Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
theory ATC | |
imports "../FSM/FSM" | |
begin | |
section \<open> Adaptive test cases \<close> | |
text \<open> | |
Adaptive test cases (ATCs) are tree-like structures that label nodes with inputs and edges with | |
outputs such that applying an ATC to some FSM is performed by applying the label of its root node | |
and then applying the ATC connected to the root node by an edge labeled with the observed output of | |
the FSM. The result of such an application is here called an ATC-reaction. | |
ATCs are here modelled to have edges for every possible output from each non-leaf node. This is not | |
a restriction on the definition of ATCs by Hierons @{cite "hierons"} as a missing edge can be | |
expressed by an edge to a leaf. | |
\<close> | |
datatype ('in, 'out) ATC = Leaf | Node 'in "'out \<Rightarrow> ('in, 'out) ATC" | |
inductive atc_reaction :: "('in, 'out, 'state) FSM \<Rightarrow> 'state \<Rightarrow> ('in, 'out) ATC | |
\<Rightarrow> ('in \<times> 'out) list \<Rightarrow> bool" | |
where | |
leaf[intro!]: "atc_reaction M q1 Leaf []" | | |
node[intro!]: "q2 \<in> succ M (x,y) q1 | |
\<Longrightarrow> atc_reaction M q2 (f y) io | |
\<Longrightarrow> atc_reaction M q1 (Node x f) ((x,y)#io)" | |
inductive_cases leaf_elim[elim!] : "atc_reaction M q1 Leaf []" | |
inductive_cases node_elim[elim!] : "atc_reaction M q1 (Node x f) ((x,y)#io)" | |
subsection \<open> Properties of ATC-reactions \<close> | |
lemma atc_reaction_empty[simp] : | |
assumes "atc_reaction M q t []" | |
shows "t = Leaf" | |
using assms atc_reaction.simps by force | |
lemma atc_reaction_nonempty_no_leaf : | |
assumes "atc_reaction M q t (Cons a io)" | |
shows "t \<noteq> Leaf" | |
using assms | |
proof - | |
have "\<And>f c a ps. \<not> atc_reaction f (c::'c) (a::('a, 'b) ATC) ps \<or> a \<noteq> Leaf \<or> a \<noteq> Leaf \<or> ps = []" | |
using atc_reaction.simps by fastforce | |
then show ?thesis | |
using assms by blast | |
qed | |
lemma atc_reaction_nonempty[elim] : | |
assumes "atc_reaction M q1 t (Cons (x,y) io)" | |
obtains q2 f | |
where "t = Node x f" "q2 \<in> succ M (x,y) q1" "atc_reaction M q2 (f y) io" | |
proof - | |
obtain x2 f where "t = Node x2 f" | |
using assms by (metis ATC.exhaust atc_reaction_nonempty_no_leaf) | |
moreover have "x = x2" | |
using assms calculation atc_reaction.cases by fastforce | |
ultimately show ?thesis | |
using assms using that by blast | |
qed | |
lemma atc_reaction_path_ex : | |
assumes "atc_reaction M q1 t io" | |
shows "\<exists> tr . path M (io || tr) q1 \<and> length io = length tr" | |
using assms proof (induction io arbitrary: q1 t rule: list.induct) | |
case Nil | |
then show ?case by (simp add: FSM.nil) | |
next | |
case (Cons io_hd io_tl) | |
then obtain x y where io_hd_def : "io_hd = (x,y)" | |
by (meson surj_pair) | |
then obtain f where f_def : "t = (Node x f)" | |
using Cons atc_reaction_nonempty by metis | |
then obtain q2 where q2_def : "q2 \<in> succ M (x,y) q1" "atc_reaction M q2 (f y) io_tl" | |
using Cons io_hd_def atc_reaction_nonempty by auto | |
then obtain tr_tl where tr_tl_def : "path M (io_tl || tr_tl) q2" "length io_tl = length tr_tl" | |
using Cons.IH[of q2 "f y"] by blast | |
then have "path M (io_hd # io_tl || q2 # tr_tl) q1" | |
using Cons q2_def by (simp add: FSM.path.intros(2) io_hd_def) | |
then show ?case using tr_tl_def by fastforce | |
qed | |
lemma atc_reaction_path[elim] : | |
assumes "atc_reaction M q1 t io" | |
obtains tr | |
where "path M (io || tr) q1" "length io = length tr" | |
by (meson assms atc_reaction_path_ex) | |
subsection \<open> Applicability \<close> | |
text \<open> | |
An ATC can be applied to an FSM if each node-label is contained in the input alphabet of the FSM. | |
\<close> | |
inductive subtest :: "('in, 'out) ATC \<Rightarrow> ('in, 'out) ATC \<Rightarrow> bool" where | |
"t \<in> range f \<Longrightarrow> subtest t (Node x f)" | |
lemma accp_subtest : "Wellfounded.accp subtest t" | |
proof (induction t) | |
case Leaf | |
then show ?case by (meson ATC.distinct(1) accp.simps subtest.cases) | |
next | |
case (Node x f) | |
have IH: "Wellfounded.accp subtest t" if "t \<in> range f" for "t" | |
using Node[of t] and that by (auto simp: eq_commute) | |
