Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* File: Akra_Bazzi_Asymptotics.thy | |
Author: Manuel Eberl <manuel@pruvisto.org> | |
Proofs for the four(ish) asymptotic inequalities required for proving the | |
Akra Bazzi theorem with variation functions in the recursive calls. | |
*) | |
section \<open>Asymptotic bounds\<close> | |
theory Akra_Bazzi_Asymptotics | |
imports | |
Complex_Main | |
Akra_Bazzi_Library | |
"HOL-Library.Landau_Symbols" | |
begin | |
locale akra_bazzi_asymptotics_bep = | |
fixes b e p hb :: real | |
assumes bep: "b > 0" "b < 1" "e > 0" "hb > 0" | |
begin | |
context | |
begin | |
text \<open> | |
Functions that are negligible w.r.t. @{term "ln (b*x) powr (e/2 + 1)"}. | |
\<close> | |
private abbreviation (input) negl :: "(real \<Rightarrow> real) \<Rightarrow> bool" where | |
"negl f \<equiv> f \<in> o(\<lambda>x. ln (b*x) powr (-(e/2 + 1)))" | |
private lemma neglD: "negl f \<Longrightarrow> c > 0 \<Longrightarrow> eventually (\<lambda>x. \<bar>f x\<bar> \<le> c / ln (b*x) powr (e/2+1)) at_top" | |
by (drule (1) landau_o.smallD, subst (asm) powr_minus) (simp add: field_simps) | |
private lemma negl_mult: "negl f \<Longrightarrow> negl g \<Longrightarrow> negl (\<lambda>x. f x * g x)" | |
by (erule landau_o.small_1_mult, rule landau_o.small_imp_big, erule landau_o.small_trans) | |
(insert bep, simp) | |
private lemma ev4: | |
assumes g: "negl g" | |
shows "eventually (\<lambda>x. ln (b*x) powr (-e/2) - ln x powr (-e/2) \<ge> g x) at_top" | |
proof (rule smallo_imp_le_real) | |
define h1 where [abs_def]: | |
"h1 x = (1 + ln b/ln x) powr (-e/2) - 1 + e/2 * (ln b/ln x)" for x | |
define h2 where [abs_def]: | |
"h2 x = ln x powr (- e / 2) * ((1 + ln b / ln x) powr (- e / 2) - 1)" for x | |
from bep have "((\<lambda>x. ln b / ln x) \<longlongrightarrow> 0) at_top" | |
by (simp add: tendsto_0_smallo_1) | |
note one_plus_x_powr_Taylor2_bigo[OF this, of "-e/2"] | |
also have "(\<lambda>x. (1 + ln b / ln x) powr (- e / 2) - 1 - - e / 2 * (ln b / ln x)) = h1" | |
by (simp add: h1_def) | |
finally have "h1 \<in> o(\<lambda>x. 1 / ln x)" | |
by (rule landau_o.big_small_trans) (insert bep, simp add: power2_eq_square) | |
with bep have "(\<lambda>x. h1 x - e/2 * (ln b / ln x)) \<in> \<Theta>(\<lambda>x. 1 / ln x)" by simp | |
also have "(\<lambda>x. h1 x - e/2 * (ln b/ln x)) = (\<lambda>x. (1 + ln b/ ln x) powr (-e/2) - 1)" | |
by (rule ext) (simp add: h1_def) | |
finally have "h2 \<in> \<Theta>(\<lambda>x. ln x powr (-e/2) * (1 / ln x))" unfolding h2_def | |
by (intro landau_theta.mult) simp_all | |
also have "(\<lambda>x. ln x powr (-e/2) * (1 / ln x)) \<in> \<Theta>(\<lambda>x. ln x powr (-(e/2+1)))" by simp | |
also from g bep have "(\<lambda>x. ln x powr (-(e/2+1))) \<in> \<omega>(g)" by (simp add: smallomega_iff_smallo) | |
finally have "g \<in> o(h2)" by (simp add: smallomega_iff_smallo) | |
