (intro exI[of _ "m + k"], auto)
qed
lemma relpow_image: assumes f: "\<And> s t. (s,t) \<in> r \<Longrightarrow> (f s, f t) \<in> r'"
shows "(s,t) \<in> r ^^ n \<Longrightarrow> (f s, f t) \<in> r' ^^ n"
proof (induct n arbitrary: t)
case (Suc n u)
from Suc(2) obtain t where st: "(s,t) \<in> r ^^ n" and tu: "(t,u) \<in> r" by auto
from Suc(1)[OF st] f[OF tu] show ?case by auto
qed auto
lemma relpow_refl_mono:
assumes refl:"\<And> x. (x,x) \<in> Rel"
shows "m \<le> n \<Longrightarrow>(a,b) \<in> Rel ^^ m \<Longrightarrow> (a,b) \<in> Rel ^^ n"
proof (induct rule:dec_induct)
case (step i)
hence abi:"(a, b) \<in> Rel ^^ i" by auto
from refl[of b] abi relpowp_Suc_I[of i "\<lambda> x y. (x,y) \<in> Rel"] show "(a, b) \<in> Rel ^^ Suc i" by auto
qed
lemma SN_on_induct_acc_style [consumes 1, case_names IH]:
assumes sn: "SN_on R {a}"
and IH: "\<And>x. SN_on R {x} \<Longrightarrow> \<lbrakk>\<And>y. (x, y) \<in> R \<Longrightarrow> P y\<rbrakk> \<Longrightarrow> P x"
shows "P a"
proof -
from sn SN_on_conv_acc [of "R\<inverse>" a] have a: "a \<in> termi R" by auto
show ?thesis
proof (rule Wellfounded.acc.induct [OF a, of P], rule IH)
fix x
assume "\<And>y. (y, x) \<in> R\<inverse> \<Longrightarrow> y \<in> termi R"
from this [folded SN_on_conv_acc]
show "SN_on R {x}" by simp fast
qed auto
qed
(* Lemma 2.3 in Huet: Confluent Reductions *)
lemma partially_localize_CR:
"CR r \<longleftrightarrow> (\<forall> x y z. (x, y) \<in> r \<and> (x, z) \<in> r\<^sup>* \<longrightarrow> (y, z) \<in> join r)"
proof
assume "CR r"
thus "\<forall> x y z. (x, y) \<in> r \<and> (x, z) \<in> r\<^sup>* \<longrightarrow> (y, z) \<in> join r" by auto
next
assume 1:"\<forall> x y z. (x, y) \<in> r \<and> (x, z) \<in> r\<^sup>* \<longrightarrow> (y, z) \<in> join r"
show "CR r"
proof
fix a b c
assume 2: "a \<in> UNIV" and 3: "(a, b) \<in> r\<^sup>*" and 4: "(a, c) \<in> r\<^sup>*"
then obtain n where "(a,c) \<in> r^^n" using rtrancl_is_UN_relpow by fast
with 2 3 show "(b,c) \<in> join r"
proof (induct n arbitrary: a b c)
case 0 thus ?case by auto
next
case (Suc m)
from Suc(4) obtain d where ad: "(a, d) \<in> r^^m" and dc: "(d, c) \<in> r" by auto
from Suc(1) [OF Suc(2) Suc(3) ad] have "(b, d) \<in> join r" .