show ?case by (rule accpI) (auto intro: IH elim!: subtest.cases) | |
qed | |
definition subtest_rel where "subtest_rel = {(t, Node x f) |f x t. t \<in> range f}" | |
lemma subtest_rel_altdef: "subtest_rel = {(s, t) |s t. subtest s t}" | |
by (auto simp: subtest_rel_def subtest.simps) | |
lemma subtest_relI [intro]: "t \<in> range f \<Longrightarrow> (t, Node x f) \<in> subtest_rel" | |
by (simp add: subtest_rel_def) | |
lemma subtest_relI' [intro]: "t = f y \<Longrightarrow> (t, Node x f) \<in> subtest_rel" | |
by (auto simp: subtest_rel_def ran_def) | |
lemma wf_subtest_rel [simp, intro]: "wf subtest_rel" | |
using accp_subtest unfolding subtest_rel_altdef accp_eq_acc wf_acc_iff | |
by auto | |
function inputs_atc :: "('a,'b) ATC \<Rightarrow> 'a set" where | |
"inputs_atc Leaf = {}" | | |
"inputs_atc (Node x f) = insert x (\<Union> (image inputs_atc (range f)))" | |
by pat_completeness auto | |
termination by (relation subtest_rel) auto | |
fun applicable :: "('in, 'out, 'state) FSM \<Rightarrow> ('in, 'out) ATC \<Rightarrow> bool" where | |
"applicable M t = (inputs_atc t \<subseteq> inputs M)" | |
fun applicable_set :: "('in, 'out, 'state) FSM \<Rightarrow> ('in, 'out) ATC set \<Rightarrow> bool" where | |
"applicable_set M \<Omega> = (\<forall> t \<in> \<Omega> . applicable M t)" | |
lemma applicable_subtest : | |
assumes "applicable M (Node x f)" | |
shows "applicable M (f y)" | |
using assms inputs_atc.simps | |
by (simp add: Sup_le_iff) | |
subsection \<open> Application function IO \<close> | |
text \<open> | |
Function @{verbatim IO} collects all ATC-reactions of some FSM to some ATC. | |
\<close> | |
fun IO :: "('in, 'out, 'state) FSM \<Rightarrow> 'state \<Rightarrow> ('in, 'out) ATC \<Rightarrow> ('in \<times> 'out) list set" where | |
"IO M q t = { tr . atc_reaction M q t tr }" | |
fun IO_set :: "('in, 'out, 'state) FSM \<Rightarrow> 'state \<Rightarrow> ('in, 'out) ATC set \<Rightarrow> ('in \<times> 'out) list set" | |
where | |
"IO_set M q \<Omega> = \<Union> {IO M q t | t . t \<in> \<Omega>}" | |
lemma IO_language : "IO M q t \<subseteq> language_state M q" | |
by (metis atc_reaction_path IO.elims language_state mem_Collect_eq subsetI) | |
lemma IO_leaf[simp] : "IO M q Leaf = {[]}" | |
proof | |
show "IO M q Leaf \<subseteq> {[]}" | |
proof (rule ccontr) | |
assume assm : "\<not> IO M q Leaf \<subseteq> {[]}" | |
then obtain io_hd io_tl where elem_ex : "Cons io_hd io_tl \<in> IO M q Leaf" | |
by (metis (no_types, opaque_lifting) insertI1 neq_Nil_conv subset_eq) | |
then show "False" | |
using atc_reaction_nonempty_no_leaf assm by (metis IO.simps mem_Collect_eq) | |
qed | |
next | |
show "{[]} \<subseteq> IO M q Leaf" by auto | |
qed | |
lemma IO_applicable_nonempty : | |
assumes "applicable M t" | |
and "completely_specified M" | |
and "q1 \<in> nodes M" | |
shows "IO M q1 t \<noteq> {}" | |
using assms proof (induction t arbitrary: q1) | |
case Leaf | |
then show ?case by auto | |
next | |
case (Node x f) | |
then have "x \<in> inputs M" by auto | |
then obtain y q2 where x_appl : "q2 \<in> succ M (x, y) q1" | |
using Node unfolding completely_specified.simps by blast | |
then have "applicable M (f y)" | |
using applicable_subtest Node by metis | |
moreover have "q2 \<in> nodes M" | |
using Node(4) \<open>q2 \<in> succ M (x, y) q1\<close> FSM.nodes.intros(2)[of q1 M "((x,y),q2)"] by auto | |
ultimately have "IO M q2 (f y) \<noteq> {}" | |
using Node by auto | |
then show ?case unfolding IO.simps | |
using x_appl by blast | |
qed | |
lemma IO_in_language : | |
"IO M q t \<subseteq> LS M q" | |
unfolding IO.simps by blast | |
lemma IO_set_in_language : | |
"IO_set M q \<Omega> \<subseteq> LS M q" | |
using IO_in_language[of M q] unfolding IO_set.simps by blast | |
subsection \<open> R-distinguishability \<close> | |
text \<open> | |
A non-empty ATC r-distinguishes two states of some FSM if there exists no shared ATC-reaction. | |
\<close> | |
fun r_dist :: "('in, 'out, 'state) FSM \<Rightarrow> ('in, 'out) ATC \<Rightarrow> 'state \<Rightarrow> 'state \<Rightarrow> bool" where | |
"r_dist M t s1 s2 = (t \<noteq> Leaf \<and> IO M s1 t \<inter> IO M s2 t = {})" | |
fun r_dist_set :: "('in, 'out, 'state) FSM \<Rightarrow> ('in, 'out) ATC set \<Rightarrow> 'state \<Rightarrow> 'state \<Rightarrow> bool" where | |