also have "eventually (\<lambda>x. h2 x = ln (b*x) powr (-e/2) - ln x powr (-e/2)) at_top" | |
using eventually_gt_at_top[of "1::real"] eventually_gt_at_top[of "1/b"] | |
by eventually_elim (insert bep, simp add: field_simps powr_diff [symmetric] h2_def | |
ln_mult [symmetric] powr_divide del: ln_mult) | |
hence "h2 \<in> \<Theta>(\<lambda>x. ln (b*x) powr (-e/2) - ln x powr (-e/2))" by (rule bigthetaI_cong) | |
finally show "g \<in> o(\<lambda>x. ln (b * x) powr (- e / 2) - ln x powr (- e / 2))" . | |
next | |
show "eventually (\<lambda>x. ln (b*x) powr (-e/2) - ln x powr (-e/2) \<ge> 0) at_top" | |
using eventually_gt_at_top[of "1/b"] eventually_gt_at_top[of "1::real"] | |
by eventually_elim (insert bep, auto intro!: powr_mono2' simp: field_simps simp del: ln_mult) | |
qed | |
private lemma ev1: | |
"negl (\<lambda>x. (1 + c * inverse b * ln x powr (-(1+e))) powr p - 1)" | |
proof- | |
from bep have "((\<lambda>x. c * inverse b * ln x powr (-(1+e))) \<longlongrightarrow> 0) at_top" | |
by (simp add: tendsto_0_smallo_1) | |
have "(\<lambda>x. (1 + c * inverse b * ln x powr (-(1+e))) powr p - 1) | |
\<in> O(\<lambda>x. c * inverse b * ln x powr - (1 + e))" | |
using bep by (intro one_plus_x_powr_Taylor1_bigo) (simp add: tendsto_0_smallo_1) | |
also from bep have "negl (\<lambda>x. c * inverse b * ln x powr - (1 + e))" by simp | |
finally show ?thesis . | |
qed | |
private lemma ev2_aux: | |
defines "f \<equiv> \<lambda>x. (1 + 1/ln (b*x) * ln (1 + hb / b * ln x powr (-1-e))) powr (-e/2)" | |
obtains h where "eventually (\<lambda>x. f x \<ge> 1 + h x) at_top" "h \<in> o(\<lambda>x. 1 / ln x)" | |
proof (rule that[of "\<lambda>x. f x - 1"]) | |
define g where [abs_def]: "g x = 1/ln (b*x) * ln (1 + hb / b * ln x powr (-1-e))" for x | |
have lim: "((\<lambda>x. ln (1 + hb / b * ln x powr (- 1 - e))) \<longlongrightarrow> 0) at_top" | |
by (rule tendsto_eq_rhs[OF tendsto_ln[OF tendsto_add[OF tendsto_const, of _ 0]]]) | |
(insert bep, simp_all add: tendsto_0_smallo_1) | |
hence lim': "(g \<longlongrightarrow> 0) at_top" unfolding g_def | |
by (intro tendsto_mult_zero) (insert bep, simp add: tendsto_0_smallo_1) | |
from one_plus_x_powr_Taylor2_bigo[OF this, of "-e/2"] | |
have "(\<lambda>x. (1 + g x) powr (-e/2) - 1 - - e/2 * g x) \<in> O(\<lambda>x. (g x)\<^sup>2)" . | |
also from lim' have "(\<lambda>x. g x ^ 2) \<in> o(\<lambda>x. g x * 1)" unfolding power2_eq_square | |
by (intro landau_o.big_small_mult smalloI_tendsto) simp_all | |
also have "o(\<lambda>x. g x * 1) = o(g)" by simp | |
also have "(\<lambda>x. (1 + g x) powr (-e/2) - 1 - - e/2 * g x) = (\<lambda>x. f x - 1 + e/2 * g x)" | |
by (simp add: f_def g_def) | |
finally have A: "(\<lambda>x. f x - 1 + e / 2 * g x) \<in> O(g)" by (rule landau_o.small_imp_big) | |
hence "(\<lambda>x. f x - 1 + e/2 * g x - e/2 * g x) \<in> O(g)" | |
by (rule sum_in_bigo) (insert bep, simp) | |
