Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /afp /Akra_Bazzi /Akra_Bazzi_Library.thy
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
12.1 kB
(*
File: Akra_Bazzi_Library.thy
Author: Manuel Eberl <manuel@pruvisto.org>
Lemma bucket for the Akra-Bazzi theorem.
*)
section \<open>Auxiliary lemmas\<close>
theory Akra_Bazzi_Library
imports
Complex_Main
"Landau_Symbols.Landau_More"
"Pure-ex.Guess"
begin
(* TODO: Move? *)
lemma ln_mono: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> x \<le> y \<Longrightarrow> ln (x::real) \<le> ln y"
by (subst ln_le_cancel_iff) simp_all
lemma ln_mono_strict: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> x < y \<Longrightarrow> ln (x::real) < ln y"
by (subst ln_less_cancel_iff) simp_all
declare DERIV_powr[THEN DERIV_chain2, derivative_intros]
lemma sum_pos':
assumes "finite I"
assumes "\<exists>x\<in>I. f x > (0 :: _ :: linordered_ab_group_add)"
assumes "\<And>x. x \<in> I \<Longrightarrow> f x \<ge> 0"
shows "sum f I > 0"
proof-
from assms(2) guess x by (elim bexE) note x = this
from x have "I = insert x I" by blast
also from assms(1) have "sum f ... = f x + sum f (I - {x})" by (rule sum.insert_remove)
also from x assms have "... > 0" by (intro add_pos_nonneg sum_nonneg) simp_all
finally show ?thesis .
qed
lemma min_mult_left:
assumes "(x::real) > 0"
shows "x * min y z = min (x*y) (x*z)"
using assms by (auto simp add: min_def algebra_simps)
lemma max_mult_left:
assumes "(x::real) > 0"
shows "x * max y z = max (x*y) (x*z)"
using assms by (auto simp add: max_def algebra_simps)
lemma DERIV_nonneg_imp_mono:
assumes "\<And>t. t\<in>{x..y} \<Longrightarrow> (f has_field_derivative f' t) (at t)"
assumes "\<And>t. t\<in>{x..y} \<Longrightarrow> f' t \<ge> 0"
assumes "(x::real) \<le> y"
shows "(f x :: real) \<le> f y"
proof (cases x y rule: linorder_cases)
assume xy: "x < y"
hence "\<exists>z. x < z \<and> z < y \<and> f y - f x = (y - x) * f' z"
by (rule MVT2) (insert assms(1), simp)
then guess z by (elim exE conjE) note z = this
from z(1,2) assms(2) xy have "0 \<le> (y - x) * f' z" by (intro mult_nonneg_nonneg) simp_all
also note z(3)[symmetric]
finally show "f x \<le> f y" by simp
qed (insert assms(3), simp_all)
lemma eventually_conjE: "eventually (\<lambda>x. P x \<and> Q x) F \<Longrightarrow> (eventually P F \<Longrightarrow> eventually Q F \<Longrightarrow> R) \<Longrightarrow> R"
apply (frule eventually_rev_mp[of _ _ P], simp)
apply (drule eventually_rev_mp[of _ _ Q], simp)
apply assumption
done
lemma real_natfloor_nat: "x \<in> \<nat> \<Longrightarrow> real (nat \<lfloor>x\<rfloor>) = x" by (elim Nats_cases) simp
lemma eventually_natfloor:
assumes "eventually P (at_top :: nat filter)"
shows "eventually (\<lambda>x. P (nat \<lfloor>x\<rfloor>)) (at_top :: real filter)"
proof-
from assms obtain N where N: "\<And>n. n \<ge> N \<Longrightarrow> P n" using eventually_at_top_linorder by blast
have "\<forall>n\<ge>real N. P (nat \<lfloor>n\<rfloor>)" by (intro allI impI N le_nat_floor) simp_all
thus ?thesis using eventually_at_top_linorder by blast
qed
lemma tendsto_0_smallo_1: "f \<in> o(\<lambda>x. 1 :: real) \<Longrightarrow> (f \<longlongrightarrow> 0) at_top"
by (drule smalloD_tendsto) simp
lemma smallo_1_tendsto_0: "(f \<longlongrightarrow> 0) at_top \<Longrightarrow> f \<in> o(\<lambda>x. 1 :: real)"
by (rule smalloI_tendsto) simp_all
lemma filterlim_at_top_smallomega_1:
assumes "f \<in> \<omega>[F](\<lambda>x. 1 :: real)" "eventually (\<lambda>x. f x > 0) F"
shows "filterlim f at_top F"
proof -
from assms have "filterlim (\<lambda>x. norm (f x / 1)) at_top F"
by (intro smallomegaD_filterlim_at_top_norm) (auto elim: eventually_mono)
also have "?this \<longleftrightarrow> ?thesis"
using assms by (intro filterlim_cong refl) (auto elim!: eventually_mono)
finally show ?thesis .