"r_dist_set M T s1 s2 = (\<exists> t \<in> T . r_dist M t s1 s2)" | |
lemma r_dist_dist : | |
assumes "applicable M t" | |
and "completely_specified M" | |
and "r_dist M t q1 q2" | |
and "q1 \<in> nodes M" | |
shows "q1 \<noteq> q2" | |
proof (rule ccontr) | |
assume "\<not>(q1 \<noteq> q2)" | |
then have "q1 = q2" | |
by simp | |
then have "IO M q1 t = {}" | |
using assms by simp | |
moreover have "IO M q1 t \<noteq> {}" | |
using assms IO_applicable_nonempty by auto | |
ultimately show "False" | |
by simp | |
qed | |
lemma r_dist_set_dist : | |
assumes "applicable_set M \<Omega>" | |
and "completely_specified M" | |
and "r_dist_set M \<Omega> q1 q2" | |
and "q1 \<in> nodes M" | |
shows "q1 \<noteq> q2" | |
using assms r_dist_dist by (metis applicable_set.elims(2) r_dist_set.elims(2)) | |
lemma r_dist_set_dist_disjoint : | |
assumes "applicable_set M \<Omega>" | |
and "completely_specified M" | |
and "\<forall> t1 \<in> T1 . \<forall> t2 \<in> T2 . r_dist_set M \<Omega> t1 t2" | |
and "T1 \<subseteq> nodes M" | |
shows "T1 \<inter> T2 = {}" | |
by (metis assms disjoint_iff_not_equal r_dist_set_dist subsetCE) | |
subsection \<open> Response sets \<close> | |
text \<open> | |
The following functions calculate the sets of all ATC-reactions observed by applying some set of | |
ATCs on every state reached in some FSM using a given set of IO-sequences. | |
\<close> | |
fun B :: "('in, 'out, 'state) FSM \<Rightarrow> ('in * 'out) list \<Rightarrow> ('in, 'out) ATC set | |
\<Rightarrow> ('in * 'out) list set" where | |
"B M io \<Omega> = \<Union> (image (\<lambda> s . IO_set M s \<Omega>) (io_targets M (initial M) io))" | |
fun D :: "('in, 'out, 'state) FSM \<Rightarrow> 'in list set \<Rightarrow> ('in, 'out) ATC set | |
\<Rightarrow> ('in * 'out) list set set" where | |
"D M ISeqs \<Omega> = image (\<lambda> io . B M io \<Omega>) (LS\<^sub>i\<^sub>n M (initial M) ISeqs)" | |
fun append_io_B :: "('in, 'out, 'state) FSM \<Rightarrow> ('in * 'out) list \<Rightarrow> ('in, 'out) ATC set | |
\<Rightarrow> ('in * 'out) list set" where | |
"append_io_B M io \<Omega> = { io@res | res . res \<in> B M io \<Omega> }" | |
lemma B_dist' : | |
assumes df: "B M io1 \<Omega> \<noteq> B M io2 \<Omega>" | |
shows "(io_targets M (initial M) io1) \<noteq> (io_targets M (initial M) io2)" | |
using assms by force | |
lemma B_dist : | |
assumes "io_targets M (initial M) io1 = {q1}" | |
and "io_targets M (initial M) io2 = {q2}" | |
and "B M io1 \<Omega> \<noteq> B M io2 \<Omega>" | |
shows "q1 \<noteq> q2" | |
using assms by force | |
lemma D_bound : | |
assumes wf: "well_formed M" | |
and ob: "observable M" | |
and fi: "finite ISeqs" | |
shows "finite (D M ISeqs \<Omega>)" "card (D M ISeqs \<Omega>) \<le> card (nodes M)" | |
proof - | |
have "D M ISeqs \<Omega> \<subseteq> image (\<lambda> s . IO_set M s \<Omega>) (nodes M)" | |
proof | |
fix RS assume RS_def : "RS \<in> D M ISeqs \<Omega>" | |
then obtain xs ys where RS_tr : "RS = B M (xs || ys) \<Omega>" | |
"(xs \<in> ISeqs \<and> length xs = length ys | |
\<and> (xs || ys) \<in> language_state M (initial M))" | |
by auto | |
then obtain qx where qx_def : "io_targets M (initial M) (xs || ys) = { qx }" | |
by (meson io_targets_observable_singleton_ex ob) | |
then have "RS = IO_set M qx \<Omega>" | |
using RS_tr by auto | |
moreover have "qx \<in> nodes M" | |
by (metis FSM.nodes.initial io_targets_nodes qx_def singletonI) | |
ultimately show "RS \<in> image (\<lambda> s . IO_set M s \<Omega>) (nodes M)" | |
by auto | |
qed | |
moreover have "finite (nodes M)" | |
using assms by auto | |
ultimately show "finite (D M ISeqs \<Omega>)" "card (D M ISeqs \<Omega>) \<le> card (nodes M)" | |
by (meson finite_imageI infinite_super surj_card_le)+ | |
qed | |
lemma append_io_B_in_language : | |
"append_io_B M io \<Omega> \<subseteq> L M" | |
proof | |
fix x assume "x \<in> append_io_B M io \<Omega>" | |
then obtain res where "x = io@res" "res \<in> B M io \<Omega>" | |
unfolding append_io_B.simps by blast | |
then obtain q where "q \<in> io_targets M (initial M) io" "res \<in> IO_set M q \<Omega>" | |
unfolding B.simps by blast | |
then have "res \<in> LS M q" | |
using IO_set_in_language[of M q \<Omega>] by blast | |