also have "(\<lambda>x. f x - 1 + e/2 * g x - e/2 * g x) = (\<lambda>x. f x - 1)" by simp | |
finally have "(\<lambda>x. f x - 1) \<in> O(g)" . | |
also from bep lim have "g \<in> o(\<lambda>x. 1 / ln x)" unfolding g_def | |
by (auto intro!: smallo_1_tendsto_0) | |
finally show "(\<lambda>x. f x - 1) \<in> o(\<lambda>x. 1 / ln x)" . | |
qed simp_all | |
private lemma ev2: | |
defines "f \<equiv> \<lambda>x. ln (b * x + hb * x / ln x powr (1 + e)) powr (-e/2)" | |
obtains h where | |
"negl h" | |
"eventually (\<lambda>x. f x \<ge> ln (b * x) powr (-e/2) + h x) at_top" | |
"eventually (\<lambda>x. \<bar>ln (b * x) powr (-e/2) + h x\<bar> < 1) at_top" | |
proof - | |
define f' | |
where "f' x = (1 + 1 / ln (b*x) * ln (1 + hb / b * ln x powr (-1-e))) powr (-e/2)" for x | |
from ev2_aux obtain g where g: "eventually (\<lambda>x. 1 + g x \<le> f' x) at_top" "g \<in> o(\<lambda>x. 1 / ln x)" | |
unfolding f'_def . | |
define h where [abs_def]: "h x = ln (b*x) powr (-e/2) * g x" for x | |
show ?thesis | |
proof (rule that[of h]) | |
from bep g show "negl h" unfolding h_def | |
by (auto simp: powr_diff elim: landau_o.small_big_trans) | |
next | |
from g(2) have "g \<in> o(\<lambda>x. 1)" by (rule landau_o.small_big_trans) simp | |
with bep have "eventually (\<lambda>x. \<bar>ln (b*x) powr (-e/2) * (1 + g x)\<bar> < 1) at_top" | |
by (intro smallo_imp_abs_less_real) simp_all | |
thus "eventually (\<lambda>x. \<bar>ln (b*x) powr (-e/2) + h x\<bar> < 1) at_top" | |
by (simp add: algebra_simps h_def) | |
next | |
from eventually_gt_at_top[of "1/b"] and g(1) | |
show "eventually (\<lambda>x. f x \<ge> ln (b*x) powr (-e/2) + h x) at_top" | |
proof eventually_elim | |
case (elim x) | |
from bep have "b * x + hb * x / ln x powr (1 + e) = b*x * (1 + hb / b * ln x powr (-1 - e))" | |
by (simp add: field_simps powr_diff powr_add powr_minus) | |
also from elim(1) bep | |
have "ln \<dots> = ln (b*x) * (1 + 1/ln (b*x) * ln (1 + hb / b * ln x powr (-1-e)))" | |
by (subst ln_mult) (simp_all add: add_pos_nonneg field_simps) | |
also from elim(1) bep have "\<dots> powr (-e/2) = ln (b*x) powr (-e/2) * f' x" | |
by (subst powr_mult) (simp_all add: field_simps f'_def) | |
also from elim have "\<dots> \<ge> ln (b*x) powr (-e/2) * (1 + g x)" | |
by (intro mult_left_mono) simp_all | |
finally show "f x \<ge> ln (b*x) powr (-e/2) + h x" | |
by (simp add: f_def h_def algebra_simps) | |
qed | |
qed | |
qed | |
private lemma ev21: | |
obtains g where | |
"negl g" | |
"eventually (\<lambda>x. 1 + ln (b * x + hb * x / ln x powr (1 + e)) powr (-e/2) \<ge> | |
1 + ln (b * x) powr (-e/2) + g x) at_top" | |
"eventually (\<lambda>x. 1 + ln (b * x) powr (-e/2) + g x > 0) at_top" | |
proof- | |
from ev2 guess g . note g = this | |
from g(3) have "eventually (\<lambda>x. 1 + ln (b * x) powr (-e/2) + g x > 0) at_top" | |
by eventually_elim simp | |
with g(1,2) show ?thesis by (intro that[of g]) simp_all | |