qed
lemma smallo_imp_abs_less_real:
assumes "f \<in> o[F](g)" "eventually (\<lambda>x. g x > (0::real)) F"
shows "eventually (\<lambda>x. \<bar>f x\<bar> < g x) F"
proof -
have "1/2 > (0::real)" by simp
from landau_o.smallD[OF assms(1) this] assms(2) show ?thesis
by eventually_elim auto
qed
lemma smallo_imp_less_real:
assumes "f \<in> o[F](g)" "eventually (\<lambda>x. g x > (0::real)) F"
shows "eventually (\<lambda>x. f x < g x) F"
using smallo_imp_abs_less_real[OF assms] by eventually_elim simp
lemma smallo_imp_le_real:
assumes "f \<in> o[F](g)" "eventually (\<lambda>x. g x \<ge> (0::real)) F"
shows "eventually (\<lambda>x. f x \<le> g x) F"
using landau_o.smallD[OF assms(1) zero_less_one] assms(2) by eventually_elim simp
(* TODO MOVE *)
lemma filterlim_at_right:
"filterlim f (at_right a) F \<longleftrightarrow> eventually (\<lambda>x. f x > a) F \<and> filterlim f (nhds a) F"
by (subst filterlim_at) (auto elim!: eventually_mono)
(* END TODO *)
lemma one_plus_x_powr_approx_ex:
assumes x: "abs (x::real) \<le> 1/2"
obtains t where "abs t < 1/2" "(1 + x) powr p =
1 + p * x + p * (p - 1) * (1 + t) powr (p - 2) / 2 * x ^ 2"
proof (cases "x = 0")
assume x': "x \<noteq> 0"
let ?f = "\<lambda>x. (1 + x) powr p"
let ?f' = "\<lambda>x. p * (1 + x) powr (p - 1)"
let ?f'' = "\<lambda>x. p * (p - 1) * (1 + x) powr (p - 2)"
let ?fs = "(!) [?f, ?f', ?f'']"
have A: "\<forall>m t. m < 2 \<and> t \<ge> -0.5 \<and> t \<le> 0.5 \<longrightarrow> (?fs m has_real_derivative ?fs (Suc m) t) (at t)"
proof (clarify)
fix m :: nat and t :: real assume m: "m < 2" and t: "t \<ge> -0.5" "t \<le> 0.5"
thus "(?fs m has_real_derivative ?fs (Suc m) t) (at t)"
using m by (cases m) (force intro: derivative_eq_intros algebra_simps)+
qed
have "\<exists>t. (if x < 0 then x < t \<and> t < 0 else 0 < t \<and> t < x) \<and>
(1 + x) powr p = (\<Sum>m<2. ?fs m 0 / (fact m) * (x - 0)^m) +
?fs 2 t / (fact 2) * (x - 0)\<^sup>2"
using assms x' by (intro Taylor[OF _ _ A]) simp_all
then guess t by (elim exE conjE)
note t = this
with assms have "abs t < 1/2" by (auto split: if_split_asm)
moreover from t(2) have "(1 + x) powr p = 1 + p * x + p * (p - 1) * (1 + t) powr (p - 2) / 2 * x ^ 2"
by (simp add: numeral_2_eq_2 of_nat_Suc)
ultimately show ?thesis by (rule that)
next
assume "x = 0"
with that[of 0] show ?thesis by simp
qed
lemma powr_lower_bound: "\<lbrakk>(l::real) > 0; l \<le> x; x \<le> u\<rbrakk> \<Longrightarrow> min (l powr z) (u powr z) \<le> x powr z"