obtain pIO where "path M (io || pIO) (initial M)" | |
"length pIO = length io" "target (io || pIO) (initial M) = q" | |
using \<open>q \<in> io_targets M (initial M) io\<close> by auto | |
moreover obtain pRes where "path M (res || pRes) q" "length pRes = length res" | |
using \<open>res \<in> LS M q\<close> by auto | |
ultimately have "io@res \<in> L M" | |
using FSM.path_append[of M "io||pIO" "initial M" "res||pRes"] | |
by (metis language_state length_append zip_append) | |
then show "x \<in> L M" | |
using \<open>x = io@res\<close> by blast | |
qed | |
lemma append_io_B_nonempty : | |
assumes "applicable_set M \<Omega>" | |
and "completely_specified M" | |
and "io \<in> language_state M (initial M)" | |
and "\<Omega> \<noteq> {}" | |
shows "append_io_B M io \<Omega> \<noteq> {}" | |
proof - | |
obtain t where "t \<in> \<Omega>" | |
using assms(4) by blast | |
then have "applicable M t" | |
using assms(1) by simp | |
moreover obtain tr where "path M (io || tr) (initial M) \<and> length tr = length io" | |
using assms(3) by auto | |
moreover have "target (io || tr) (initial M) \<in> nodes M" | |
using calculation(2) by blast | |
ultimately have "IO M (target (io || tr) (initial M)) t \<noteq> {}" | |
using assms(2) IO_applicable_nonempty by simp | |
then obtain io' where "io' \<in> IO M (target (io || tr) (initial M)) t" | |
by blast | |
then have "io' \<in> IO_set M (target (io || tr) (initial M)) \<Omega>" | |
using \<open>t \<in> \<Omega>\<close> unfolding IO_set.simps by blast | |
moreover have "(target (io || tr) (initial M)) \<in> io_targets M (initial M) io" | |
using \<open>path M (io || tr) (initial M) \<and> length tr = length io\<close> by auto | |
ultimately have "io' \<in> B M io \<Omega>" | |
unfolding B.simps by blast | |
then have "io@io' \<in> append_io_B M io \<Omega>" | |
unfolding append_io_B.simps by blast | |
then show ?thesis by blast | |
qed | |
lemma append_io_B_prefix_in_language : | |
assumes "append_io_B M io \<Omega> \<noteq> {}" | |
shows "io \<in> L M" | |
proof - | |
obtain res where "io @ res \<in> append_io_B M io \<Omega> \<and> res \<in> B M io \<Omega>" | |
using assms by auto | |
then have "io_targets M (initial M) io \<noteq> {}" | |
by auto | |
then obtain q where "q \<in> io_targets M (initial M) io" | |
by blast | |
then obtain tr where "target (io || tr) (initial M) = q \<and> path M (io || tr) (initial M) | |
\<and> length tr = length io" by auto | |
then show ?thesis by auto | |
qed | |
subsection \<open> Characterizing sets \<close> | |
text \<open> | |
A set of ATCs is a characterizing set for some FSM if for every pair of r-distinguishable states it | |
contains an ATC that r-distinguishes them. | |
\<close> | |
fun characterizing_atc_set :: "('in, 'out, 'state) FSM \<Rightarrow> ('in, 'out) ATC set \<Rightarrow> bool" where | |
"characterizing_atc_set M \<Omega> = (applicable_set M \<Omega> \<and> (\<forall> s1 \<in> (nodes M) . \<forall> s2 \<in> (nodes M) . | |
(\<exists> td . r_dist M td s1 s2) \<longrightarrow> (\<exists> tt \<in> \<Omega> . r_dist M tt s1 s2)))" | |
subsection \<open> Reduction over ATCs \<close> | |
text \<open> | |
Some state is a an ATC-reduction of another over some set of ATCs if for every contained ATC every | |
ATC-reaction to it of the former state is also an ATC-reaction of the latter state. | |
\<close> | |
fun atc_reduction :: "('in, 'out, 'state) FSM \<Rightarrow> 'state \<Rightarrow> ('in, 'out, 'state) FSM \<Rightarrow> 'state | |
\<Rightarrow> ('in, 'out) ATC set \<Rightarrow> bool" where | |
"atc_reduction M2 s2 M1 s1 \<Omega> = (\<forall> t \<in> \<Omega> . IO M2 s2 t \<subseteq> IO M1 s1 t)" | |
\<comment> \<open>r-distinguishability holds for atc-reductions\<close> | |
lemma atc_rdist_dist[intro] : | |
assumes wf2 : "well_formed M2" | |
and cs2 : "completely_specified M2" | |
and ap2 : "applicable_set M2 \<Omega>" | |
and el_t1 : "t1 \<in> nodes M2" | |
and red1 : "atc_reduction M2 t1 M1 s1 \<Omega>" | |
and red2 : "atc_reduction M2 t2 M1 s2 \<Omega>" | |
and rdist : "r_dist_set M1 \<Omega> s1 s2" | |
and "t1 \<in> nodes M2" | |
shows "r_dist_set M2 \<Omega> t1 t2" | |
proof - | |
obtain td where td_def : "td \<in> \<Omega> \<and> r_dist M1 td s1 s2" | |
using rdist by auto | |