qed | |
private lemma ev22: | |
obtains g where | |
"negl g" | |
"eventually (\<lambda>x. 1 - ln (b * x + hb * x / ln x powr (1 + e)) powr (-e/2) \<le> | |
1 - ln (b * x) powr (-e/2) - g x) at_top" | |
"eventually (\<lambda>x. 1 - ln (b * x) powr (-e/2) - g x > 0) at_top" | |
proof- | |
from ev2 guess g . note g = this | |
from g(2) have "eventually (\<lambda>x. 1 - ln (b * x + hb * x / ln x powr (1 + e)) powr (-e/2) \<le> | |
1 - ln (b * x) powr (-e/2) - g x) at_top" | |
by eventually_elim simp | |
moreover from g(3) have "eventually (\<lambda>x. 1 - ln (b * x) powr (-e/2) - g x > 0) at_top" | |
by eventually_elim simp | |
ultimately show ?thesis using g(1) by (intro that[of g]) simp_all | |
qed | |
lemma asymptotics1: | |
shows "eventually (\<lambda>x. | |
(1 + c * inverse b * ln x powr -(1+e)) powr p * | |
(1 + ln (b * x + hb * x / ln x powr (1 + e)) powr (- e / 2)) \<ge> | |
1 + (ln x powr (-e/2))) at_top" | |
proof- | |
let ?f = "\<lambda>x. (1 + c * inverse b * ln x powr -(1+e)) powr p" | |
let ?g = "\<lambda>x. 1 + ln (b * x + hb * x / ln x powr (1 + e)) powr (- e / 2)" | |
define f where [abs_def]: "f x = 1 - ?f x" for x | |
from ev1[of c] have "negl f" unfolding f_def | |
by (subst landau_o.small.uminus_in_iff [symmetric]) simp | |
from landau_o.smallD[OF this zero_less_one] | |
have f: "eventually (\<lambda>x. f x \<le> ln (b*x) powr -(e/2+1)) at_top" | |
by eventually_elim (simp add: f_def) | |
from ev21 guess g . note g = this | |
define h where [abs_def]: "h x = -g x + f x + f x * ln (b*x) powr (-e/2) + f x * g x" for x | |
have A: "eventually (\<lambda>x. ?f x * ?g x \<ge> 1 + ln (b*x) powr (-e/2) - h x) at_top" | |
using g(2,3) f | |
proof eventually_elim | |
case (elim x) | |
let ?t = "ln (b*x) powr (-e/2)" | |
have "1 + ?t - h x = (1 - f x) * (1 + ln (b*x) powr (-e/2) + g x)" | |
by (simp add: algebra_simps h_def) | |
also from elim have "?f x * ?g x \<ge> (1 - f x) * (1 + ln (b*x) powr (-e/2) + g x)" | |
by (intro mult_mono[OF _ elim(1)]) (simp_all add: algebra_simps f_def) | |
finally show "?f x * ?g x \<ge> 1 + ln (b*x) powr (-e/2) - h x" . | |
qed | |
from bep \<open>negl f\<close> g(1) have "negl h" unfolding h_def | |
by (fastforce intro!: sum_in_smallo landau_o.small.mult simp: powr_diff | |
intro: landau_o.small_trans)+ | |
from ev4[OF this] A show ?thesis by eventually_elim simp | |
qed | |
lemma asymptotics2: | |
shows "eventually (\<lambda>x. | |
(1 + c * inverse b * ln x powr -(1+e)) powr p * | |
(1 - ln (b * x + hb * x / ln x powr (1 + e)) powr (- e / 2)) \<le> | |
1 - (ln x powr (-e/2))) at_top" | |
proof- | |
let ?f = "\<lambda>x. (1 + c * inverse b * ln x powr -(1+e)) powr p" | |
let ?g = "\<lambda>x. 1 - ln (b * x + hb * x / ln x powr (1 + e)) powr (- e / 2)" | |
define f where [abs_def]: "f x = 1 - ?f x" for x | |
from ev1[of c] have "negl f" unfolding f_def | |