apply (cases "z \<ge> 0")
apply (rule order.trans[OF min.cobounded1 powr_mono2], simp_all) []
apply (rule order.trans[OF min.cobounded2 powr_mono2'], simp_all) []
done
lemma powr_upper_bound: "\<lbrakk>(l::real) > 0; l \<le> x; x \<le> u\<rbrakk> \<Longrightarrow> max (l powr z) (u powr z) \<ge> x powr z"
apply (cases "z \<ge> 0")
apply (rule order.trans[OF powr_mono2 max.cobounded2], simp_all) []
apply (rule order.trans[OF powr_mono2' max.cobounded1], simp_all) []
done
lemma one_plus_x_powr_Taylor2:
obtains k where "\<And>x. abs (x::real) \<le> 1/2 \<Longrightarrow> abs ((1 + x) powr p - 1 - p*x) \<le> k*x^2"
proof-
define k where "k = \<bar>p*(p - 1)\<bar> * max ((1/2) powr (p - 2)) ((3/2) powr (p - 2)) / 2"
show ?thesis
proof (rule that[of k])
fix x :: real assume "abs x \<le> 1/2"
from one_plus_x_powr_approx_ex[OF this, of p] guess t . note t = this
from t have "abs ((1 + x) powr p - 1 - p*x) = \<bar>p*(p - 1)\<bar> * (1 + t) powr (p - 2)/2 * x\<^sup>2"
by (simp add: abs_mult)
also from t(1) have "(1 + t) powr (p - 2) \<le> max ((1/2) powr (p - 2)) ((3/2) powr (p - 2))"
by (intro powr_upper_bound) simp_all
finally show "abs ((1 + x) powr p - 1 - p*x) \<le> k*x^2"
by (simp add: mult_left_mono mult_right_mono k_def)
qed
qed
lemma one_plus_x_powr_Taylor2_bigo:
assumes lim: "(f \<longlongrightarrow> 0) F"
shows "(\<lambda>x. (1 + f x) powr (p::real) - 1 - p * f x) \<in> O[F](\<lambda>x. f x ^ 2)"
proof -
from one_plus_x_powr_Taylor2[of p] guess k .
moreover from tendstoD[OF lim, of "1/2"]
have "eventually (\<lambda>x. abs (f x) < 1/2) F" by (simp add: dist_real_def)
ultimately have "eventually (\<lambda>x. norm ((1 + f x) powr p - 1 - p * f x) \<le> k * norm (f x ^ 2)) F"
by (auto elim!: eventually_mono)
thus ?thesis by (rule bigoI)
qed
lemma one_plus_x_powr_Taylor1_bigo:
assumes lim: "(f \<longlongrightarrow> 0) F"
shows "(\<lambda>x. (1 + f x) powr (p::real) - 1) \<in> O[F](\<lambda>x. f x)"
proof -
from assms have "(\<lambda>x. (1 + f x) powr p - 1 - p * f x) \<in> O[F](\<lambda>x. (f x)\<^sup>2)"
by (rule one_plus_x_powr_Taylor2_bigo)
also from assms have "f \<in> O[F](\<lambda>_. 1)" by (intro bigoI_tendsto) simp_all
from landau_o.big.mult[of f F f, OF _ this] have "(\<lambda>x. (f x)^2) \<in> O[F](\<lambda>x. f x)"
by (simp add: power2_eq_square)
finally have A: "(\<lambda>x. (1 + f x) powr p - 1 - p * f x) \<in> O[F](f)" .