with 1 dc joinE joinI [of b _ r c] join_rtrancl_join show ?case by metis
qed
qed
qed
definition strongly_confluent_on :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool"
where
"strongly_confluent_on r A \<longleftrightarrow>
(\<forall>x \<in> A. \<forall>y z. (x, y) \<in> r \<and> (x, z) \<in> r \<longrightarrow> (\<exists>u. (y, u) \<in> r\<^sup>* \<and> (z, u) \<in> r\<^sup>=))"
abbreviation strongly_confluent :: "'a rel \<Rightarrow> bool"
where
"strongly_confluent r \<equiv> strongly_confluent_on r UNIV"
lemma strongly_confluent_on_E11:
"strongly_confluent_on r A \<Longrightarrow> x \<in> A \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (x, z) \<in> r \<Longrightarrow>
\<exists>u. (y, u) \<in> r\<^sup>* \<and> (z, u) \<in> r\<^sup>="
unfolding strongly_confluent_on_def by blast
lemma strongly_confluentI [intro]:
"\<lbrakk>\<And>x y z. (x, y) \<in> r \<Longrightarrow> (x, z) \<in> r \<Longrightarrow> \<exists>u. (y, u) \<in> r\<^sup>* \<and> (z, u) \<in> r\<^sup>=\<rbrakk> \<Longrightarrow> strongly_confluent r"
unfolding strongly_confluent_on_def by auto
lemma strongly_confluent_E1n:
assumes scr: "strongly_confluent r"
shows "(x, y) \<in> r\<^sup>= \<Longrightarrow> (x, z) \<in> r ^^ n \<Longrightarrow> \<exists>u. (y, u) \<in> r\<^sup>* \<and> (z, u) \<in> r\<^sup>="
proof (induct n arbitrary: x y z)
case (Suc m)
from Suc(3) obtain w where xw: "(x, w) \<in> r^^m" and wz: "(w, z) \<in> r" by auto
from Suc(1) [OF Suc(2) xw] obtain u where yu: "(y, u) \<in> r\<^sup>*" and wu: "(w, u) \<in> r\<^sup>=" by auto
from strongly_confluent_on_E11 [OF scr, of w] wz yu wu show ?case
by (metis UnE converse_rtrancl_into_rtrancl iso_tuple_UNIV_I pair_in_Id_conv rtrancl_trans)
qed auto
(* Lemma 2.5 in Huet: Confluent Reductions *)
lemma strong_confluence_imp_CR:
assumes "strongly_confluent r"
shows "CR r"
proof -
{ fix x y z
have "(x, y) \<in> r \<Longrightarrow> (x, z) \<in> r\<^sup>* \<Longrightarrow> (y, z) \<in> join r"
by (cases "x = y", insert strongly_confluent_E1n [OF assms], blast+) }
then show "CR r" using partially_localize_CR by blast
qed
lemma WCR_alt_def: "WCR A \<longleftrightarrow> A\<inverse> O A \<subseteq> A\<^sup>\<down>" by (auto simp: WCR_defs)
lemma NF_imp_SN_on: "a \<in> NF R \<Longrightarrow> SN_on R {a}" unfolding SN_on_def NF_def by blast
lemma Union_sym: "(s, t) \<in> (\<Union>i\<le>n. (S i)\<^sup>\<leftrightarrow>) \<longleftrightarrow> (t, s) \<in> (\<Union>i\<le>n. (S i)\<^sup>\<leftrightarrow>)" by auto
lemma peak_iff: "(x, y) \<in> A\<inverse> O B \<longleftrightarrow> (\<exists>u. (u, x) \<in> A \<and> (u, y) \<in> B)" by auto
lemma CR_NF_conv:
assumes "CR r" and "t \<in> NF r" and "(u, t) \<in> r\<^sup>\<leftrightarrow>\<^sup>*"
shows "(u, t) \<in> r\<^sup>!"