by (subst landau_o.small.uminus_in_iff [symmetric]) simp | |
from landau_o.smallD[OF this zero_less_one] | |
have f: "eventually (\<lambda>x. f x \<le> ln (b*x) powr -(e/2+1)) at_top" | |
by eventually_elim (simp add: f_def) | |
from ev22 guess g . note g = this | |
define h where [abs_def]: "h x = -g x - f x + f x * ln (b*x) powr (-e/2) + f x * g x" for x | |
have "((\<lambda>x. ln (b * x + hb * x / ln x powr (1 + e)) powr - (e / 2)) \<longlongrightarrow> 0) at_top" | |
apply (insert bep, intro tendsto_neg_powr, simp) | |
apply (rule filterlim_compose[OF ln_at_top]) | |
apply (rule filterlim_at_top_smallomega_1, simp) | |
using eventually_gt_at_top[of "max 1 (1/b)"] | |
apply (auto elim!: eventually_mono intro!: add_pos_nonneg simp: field_simps) | |
apply (smt (z3) divide_nonneg_nonneg mult_neg_pos mult_nonneg_nonneg powr_non_neg) | |
done | |
hence ev_g: "eventually (\<lambda>x. \<bar>1 - ?g x\<bar> < 1) at_top" | |
by (intro smallo_imp_abs_less_real smalloI_tendsto) simp_all | |
have A: "eventually (\<lambda>x. ?f x * ?g x \<le> 1 - ln (b*x) powr (-e/2) + h x) at_top" | |
using g(2,3) ev_g f | |
proof eventually_elim | |
case (elim x) | |
let ?t = "ln (b*x) powr (-e/2)" | |
from elim have "?f x * ?g x \<le> (1 - f x) * (1 - ln (b*x) powr (-e/2) - g x)" | |
by (intro mult_mono) (simp_all add: f_def) | |
also have "... = 1 - ?t + h x" by (simp add: algebra_simps h_def) | |
finally show "?f x * ?g x \<le> 1 - ln (b*x) powr (-e/2) + h x" . | |
qed | |
from bep \<open>negl f\<close> g(1) have "negl h" unfolding h_def | |
by (fastforce intro!: sum_in_smallo landau_o.small.mult simp: powr_diff | |
intro: landau_o.small_trans)+ | |
from ev4[OF this] A show ?thesis by eventually_elim simp | |
qed | |
lemma asymptotics3: "eventually (\<lambda>x. (1 + (ln x powr (-e/2))) / 2 \<le> 1) at_top" | |
(is "eventually (\<lambda>x. ?f x \<le> 1) _") | |
proof (rule eventually_mp[OF always_eventually], clarify) | |
from bep have "(?f \<longlongrightarrow> 1/2) at_top" | |
by (force intro: tendsto_eq_intros tendsto_neg_powr ln_at_top) | |
hence "\<And>e. e>0 \<Longrightarrow> eventually (\<lambda>x. \<bar>?f x - 0.5\<bar> < e) at_top" | |
by (subst (asm) tendsto_iff) (simp add: dist_real_def) | |
from this[of "0.5"] show "eventually (\<lambda>x. \<bar>?f x - 0.5\<bar> < 0.5) at_top" by simp | |
fix x assume "\<bar>?f x - 0.5\<bar> < 0.5" | |
thus "?f x \<le> 1" by simp | |
qed | |
lemma asymptotics4: "eventually (\<lambda>x. (1 - (ln x powr (-e/2))) * 2 \<ge> 1) at_top" | |
(is "eventually (\<lambda>x. ?f x \<ge> 1) _") | |
proof (rule eventually_mp[OF always_eventually], clarify) | |
from bep have "(?f \<longlongrightarrow> 2) at_top" | |
by (force intro: tendsto_eq_intros tendsto_neg_powr ln_at_top) | |
hence "\<And>e. e>0 \<Longrightarrow> eventually (\<lambda>x. \<bar>?f x - 2\<bar> < e) at_top" | |
by (subst (asm) tendsto_iff) (simp add: dist_real_def) | |