then have "IO M1 s1 td \<inter> IO M1 s2 td = {}" | |
using td_def by simp | |
moreover have "IO M2 t1 td \<subseteq> IO M1 s1 td" | |
using red1 td_def by auto | |
moreover have "IO M2 t2 td \<subseteq> IO M1 s2 td" | |
using red2 td_def by auto | |
ultimately have no_inter : "IO M2 t1 td \<inter> IO M2 t2 td = {}" | |
by blast | |
then have "td \<noteq> Leaf" | |
by auto | |
then have "IO M2 t1 td \<noteq> {}" | |
by (meson ap2 IO_applicable_nonempty applicable_set.elims(2) cs2 td_def assms(8)) | |
then have "IO M2 t1 td \<noteq> IO M2 t2 td" | |
using no_inter by auto | |
then show ?thesis | |
using no_inter td_def by auto | |
qed | |
subsection \<open> Reduction over ATCs applied after input sequences \<close> | |
text \<open> | |
The following functions check whether some FSM is a reduction of another over a given set of input | |
sequences while furthermore the response sets obtained by applying a set of ATCs after every input | |
sequence to the first FSM are subsets of the analogously constructed response sets of the second | |
FSM. | |
\<close> | |
fun atc_io_reduction_on :: "('in, 'out, 'state1) FSM \<Rightarrow> ('in, 'out, 'state2) FSM \<Rightarrow> 'in list | |
\<Rightarrow> ('in, 'out) ATC set \<Rightarrow> bool" where | |
"atc_io_reduction_on M1 M2 iseq \<Omega> = (L\<^sub>i\<^sub>n M1 {iseq} \<subseteq> L\<^sub>i\<^sub>n M2 {iseq} | |
\<and> (\<forall> io \<in> L\<^sub>i\<^sub>n M1 {iseq} . B M1 io \<Omega> \<subseteq> B M2 io \<Omega>))" | |
fun atc_io_reduction_on_sets :: "('in, 'out, 'state1) FSM \<Rightarrow> 'in list set \<Rightarrow> ('in, 'out) ATC set | |
\<Rightarrow> ('in, 'out, 'state2) FSM \<Rightarrow> bool" where | |
"atc_io_reduction_on_sets M1 TS \<Omega> M2 = (\<forall> iseq \<in> TS . atc_io_reduction_on M1 M2 iseq \<Omega>)" | |
notation | |
atc_io_reduction_on_sets ("(_ \<preceq>\<lbrakk>_._\<rbrakk> _)" [1000,1000,1000,1000]) | |
lemma io_reduction_from_atc_io_reduction : | |
assumes "atc_io_reduction_on_sets M1 T \<Omega> M2" | |
and "finite T" | |
shows "io_reduction_on M1 T M2" | |
using assms(2,1) proof (induction T) | |
case empty | |
then show ?case by auto | |
next | |
case (insert t T) | |
then have "atc_io_reduction_on M1 M2 t \<Omega>" | |
by auto | |
then have "L\<^sub>i\<^sub>n M1 {t} \<subseteq> L\<^sub>i\<^sub>n M2 {t}" | |
using atc_io_reduction_on.simps by blast | |
have "L\<^sub>i\<^sub>n M1 T \<subseteq> L\<^sub>i\<^sub>n M2 T" | |
using insert.IH | |
proof - | |
have "atc_io_reduction_on_sets M1 T \<Omega> M2" | |
by (meson contra_subsetD insert.prems atc_io_reduction_on_sets.simps subset_insertI) | |
then show ?thesis | |
using insert.IH by blast | |
qed | |
then have "L\<^sub>i\<^sub>n M1 T \<subseteq> L\<^sub>i\<^sub>n M2 (insert t T)" | |
by (meson insert_iff language_state_for_inputs_in_language_state | |
language_state_for_inputs_map_fst language_state_for_inputs_map_fst_contained | |
subsetCE subsetI) | |
moreover have "L\<^sub>i\<^sub>n M1 {t} \<subseteq> L\<^sub>i\<^sub>n M2 (insert t T)" | |
proof - | |
obtain pps :: "('a \<times> 'b) list set \<Rightarrow> ('a \<times> 'b) list set \<Rightarrow> ('a \<times> 'b) list" where | |
"\<forall>x0 x1. (\<exists>v2. v2 \<in> x1 \<and> v2 \<notin> x0) = (pps x0 x1 \<in> x1 \<and> pps x0 x1 \<notin> x0)" | |
by moura | |
then have "\<forall>P Pa. pps Pa P \<in> P \<and> pps Pa P \<notin> Pa \<or> P \<subseteq> Pa" | |
by blast | |
moreover | |
{ assume "map fst (pps (L\<^sub>i\<^sub>n M2 (insert t T)) (L\<^sub>i\<^sub>n M1 {t})) \<notin> insert t T" | |
then have "pps (L\<^sub>i\<^sub>n M2 (insert t T)) (L\<^sub>i\<^sub>n M1 {t}) \<notin> L\<^sub>i\<^sub>n M1 {t} | |
\<or> pps (L\<^sub>i\<^sub>n M2 (insert t T)) (L\<^sub>i\<^sub>n M1 {t}) \<in> L\<^sub>i\<^sub>n M2 (insert t T)" | |
by (metis (no_types) insertI1 language_state_for_inputs_map_fst_contained singletonD) } | |
ultimately show ?thesis | |
by (meson \<open>L\<^sub>i\<^sub>n M1 {t} \<subseteq> L\<^sub>i\<^sub>n M2 {t}\<close> language_state_for_inputs_in_language_state | |
language_state_for_inputs_map_fst set_rev_mp) | |
qed | |
ultimately show ?case | |
proof - | |
have f1: "\<forall>ps P Pa. (ps::('a \<times> 'b) list) \<notin> P \<or> \<not> P \<subseteq> Pa \<or> ps \<in> Pa" | |
by blast | |