using assms
unfolding CR_imp_conversionIff_join [OF \<open>CR r\<close>]
by (auto simp: NF_iff_no_step normalizability_def)
(metis (mono_tags) converse_rtranclE joinE)
lemma NF_join_imp_reach:
assumes "y \<in> NF A" and "(x, y) \<in> A\<^sup>\<down>"
shows "(x, y) \<in> A\<^sup>*"
using assms by (auto simp: join_def) (metis NF_not_suc rtrancl_converseD)
lemma conversion_O_conversion [simp]:
"A\<^sup>\<leftrightarrow>\<^sup>* O A\<^sup>\<leftrightarrow>\<^sup>* = A\<^sup>\<leftrightarrow>\<^sup>*"
by (force simp: converse_def)
lemma trans_O_iff: "trans A \<longleftrightarrow> A O A \<subseteq> A" unfolding trans_def by auto
lemma refl_O_iff: "refl A \<longleftrightarrow> Id \<subseteq> A" unfolding refl_on_def by auto
lemma relpow_Suc: "r ^^ Suc n = r O r ^^ n"
using relpow_add[of 1 n r] by auto
lemma converse_power: fixes r :: "'a rel" shows "(r\<inverse>)^^n = (r^^n)\<inverse>"
proof (induct n)
case (Suc n)
show ?case unfolding relpow.simps(2)[of _ "r\<inverse>"] relpow_Suc[of _ r]
by (simp add: Suc converse_relcomp)
qed simp
lemma conversion_mono: "A \<subseteq> B \<Longrightarrow> A\<^sup>\<leftrightarrow>\<^sup>* \<subseteq> B\<^sup>\<leftrightarrow>\<^sup>*"
by (auto simp: conversion_def intro!: rtrancl_mono)
lemma conversion_conversion_idemp [simp]: "(A\<^sup>\<leftrightarrow>\<^sup>*)\<^sup>\<leftrightarrow>\<^sup>* = A\<^sup>\<leftrightarrow>\<^sup>*"
by auto
lemma lower_set_imp_not_SN_on:
assumes "s \<in> X" "\<forall>t \<in> X. \<exists>u \<in> X. (t,u) \<in> R" shows "\<not> SN_on R {s}"
by (meson SN_on_imp_on_minimal assms)
lemma SN_on_Image_rtrancl_iff[simp]: "SN_on R (R\<^sup>* `` X) \<longleftrightarrow> SN_on R X" (is "?l = ?r")
proof(intro iffI)
assume "?l" show "?r" by (rule SN_on_subset2[OF _ \<open>?l\<close>], auto)
qed (fact SN_on_Image_rtrancl)
lemma O_mono1: "R \<subseteq> R' \<Longrightarrow> S O R \<subseteq> S O R'" by auto
lemma O_mono2: "R \<subseteq> R' \<Longrightarrow> R O T \<subseteq> R' O T" by auto
lemma rtrancl_O_shift: "(S O R)\<^sup>* O S = S O (R O S)\<^sup>*"
(* regexp does not work, since R is of type 'a x 'b set, not 'a rel *)
proof(intro equalityI subrelI)
fix x y
assume "(x,y) \<in> (S O R)\<^sup>* O S"
then obtain n where "(x,y) \<in> (S O R)^^n O S" by blast
then show "(x,y) \<in> S O (R O S)\<^sup>*"
proof(induct n arbitrary: y)
case IH: (Suc n)
then obtain z where xz: "(x,z) \<in> (S O R)^^n O S" and zy: "(z,y) \<in> R O S" by auto
from IH.hyps[OF xz] zy have "(x,y) \<in> S O (R O S)\<^sup>* O R O S" by auto
then show ?case by(fold trancl_unfold_right, auto)
qed auto
next
fix x y
assume "(x,y) \<in> S O (R O S)\<^sup>*"
then obtain n where "(x,y) \<in> S O (R O S)^^n" by blast
then show "(x,y) \<in> (S O R)\<^sup>* O S"
proof(induct n arbitrary: y)
case IH: (Suc n)
then obtain z where xz: "(x,z) \<in> S O (R O S)^^n" and zy: "(z,y) \<in> R O S" by auto
from IH.hyps[OF xz] zy have "(x,y) \<in> ((S O R)\<^sup>* O S O R) O S" by auto
from this[folded trancl_unfold_right]
show ?case by (rule rev_subsetD[OF _ O_mono2], auto simp: O_assoc)
qed auto
qed
lemma O_rtrancl_O_O: "R O (S O R)\<^sup>* O S = (R O S)\<^sup>+"
by (unfold rtrancl_O_shift trancl_unfold_left, auto)
lemma SN_on_subset_SN_terms:
assumes SN: "SN_on R X" shows "X \<subseteq> {x. SN_on R {x}}"
proof(intro subsetI, unfold mem_Collect_eq)
fix x assume x: "x \<in> X"
show "SN_on R {x}" by (rule SN_on_subset2[OF _ SN], insert x, auto)
qed
lemma SN_on_Un2:
assumes "SN_on R X" and "SN_on R Y" shows "SN_on R (X \<union> Y)"
using assms by fast
lemma SN_on_UN:
assumes "\<And>x. SN_on R (X x)" shows "SN_on R (\<Union>x. X x)"
using assms by fast
lemma Image_subsetI: "R \<subseteq> R' \<Longrightarrow> R `` X \<subseteq> R' `` X" by auto
lemma SN_on_O_comm:
assumes SN: "SN_on ((R :: ('a\<times>'b) set) O (S :: ('b\<times>'a) set)) (S `` X)"
shows "SN_on (S O R) X"
proof
fix seq :: "nat \<Rightarrow> 'b" assume seq0: "seq 0 \<in> X" and chain: "chain (S O R) seq"
from SN have SN: "SN_on (R O S) ((R O S)\<^sup>* `` S `` X)" by simp
{ fix i a
assume ia: "(seq i,a) \<in> S" and aSi: "(a,seq (Suc i)) \<in> R"
have "seq i \<in> (S O R)\<^sup>* `` X"
proof (induct i)
case 0 from seq0 show ?case by auto
next
case (Suc i) with chain have "seq (Suc i) \<in> ((S O R)\<^sup>* O S O R) `` X" by blast
also have "... \<subseteq> (S O R)\<^sup>* `` X" by (fold trancl_unfold_right, auto)
finally show ?case.