from this[of 1] show "eventually (\<lambda>x. \<bar>?f x - 2\<bar> < 1) at_top" by simp | |
fix x assume "\<bar>?f x - 2\<bar> < 1" | |
thus "?f x \<ge> 1" by simp | |
qed | |
lemma asymptotics5: "eventually (\<lambda>x. ln (b*x - hb*x*ln x powr -(1+e)) powr (-e/2) < 1) at_top" | |
proof- | |
from bep have "((\<lambda>x. b - hb * ln x powr -(1+e)) \<longlongrightarrow> b - 0) at_top" | |
by (intro tendsto_intros tendsto_mult_right_zero tendsto_neg_powr ln_at_top) simp_all | |
hence "LIM x at_top. (b - hb * ln x powr -(1+e)) * x :> at_top" | |
by (rule filterlim_tendsto_pos_mult_at_top[OF _ _ filterlim_ident], insert bep) simp_all | |
also have "(\<lambda>x. (b - hb * ln x powr -(1+e)) * x) = (\<lambda>x. b*x - hb*x*ln x powr -(1+e))" | |
by (intro ext) (simp add: algebra_simps) | |
finally have "filterlim ... at_top at_top" . | |
with bep have "((\<lambda>x. ln (b*x - hb*x*ln x powr -(1+e)) powr -(e/2)) \<longlongrightarrow> 0) at_top" | |
by (intro tendsto_neg_powr filterlim_compose[OF ln_at_top]) simp_all | |
hence "eventually (\<lambda>x. \<bar>ln (b*x - hb*x*ln x powr -(1+e)) powr (-e/2)\<bar> < 1) at_top" | |
by (subst (asm) tendsto_iff) (simp add: dist_real_def) | |
thus ?thesis by simp | |
qed | |
lemma asymptotics6: "eventually (\<lambda>x. hb / ln x powr (1 + e) < b/2) at_top" | |
and asymptotics7: "eventually (\<lambda>x. hb / ln x powr (1 + e) < (1 - b) / 2) at_top" | |
and asymptotics8: "eventually (\<lambda>x. x*(1 - b - hb / ln x powr (1 + e)) > 1) at_top" | |
proof- | |
from bep have A: "(\<lambda>x. hb / ln x powr (1 + e)) \<in> o(\<lambda>_. 1)" by simp | |
from bep have B: "b/3 > 0" and C: "(1 - b)/3 > 0" by simp_all | |
from landau_o.smallD[OF A B] show "eventually (\<lambda>x. hb / ln x powr (1+e) < b/2) at_top" | |
by eventually_elim (insert bep, simp) | |
from landau_o.smallD[OF A C] show "eventually (\<lambda>x. hb / ln x powr (1 + e) < (1 - b)/2) at_top" | |
by eventually_elim (insert bep, simp) | |
from bep have "(\<lambda>x. hb / ln x powr (1 + e)) \<in> o(\<lambda>_. 1)" "(1 - b) / 2 > 0" by simp_all | |
from landau_o.smallD[OF this] eventually_gt_at_top[of "1::real"] | |
have A: "eventually (\<lambda>x. 1 - b - hb / ln x powr (1 + e) > 0) at_top" | |
by eventually_elim (insert bep, simp add: field_simps) | |
from bep have "(\<lambda>x. x * (1 - b - hb / ln x powr (1+e))) \<in> \<omega>(\<lambda>_. 1)" "(0::real) < 2" by simp_all | |
from landau_omega.smallD[OF this] A eventually_gt_at_top[of "0::real"] | |
show "eventually (\<lambda>x. x*(1 - b - hb / ln x powr (1 + e)) > 1) at_top" | |
by eventually_elim (simp_all add: abs_mult) | |
qed | |
end | |
end | |
definition "akra_bazzi_asymptotic1 b hb e p x \<longleftrightarrow> | |
(1 - hb * inverse b * ln x powr -(1+e)) powr p * (1 + ln (b*x + hb*x/ln x powr (1+e)) powr (-e/2)) | |
\<ge> 1 + (ln x powr (-e/2) :: real)" | |
definition "akra_bazzi_asymptotic1' b hb e p x \<longleftrightarrow> | |