obtain pps :: "('a \<times> 'b) list set \<Rightarrow> ('a \<times> 'b) list set \<Rightarrow> ('a \<times> 'b) list" where | |
"\<forall>x0 x1. (\<exists>v2. v2 \<in> x1 \<and> v2 \<notin> x0) = (pps x0 x1 \<in> x1 \<and> pps x0 x1 \<notin> x0)" | |
by moura | |
moreover | |
{ assume "pps (L\<^sub>i\<^sub>n M2 (insert t T)) (L\<^sub>i\<^sub>n M1 (insert t T)) | |
\<notin> L\<^sub>i\<^sub>n M1 {t}" | |
moreover | |
{ assume "map fst (pps (L\<^sub>i\<^sub>n M2 (insert t T)) (L\<^sub>i\<^sub>n M1 (insert t T))) | |
\<notin> {t}" | |
then have "map fst (pps (L\<^sub>i\<^sub>n M2 (insert t T)) | |
(L\<^sub>i\<^sub>n M1 (insert t T))) \<noteq> t" | |
by blast | |
then have "pps (L\<^sub>i\<^sub>n M2 (insert t T)) (L\<^sub>i\<^sub>n M1 (insert t T)) | |
\<notin> L\<^sub>i\<^sub>n M1 (insert t T) | |
\<or> pps (L\<^sub>i\<^sub>n M2 (insert t T)) (L\<^sub>i\<^sub>n M1 (insert t T)) | |
\<in> L\<^sub>i\<^sub>n M2 (insert t T)" | |
using f1 by (meson \<open>L\<^sub>i\<^sub>n M1 T \<subseteq> L\<^sub>i\<^sub>n M2 (insert t T)\<close> | |
insertE language_state_for_inputs_in_language_state | |
language_state_for_inputs_map_fst | |
language_state_for_inputs_map_fst_contained) } | |
ultimately have "io_reduction_on M1 (insert t T) M2 | |
\<or> pps (L\<^sub>i\<^sub>n M2 (insert t T)) (L\<^sub>i\<^sub>n M1 (insert t T)) | |
\<notin> L\<^sub>i\<^sub>n M1 (insert t T) | |
\<or> pps (L\<^sub>i\<^sub>n M2 (insert t T)) (L\<^sub>i\<^sub>n M1 (insert t T)) | |
\<in> L\<^sub>i\<^sub>n M2 (insert t T)" | |
using f1 by (meson language_state_for_inputs_in_language_state | |
language_state_for_inputs_map_fst) } | |
ultimately show ?thesis | |
using f1 by (meson \<open>L\<^sub>i\<^sub>n M1 {t} \<subseteq> L\<^sub>i\<^sub>n M2 (insert t T)\<close> subsetI) | |
qed | |
qed | |
lemma atc_io_reduction_on_subset : | |
assumes "atc_io_reduction_on_sets M1 T \<Omega> M2" | |
and "T' \<subseteq> T" | |
shows "atc_io_reduction_on_sets M1 T' \<Omega> M2" | |
using assms unfolding atc_io_reduction_on_sets.simps by blast | |
lemma atc_reaction_reduction[intro] : | |
assumes ls : "language_state M1 q1 \<subseteq> language_state M2 q2" | |
and el1 : "q1 \<in> nodes M1" | |
and el2 : "q2 \<in> nodes M2" | |
and rct : "atc_reaction M1 q1 t io" | |
and ob2 : "observable M2" | |
and ob1 : "observable M1" | |
shows "atc_reaction M2 q2 t io" | |
using assms proof (induction t arbitrary: io q1 q2) | |
case Leaf | |
then have "io = []" | |
by (metis atc_reaction_nonempty_no_leaf list.exhaust) | |
then show ?case | |
by (simp add: leaf) | |
next | |
case (Node x f) | |
then obtain io_hd io_tl where io_split : "io = io_hd # io_tl" | |
by (metis ATC.distinct(1) atc_reaction_empty list.exhaust) | |
moreover obtain y where y_def : "io_hd = (x,y)" | |
using Node calculation by (metis ATC.inject atc_reaction_nonempty surj_pair) | |
ultimately obtain q1x where q1x_def : "q1x \<in> succ M1 (x,y) q1" "atc_reaction M1 q1x (f y) io_tl" | |
using Node.prems(4) by blast | |
then have pt1 : "path M1 ([(x,y)] || [q1x]) q1" | |
by auto | |
then have ls1 : "[(x,y)] \<in> language_state M1 q1" | |
unfolding language_state_def path_def using list.simps(9) by force | |
moreover have "q1x \<in> io_targets M1 q1 [(x,y)]" | |
unfolding io_targets.simps | |
proof - | |
have f1: "length [(x, y)] = length [q1x]" | |
by simp | |
have "q1x = target ([(x, y)] || [q1x]) q1" | |
by simp | |
then show "q1x \<in> {target ([(x, y)] || cs) q1 |cs. path M1 ([(x, y)] || cs) q1 | |
\<and> length [(x, y)] = length cs}" | |
using f1 pt1 by blast | |
qed | |
ultimately have tgt1 : "io_targets M1 q1 [(x,y)] = {q1x}" | |
using Node.prems io_targets_observable_singleton_ex q1x_def | |
by (metis (no_types, lifting) singletonD) | |
then have ls2 : "[(x,y)] \<in> language_state M2 q2" | |
using Node.prems(1) ls1 by auto | |
then obtain q2x where q2x_def : "q2x \<in> succ M2 (x,y) q2" | |
unfolding language_state_def path_def | |
using transition_system.path.cases by fastforce | |
then have pt2 : "path M2 ([(x,y)] || [q2x]) q2" | |
by auto | |
then have "q2x \<in> io_targets M2 q2 [(x,y)]" | |
using ls2 unfolding io_targets.simps | |
proof - | |
have f1: "length [(x, y)] = length [q2x]" | |
by simp | |
have "q2x = target ([(x, y)] || [q2x]) q2" | |
by simp | |
then show "q2x \<in> {target ([(x, y)] || cs) q2 |cs. path M2 ([(x, y)] || cs) q2 | |