qed
with ia have "a \<in> ((S O R)\<^sup>* O S) `` X" by auto
then have a: "a \<in> ((R O S)\<^sup>*) `` S `` X" by (auto simp: rtrancl_O_shift)
with ia aSi have False
proof(induct "a" arbitrary: i rule: SN_on_induct[OF SN])
case 1 show ?case by (fact a)
next
case IH: (2 a)
from chain obtain b
where *: "(seq (Suc i), b) \<in> S" "(b, seq (Suc (Suc i))) \<in> R" by auto
with IH have ab: "(a,b) \<in> R O S" by auto
with \<open>a \<in> (R O S)\<^sup>* `` S `` X\<close> have "b \<in> ((R O S)\<^sup>* O R O S) `` S `` X" by auto
then have "b \<in> (R O S)\<^sup>* `` S `` X"
by (rule rev_subsetD, intro Image_subsetI, fold trancl_unfold_right, auto)
from IH.hyps[OF ab * this] IH.prems ab show False by auto
qed
}
with chain show False by auto
qed
lemma SN_O_comm: "SN (R O S) \<longleftrightarrow> SN (S O R)"
by (intro iffI; rule SN_on_O_comm[OF SN_on_subset2], auto)
lemma chain_mono: assumes "R' \<subseteq> R" "chain R' seq" shows "chain R seq"
using assms by auto
context
fixes S R
assumes push: "S O R \<subseteq> R O S\<^sup>*"
begin
lemma rtrancl_O_push: "S\<^sup>* O R \<subseteq> R O S\<^sup>*"
proof-
{ fix n
have "\<And>s t. (s,t) \<in> S ^^ n O R \<Longrightarrow> (s,t) \<in> R O S\<^sup>*"
proof(induct n)
case (Suc n)
then obtain u where "(s,u) \<in> S" "(u,t) \<in> R O S\<^sup>*" unfolding relpow_Suc by blast
then have "(s,t) \<in> S O R O S\<^sup>*" by auto
also have "... \<subseteq> R O S\<^sup>* O S\<^sup>*" using push by blast
also have "... \<subseteq> R O S\<^sup>*" by auto
finally show ?case.
qed auto
}
thus ?thesis by blast
qed
lemma rtrancl_U_push: "(S \<union> R)\<^sup>* = R\<^sup>* O S\<^sup>*"
proof(intro equalityI subrelI)
fix x y
assume "(x,y) \<in> (S \<union> R)\<^sup>*"
also have "... \<subseteq> (S\<^sup>* O R)\<^sup>* O S\<^sup>*" by regexp
finally obtain z where xz: "(x,z) \<in> (S\<^sup>* O R)\<^sup>*" and zy: "(z,y) \<in> S\<^sup>*" by auto
from xz have "(x,z) \<in> R\<^sup>* O S\<^sup>*"
proof (induct rule: rtrancl_induct)
case (step z w)
then have "(x,w) \<in> R\<^sup>* O S\<^sup>* O S\<^sup>* O R" by auto
also have "... \<subseteq> R\<^sup>* O S\<^sup>* O R" by regexp
also have "... \<subseteq> R\<^sup>* O R O S\<^sup>*" using rtrancl_O_push by auto
also have "... \<subseteq> R\<^sup>* O S\<^sup>*" by regexp
finally show ?case.