(1 + hb * inverse b * ln x powr -(1+e)) powr p * (1 + ln (b*x + hb*x/ln x powr (1+e)) powr (-e/2)) | |
\<ge> 1 + (ln x powr (-e/2) :: real)" | |
definition "akra_bazzi_asymptotic2 b hb e p x \<longleftrightarrow> | |
(1 + hb * inverse b * ln x powr -(1+e)) powr p * (1 - ln (b*x + hb*x/ln x powr (1+e)) powr (-e/2)) | |
\<le> 1 - ln x powr (-e/2 :: real)" | |
definition "akra_bazzi_asymptotic2' b hb e p x \<longleftrightarrow> | |
(1 - hb * inverse b * ln x powr -(1+e)) powr p * (1 - ln (b*x + hb*x/ln x powr (1+e)) powr (-e/2)) | |
\<le> 1 - ln x powr (-e/2 :: real)" | |
definition "akra_bazzi_asymptotic3 e x \<longleftrightarrow> (1 + (ln x powr (-e/2))) / 2 \<le> (1::real)" | |
definition "akra_bazzi_asymptotic4 e x \<longleftrightarrow> (1 - (ln x powr (-e/2))) * 2 \<ge> (1::real)" | |
definition "akra_bazzi_asymptotic5 b hb e x \<longleftrightarrow> | |
ln (b*x - hb*x*ln x powr -(1+e)) powr (-e/2::real) < 1" | |
definition "akra_bazzi_asymptotic6 b hb e x \<longleftrightarrow> hb / ln x powr (1 + e :: real) < b/2" | |
definition "akra_bazzi_asymptotic7 b hb e x \<longleftrightarrow> hb / ln x powr (1 + e :: real) < (1 - b) / 2" | |
definition "akra_bazzi_asymptotic8 b hb e x \<longleftrightarrow> x*(1 - b - hb / ln x powr (1 + e :: real)) > 1" | |
definition "akra_bazzi_asymptotics b hb e p x \<longleftrightarrow> | |
akra_bazzi_asymptotic1 b hb e p x \<and> akra_bazzi_asymptotic1' b hb e p x \<and> | |
akra_bazzi_asymptotic2 b hb e p x \<and> akra_bazzi_asymptotic2' b hb e p x \<and> | |
akra_bazzi_asymptotic3 e x \<and> akra_bazzi_asymptotic4 e x \<and> akra_bazzi_asymptotic5 b hb e x \<and> | |
akra_bazzi_asymptotic6 b hb e x \<and> akra_bazzi_asymptotic7 b hb e x \<and> | |
akra_bazzi_asymptotic8 b hb e x" | |
lemmas akra_bazzi_asymptotic_defs = | |
akra_bazzi_asymptotic1_def akra_bazzi_asymptotic1'_def | |
akra_bazzi_asymptotic2_def akra_bazzi_asymptotic2'_def akra_bazzi_asymptotic3_def | |
akra_bazzi_asymptotic4_def akra_bazzi_asymptotic5_def akra_bazzi_asymptotic6_def | |
akra_bazzi_asymptotic7_def akra_bazzi_asymptotic8_def akra_bazzi_asymptotics_def | |
lemma akra_bazzi_asymptotics: | |
assumes "\<And>b. b \<in> set bs \<Longrightarrow> b \<in> {0<..<1}" | |
assumes "hb > 0" "e > 0" | |
shows "eventually (\<lambda>x. \<forall>b\<in>set bs. akra_bazzi_asymptotics b hb e p x) at_top" | |
proof (intro eventually_ball_finite ballI) | |
fix b assume "b \<in> set bs" | |
with assms interpret akra_bazzi_asymptotics_bep b e p hb by unfold_locales auto | |
show "eventually (\<lambda>x. akra_bazzi_asymptotics b hb e p x) at_top" | |
unfolding akra_bazzi_asymptotic_defs | |
using asymptotics1[of "-c" for c] asymptotics2[of "-c" for c] | |
by (intro eventually_conj asymptotics1 asymptotics2 asymptotics3 | |
asymptotics4 asymptotics5 asymptotics6 asymptotics7 asymptotics8) simp_all | |
qed simp | |
end | |