\<and> length [(x, y)] = length cs}" | |
using f1 pt2 by blast | |
qed | |
then have tgt2 : "io_targets M2 q2 [(x,y)] = {q2x}" | |
using Node.prems io_targets_observable_singleton_ex ls2 q2x_def | |
by (metis (no_types, lifting) singletonD) | |
then have "language_state M1 q1x \<subseteq> language_state M2 q2x" | |
using language_state_inclusion_of_state_reached_by_same_sequence | |
[of M1 q1 M2 q2 "[(x,y)]" q1x q2x] | |
tgt1 tgt2 Node.prems by auto | |
moreover have "q1x \<in> nodes M1" | |
using q1x_def(1) Node.prems(2) by (metis insertI1 io_targets_nodes tgt1) | |
moreover have "q2x \<in> nodes M2" | |
using q2x_def(1) Node.prems(3) by (metis insertI1 io_targets_nodes tgt2) | |
ultimately have "q2x \<in> succ M2 (x,y) q2 \<and> atc_reaction M2 q2x (f y) io_tl" | |
using Node.IH[of "f y" q1x q2x io_tl] ob1 ob2 q1x_def(2) q2x_def by blast | |
then show "atc_reaction M2 q2 (Node x f) io" using io_split y_def by blast | |
qed | |
lemma IO_reduction : | |
assumes ls : "language_state M1 q1 \<subseteq> language_state M2 q2" | |
and el1 : "q1 \<in> nodes M1" | |
and el2 : "q2 \<in> nodes M2" | |
and ob1 : "observable M1" | |
and ob2 : "observable M2" | |
shows "IO M1 q1 t \<subseteq> IO M2 q2 t" | |
using assms atc_reaction_reduction unfolding IO.simps by auto | |
lemma IO_set_reduction : | |
assumes ls : "language_state M1 q1 \<subseteq> language_state M2 q2" | |
and el1 : "q1 \<in> nodes M1" | |
and el2 : "q2 \<in> nodes M2" | |
and ob1 : "observable M1" | |
and ob2 : "observable M2" | |
shows "IO_set M1 q1 \<Omega> \<subseteq> IO_set M2 q2 \<Omega>" | |
proof - | |
have "\<forall> t \<in> \<Omega> . IO M1 q1 t \<subseteq> IO M2 q2 t" | |
using assms IO_reduction by metis | |
then show ?thesis | |
unfolding IO_set.simps by blast | |
qed | |
lemma B_reduction : | |
assumes red : "M1 \<preceq> M2" | |
and ob1 : "observable M1" | |
and ob2 : "observable M2" | |
shows "B M1 io \<Omega> \<subseteq> B M2 io \<Omega>" | |
proof | |
fix xy assume xy_assm : "xy \<in> B M1 io \<Omega>" | |
then obtain q1x where q1x_def : "q1x \<in> (io_targets M1 (initial M1) io) \<and> xy \<in> IO_set M1 q1x \<Omega>" | |
unfolding B.simps by auto | |
then obtain tr1 where tr1_def : "path M1 (io || tr1) (initial M1) \<and> length io = length tr1" | |
by auto | |
then have q1x_ob : "io_targets M1 (initial M1) io = {q1x}" | |
using assms | |
by (metis io_targets_observable_singleton_ex language_state q1x_def singleton_iff) | |
then have ls1 : "io \<in> language_state M1 (initial M1)" | |
by auto | |
then have ls2 : "io \<in> language_state M2 (initial M2)" | |
using red by auto | |
then obtain tr2 where tr2_def : "path M2 (io || tr2) (initial M2) \<and> length io = length tr2" | |
by auto | |
then obtain q2x where q2x_def : "q2x \<in> (io_targets M2 (initial M2) io)" | |
by auto | |
then have q2x_ob : "io_targets M2 (initial M2) io = {q2x}" | |
using tr2_def assms | |
by (metis io_targets_observable_singleton_ex language_state singleton_iff) | |
then have "language_state M1 q1x \<subseteq> language_state M2 q2x" | |
using q1x_ob assms unfolding io_reduction.simps | |
by (simp add: language_state_inclusion_of_state_reached_by_same_sequence) | |
then have "IO_set M1 q1x \<Omega> \<subseteq> IO_set M2 q2x \<Omega>" | |
using assms IO_set_reduction by (metis FSM.nodes.initial io_targets_nodes q1x_def q2x_def) | |
moreover have "B M1 io \<Omega> = IO_set M1 q1x \<Omega>" | |
using q1x_ob by auto | |
moreover have "B M2 io \<Omega> = IO_set M2 q2x \<Omega>" | |
using q2x_ob by auto | |
ultimately have "B M1 io \<Omega> \<subseteq> B M2 io \<Omega>" | |
by simp | |
then show "xy \<in> B M2 io \<Omega>" using xy_assm | |
by blast | |
qed | |
lemma append_io_B_reduction : | |
assumes red : "M1 \<preceq> M2" | |
and ob1 : "observable M1" | |
and ob2 : "observable M2" | |
shows "append_io_B M1 io \<Omega> \<subseteq> append_io_B M2 io \<Omega>" | |
proof | |
fix ioR assume ioR_assm : "ioR \<in> append_io_B M1 io \<Omega>" | |
then obtain res where res_def : "ioR = io @ res" "res \<in> B M1 io \<Omega>" | |
by auto | |
then have "res \<in> B M2 io \<Omega>" | |
using assms B_reduction by (metis (no_types, opaque_lifting) subset_iff) | |
then show "ioR \<in> append_io_B M2 io \<Omega>" | |