qed auto
with zy show "(x,y) \<in> R\<^sup>* O S\<^sup>*" by auto
qed regexp
lemma SN_on_O_push:
assumes SN: "SN_on R X" shows "SN_on (R O S\<^sup>*) X"
proof
fix seq
have SN: "SN_on R (R\<^sup>* `` X)" using SN_on_Image_rtrancl[OF SN].
moreover assume "seq (0::nat) \<in> X"
then have "seq 0 \<in> R\<^sup>* `` X" by auto
ultimately show "chain (R O S\<^sup>*) seq \<Longrightarrow> False"
proof(induct "seq 0" arbitrary: seq rule: SN_on_induct)
case IH
then have 01: "(seq 0, seq 1) \<in> R O S\<^sup>*"
and 12: "(seq 1, seq 2) \<in> R O S\<^sup>*"
and 23: "(seq 2, seq 3) \<in> R O S\<^sup>*" by (auto simp: eval_nat_numeral)
then obtain s t
where s: "(seq 0, s) \<in> R" and s1: "(s, seq 1) \<in> S\<^sup>*"
and t: "(seq 1, t) \<in> R" and t2: "(t, seq 2) \<in> S\<^sup>*" by auto
from s1 t have "(s,t) \<in> S\<^sup>* O R" by auto
with rtrancl_O_push have st: "(s,t) \<in> R O S\<^sup>*" by auto
from t2 23 have "(t, seq 3) \<in> S\<^sup>* O R O S\<^sup>*" by auto
also from rtrancl_O_push have "... \<subseteq> R O S\<^sup>* O S\<^sup>*" by blast
finally have t3: "(t, seq 3) \<in> R O S\<^sup>*" by regexp
let ?seq = "\<lambda>i. case i of 0 \<Rightarrow> s | Suc 0 \<Rightarrow> t | i \<Rightarrow> seq (Suc i)"
show ?case
proof(rule IH)
from s show "(seq 0, ?seq 0) \<in> R" by auto
show "chain (R O S\<^sup>*) ?seq"
proof (intro allI)
fix i show "(?seq i, ?seq (Suc i)) \<in> R O S\<^sup>*"
proof (cases i)
case 0 with st show ?thesis by auto
next
case (Suc i) with t3 IH show ?thesis by (cases i, auto simp: eval_nat_numeral)
qed
qed
qed
qed
qed
lemma SN_on_Image_push:
assumes SN: "SN_on R X" shows "SN_on R (S\<^sup>* `` X)"
proof-
{ fix n
have "SN_on R ((S^^n) `` X)"
proof(induct n)
case 0 from SN show ?case by auto
case (Suc n)
from SN_on_O_push[OF this] have "SN_on (R O S\<^sup>*) ((S ^^ n) `` X)".
from SN_on_Image[OF this]
have "SN_on (R O S\<^sup>*) ((R O S\<^sup>*) `` (S ^^ n) `` X)".