have B: "(\<lambda>x. p * f x) \<in> O[F](f)" by simp
from sum_in_bigo(1)[OF A B] show ?thesis by simp
qed
lemma x_times_x_minus_1_nonneg: "x \<le> 0 \<or> x \<ge> 1 \<Longrightarrow> (x::_::linordered_idom) * (x - 1) \<ge> 0"
proof (elim disjE)
assume x: "x \<le> 0"
also have "0 \<le> x^2" by simp
finally show "x * (x - 1) \<ge> 0" by (simp add: power2_eq_square algebra_simps)
qed simp
lemma x_times_x_minus_1_nonpos: "x \<ge> 0 \<Longrightarrow> x \<le> 1 \<Longrightarrow> (x::_::linordered_idom) * (x - 1) \<le> 0"
by (intro mult_nonneg_nonpos) simp_all
lemma powr_mono':
assumes "(x::real) > 0" "x \<le> 1" "a \<le> b"
shows "x powr b \<le> x powr a"
proof-
have "inverse x powr a \<le> inverse x powr b" using assms
by (intro powr_mono) (simp_all add: field_simps)
hence "inverse (x powr a) \<le> inverse (x powr b)" using assms by simp
with assms show ?thesis by (simp add: field_simps)
qed
lemma powr_less_mono':
assumes "(x::real) > 0" "x < 1" "a < b"
shows "x powr b < x powr a"
proof-
have "inverse x powr a < inverse x powr b" using assms
by (intro powr_less_mono) (simp_all add: field_simps)
hence "inverse (x powr a) < inverse (x powr b)" using assms by simp
with assms show ?thesis by (simp add: field_simps)
qed
lemma real_powr_at_bot:
assumes "(a::real) > 1"
shows "((\<lambda>x. a powr x) \<longlongrightarrow> 0) at_bot"
proof-
from assms have "filterlim (\<lambda>x. ln a * x) at_bot at_bot"
by (intro filterlim_tendsto_pos_mult_at_bot[OF tendsto_const _ filterlim_ident]) auto
hence "((\<lambda>x. exp (x * ln a)) \<longlongrightarrow> 0) at_bot"
by (intro filterlim_compose[OF exp_at_bot]) (simp add: algebra_simps)
thus ?thesis using assms unfolding powr_def by simp
qed
lemma real_powr_at_bot_neg:
assumes "(a::real) > 0" "a < 1"
shows "filterlim (\<lambda>x. a powr x) at_top at_bot"
proof-
from assms have "LIM x at_bot. ln (inverse a) * -x :> at_top"
by (intro filterlim_tendsto_pos_mult_at_top[OF tendsto_const] filterlim_uminus_at_top_at_bot)
(simp_all add: ln_inverse)
with assms have "LIM x at_bot. x * ln a :> at_top"
by (subst (asm) ln_inverse) (simp_all add: mult.commute)
hence "LIM x at_bot. exp (x * ln a) :> at_top"
by (intro filterlim_compose[OF exp_at_top]) simp
thus ?thesis using assms unfolding powr_def by simp
qed
lemma real_powr_at_top_neg:
assumes "(a::real) > 0" "a < 1"
shows "((\<lambda>x. a powr x) \<longlongrightarrow> 0) at_top"
proof-
from assms have "LIM x at_top. ln (inverse a) * x :> at_top"
by (intro filterlim_tendsto_pos_mult_at_top[OF tendsto_const])
(simp_all add: filterlim_ident field_simps)
with assms have "LIM x at_top. ln a * x :> at_bot"
by (subst filterlim_uminus_at_bot) (simp add: ln_inverse)
hence "((\<lambda>x. exp (x * ln a)) \<longlongrightarrow> 0) at_top"
by (intro filterlim_compose[OF exp_at_bot]) (simp_all add: mult.commute)
with assms show ?thesis unfolding powr_def by simp
qed
lemma eventually_nat_real:
assumes "eventually P (at_top :: real filter)"
shows "eventually (\<lambda>x. P (real x)) (at_top :: nat filter)"
using assms filterlim_real_sequentially
unfolding filterlim_def le_filter_def eventually_filtermap by auto
end