using ioR_assm res_def by auto | |
qed | |
lemma atc_io_reduction_on_reduction[intro] : | |
assumes red : "M1 \<preceq> M2" | |
and ob1 : "observable M1" | |
and ob2 : "observable M2" | |
shows "atc_io_reduction_on M1 M2 iseq \<Omega>" | |
unfolding atc_io_reduction_on.simps proof | |
show "L\<^sub>i\<^sub>n M1 {iseq} \<subseteq> L\<^sub>i\<^sub>n M2 {iseq}" | |
using red by auto | |
next | |
show "\<forall>io\<in>L\<^sub>i\<^sub>n M1 {iseq}. B M1 io \<Omega> \<subseteq> B M2 io \<Omega>" | |
using B_reduction assms by blast | |
qed | |
lemma atc_io_reduction_on_sets_reduction[intro] : | |
assumes red : "M1 \<preceq> M2" | |
and ob1 : "observable M1" | |
and ob2 : "observable M2" | |
shows "atc_io_reduction_on_sets M1 TS \<Omega> M2" | |
using assms atc_io_reduction_on_reduction by (metis atc_io_reduction_on_sets.elims(3)) | |
lemma atc_io_reduction_on_sets_via_LS\<^sub>i\<^sub>n : | |
assumes "atc_io_reduction_on_sets M1 TS \<Omega> M2" | |
shows "(L\<^sub>i\<^sub>n M1 TS \<union> (\<Union>io\<in>L\<^sub>i\<^sub>n M1 TS. B M1 io \<Omega>)) | |
\<subseteq> (L\<^sub>i\<^sub>n M2 TS \<union> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 TS. B M2 io \<Omega>))" | |
proof - | |
have "\<forall> iseq \<in> TS . (L\<^sub>i\<^sub>n M1 {iseq} \<subseteq> L\<^sub>i\<^sub>n M2 {iseq} | |
\<and> (\<forall> io \<in> L\<^sub>i\<^sub>n M1 {iseq} . B M1 io \<Omega> \<subseteq> B M2 io \<Omega>))" | |
using assms by auto | |
then have "\<forall> iseq \<in> TS . (\<Union>io\<in>L\<^sub>i\<^sub>n M1 {iseq}. B M1 io \<Omega>) | |
\<subseteq> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 {iseq}. B M2 io \<Omega>)" | |
by blast | |
moreover have "\<forall> iseq \<in> TS . (\<Union>io\<in>L\<^sub>i\<^sub>n M2 {iseq}. B M2 io \<Omega>) | |
\<subseteq> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 TS. B M2 io \<Omega>)" | |
unfolding language_state_for_inputs.simps by blast | |
ultimately have elem_subset : "\<forall> iseq \<in> TS . | |
(\<Union>io\<in>L\<^sub>i\<^sub>n M1 {iseq}. B M1 io \<Omega>) | |
\<subseteq> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 TS. B M2 io \<Omega>)" | |
by blast | |
show ?thesis | |
proof | |
fix x assume "x \<in> L\<^sub>i\<^sub>n M1 TS \<union> (\<Union>io\<in>L\<^sub>i\<^sub>n M1 TS. B M1 io \<Omega>)" | |
then show "x \<in> L\<^sub>i\<^sub>n M2 TS \<union> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 TS. B M2 io \<Omega>)" | |
proof (cases "x \<in> L\<^sub>i\<^sub>n M1 TS") | |
case True | |
then obtain iseq where "iseq \<in> TS" "x\<in> L\<^sub>i\<^sub>n M1 {iseq}" | |
unfolding language_state_for_inputs.simps by blast | |
then have "atc_io_reduction_on M1 M2 iseq \<Omega>" | |
using assms by auto | |
then have "L\<^sub>i\<^sub>n M1 {iseq} \<subseteq> L\<^sub>i\<^sub>n M2 {iseq}" | |
by auto | |
then have "x \<in> L\<^sub>i\<^sub>n M2 TS" | |
by (metis (no_types, lifting) UN_I | |
\<open>\<And>thesis. (\<And>iseq. \<lbrakk>iseq \<in> TS; x \<in> L\<^sub>i\<^sub>n M1 {iseq}\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close> | |
\<open>\<forall>iseq\<in>TS. L\<^sub>i\<^sub>n M1 {iseq} \<subseteq> L\<^sub>i\<^sub>n M2 {iseq} \<and> (\<forall>io\<in>L\<^sub>i\<^sub>n M1 {iseq}. B M1 io \<Omega> \<subseteq> B M2 io \<Omega>)\<close> | |
language_state_for_input_alt_def language_state_for_inputs_alt_def set_rev_mp) | |
then show ?thesis | |
by blast | |
next | |
case False | |
then have "x \<in> (\<Union>io\<in>L\<^sub>i\<^sub>n M1 TS. B M1 io \<Omega>)" | |
using \<open>x \<in> L\<^sub>i\<^sub>n M1 TS \<union> (\<Union>io\<in>L\<^sub>i\<^sub>n M1 TS. B M1 io \<Omega>)\<close> by blast | |
then obtain io where "io \<in> L\<^sub>i\<^sub>n M1 TS" "x \<in> B M1 io \<Omega>" | |
by blast | |
then obtain iseq where "iseq \<in> TS" "io\<in>L\<^sub>i\<^sub>n M1 {iseq}" | |
unfolding language_state_for_inputs.simps by blast | |
have "x \<in> (\<Union>io\<in>L\<^sub>i\<^sub>n M1 {iseq}. B M1 io \<Omega>)" | |
using \<open>io \<in> L\<^sub>i\<^sub>n M1 {iseq}\<close> \<open>x \<in> B M1 io \<Omega>\<close> by blast | |
then have "x \<in> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 TS. B M2 io \<Omega>)" | |
using \<open>iseq \<in> TS\<close> elem_subset by blast | |
then show ?thesis | |
by blast | |
qed | |
qed | |
qed | |
end | |