then have "SN_on R ((R O S\<^sup>*) `` (S ^^ n) `` X)" by (rule SN_on_mono, auto)
from SN_on_subset2[OF Image_mono[OF push subset_refl] this]
have "SN_on R (R `` (S ^^ Suc n) `` X)" by (auto simp: relcomp_Image)
then show ?case by fast
qed
}
then show ?thesis by fast
qed
end
lemma not_SN_onI[intro]: "f 0 \<in> X \<Longrightarrow> chain R f \<Longrightarrow> \<not> SN_on R X"
by (unfold SN_on_def not_not, intro exI conjI)
lemma shift_comp[simp]: "shift (f \<circ> seq) n = f \<circ> (shift seq n)" by auto
lemma Id_on_union: "Id_on (A \<union> B) = Id_on A \<union> Id_on B" unfolding Id_on_def by auto
lemma relpow_union_cases: "(a,d) \<in> (A \<union> B)^^n \<Longrightarrow> (a,d) \<in> B^^n \<or> (\<exists> b c k m. (a,b) \<in> B^^k \<and> (b,c) \<in> A \<and> (c,d) \<in> (A \<union> B)^^m \<and> n = Suc (k + m))"
proof (induct n arbitrary: a d)
case (Suc n a e)
let ?AB = "A \<union> B"
from Suc(2) obtain b where ab: "(a,b) \<in> ?AB" and be: "(b,e) \<in> ?AB^^n" by (rule relpow_Suc_E2)
from ab
show ?case
proof
assume "(a,b) \<in> A"
show ?thesis
proof (rule disjI2, intro exI conjI)
show "Suc n = Suc (0 + n)" by simp
show "(a,b) \<in> A" by fact
qed (insert be, auto)
next
assume ab: "(a,b) \<in> B"
from Suc(1)[OF be]
show ?thesis
proof
assume "(b,e) \<in> B ^^ n"
with ab show ?thesis
by (intro disjI1 relpow_Suc_I2)
next
assume "\<exists> c d k m. (b, c) \<in> B ^^ k \<and> (c, d) \<in> A \<and> (d, e) \<in> ?AB ^^ m \<and> n = Suc (k + m)"
then obtain c d k m where "(b, c) \<in> B ^^ k" and *: "(c, d) \<in> A" "(d, e) \<in> ?AB ^^ m" "n = Suc (k + m)" by blast
with ab have ac: "(a,c) \<in> B ^^ (Suc k)" by (intro relpow_Suc_I2)
show ?thesis
by (intro disjI2 exI conjI, rule ac, (rule *)+, simp add: *)
qed
qed
qed simp
lemma trans_refl_imp_rtrancl_id:
assumes "trans r" "refl r"
shows "r\<^sup>* = r"
proof
show "r\<^sup>* \<subseteq> r"
proof
fix x y
assume "(x,y) \<in> r\<^sup>*"
thus "(x,y) \<in> r"
by (induct, insert assms, unfold refl_on_def trans_def, blast+)
qed
qed regexp
lemma trans_refl_imp_O_id:
assumes "trans r" "refl r"
shows "r O r = r"
proof(intro equalityI)
show "r O r \<subseteq> r" by(fact trans_O_subset[OF assms(1)])
have "r \<subseteq> r O Id" by auto
moreover have "Id \<subseteq> r" by(fact assms(2)[unfolded refl_O_iff])
ultimately show "r \<subseteq> r O r" by auto
qed
lemma relcomp3_I:
assumes "(t, u) \<in> A" and "(s, t) \<in> B" and "(u, v) \<in> B"
shows "(s, v) \<in> B O A O B"
using assms by blast
lemma relcomp3_transI:
assumes "trans B" and "(t, u) \<in> B O A O B" and "(s, t) \<in> B" and "(u, v) \<in> B"
shows "(s, v) \<in> B O A O B"
using assms by (auto simp: trans_def intro: relcomp3_I)
lemmas converse_inward = rtrancl_converse[symmetric] converse_Un converse_UNION converse_relcomp
converse_converse converse_Id
lemma qc_SN_relto_iff:
assumes "r O s \<subseteq> s O (s \<union> r)\<^sup>*"
shows "SN (r\<^sup>* O s O r\<^sup>*) = SN s"
proof -
from converse_mono [THEN iffD2 , OF assms]
have *: "s\<inverse> O r\<inverse> \<subseteq> (s\<inverse> \<union> r\<inverse>)\<^sup>* O s\<inverse>" unfolding converse_inward .
have "(r\<^sup>* O s O r\<^sup>*)\<inverse> = (r\<inverse>)\<^sup>* O s\<inverse> O (r\<inverse>)\<^sup>*"
by (simp only: converse_relcomp O_assoc rtrancl_converse)
with qc_wf_relto_iff [OF *]
show ?thesis by (simp add: SN_iff_wf)
qed
lemma conversion_empty [simp]: "conversion {} = Id"
by (auto simp: conversion_def)
lemma symcl_idemp [simp]: "(r\<^sup>\<leftrightarrow>)\<^sup>\<leftrightarrow> = r\<^sup>\<leftrightarrow>" by auto
end