Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
File: Master_Theorem.thy | |
Author: Manuel Eberl <manuel@pruvisto.org> | |
The Master theorem in a generalised form as derived from the Akra-Bazzi theorem. | |
*) | |
section \<open>The Master theorem\<close> | |
theory Master_Theorem | |
imports | |
"HOL-Analysis.Equivalence_Lebesgue_Henstock_Integration" | |
Akra_Bazzi_Library | |
Akra_Bazzi | |
begin | |
lemma fundamental_theorem_of_calculus_real: | |
"a \<le> b \<Longrightarrow> \<forall>x\<in>{a..b}. (f has_real_derivative f' x) (at x within {a..b}) \<Longrightarrow> | |
(f' has_integral (f b - f a)) {a..b}" | |
by (intro fundamental_theorem_of_calculus ballI) | |
(simp_all add: has_field_derivative_iff_has_vector_derivative[symmetric]) | |
lemma integral_powr: | |
"y \<noteq> -1 \<Longrightarrow> a \<le> b \<Longrightarrow> a > 0 \<Longrightarrow> integral {a..b} (\<lambda>x. x powr y :: real) = | |
inverse (y + 1) * (b powr (y + 1) - a powr (y + 1))" | |
by (subst right_diff_distrib, intro integral_unique fundamental_theorem_of_calculus_real) | |
(auto intro!: derivative_eq_intros) | |
lemma integral_ln_powr_over_x: | |
"y \<noteq> -1 \<Longrightarrow> a \<le> b \<Longrightarrow> a > 1 \<Longrightarrow> integral {a..b} (\<lambda>x. ln x powr y / x :: real) = | |
inverse (y + 1) * (ln b powr (y + 1) - ln a powr (y + 1))" | |
by (subst right_diff_distrib, intro integral_unique fundamental_theorem_of_calculus_real) | |
(auto intro!: derivative_eq_intros) | |
lemma integral_one_over_x_ln_x: | |
"a \<le> b \<Longrightarrow> a > 1 \<Longrightarrow> integral {a..b} (\<lambda>x. inverse (x * ln x) :: real) = ln (ln b) - ln (ln a)" | |
by (intro integral_unique fundamental_theorem_of_calculus_real) | |
(auto intro!: derivative_eq_intros simp: field_simps) | |
lemma akra_bazzi_integral_kurzweil_henstock: | |
"akra_bazzi_integral (\<lambda>f a b. f integrable_on {a..b}) (\<lambda>f a b. integral {a..b} f)" | |
apply unfold_locales | |
apply (rule integrable_const_ivl) | |
apply simp | |
apply (erule integrable_subinterval_real, simp) | |
apply (blast intro!: integral_le) | |
apply (rule integral_combine, simp_all) [] | |
done | |
locale master_theorem_function = akra_bazzi_recursion + | |
fixes g :: "nat \<Rightarrow> real" | |
assumes f_nonneg_base: "x \<ge> x\<^sub>0 \<Longrightarrow> x < x\<^sub>1 \<Longrightarrow> f x \<ge> 0" | |
and f_rec: "x \<ge> x\<^sub>1 \<Longrightarrow> f x = g x + (\<Sum>i<k. as!i * f ((ts!i) x))" | |
and g_nonneg: "x \<ge> x\<^sub>1 \<Longrightarrow> g x \<ge> 0" | |
and ex_pos_a: "\<exists>a\<in>set as. a > 0" | |
begin | |
interpretation akra_bazzi_integral "\<lambda>f a b. f integrable_on {a..b}" "\<lambda>f a b. integral {a..b} f" | |
by (rule akra_bazzi_integral_kurzweil_henstock) | |
sublocale akra_bazzi_function x\<^sub>0 x\<^sub>1 k as bs ts f "\<lambda>f a b. f integrable_on {a..b}" | |
"\<lambda>f a b. integral {a..b} f" g | |
using f_nonneg_base f_rec g_nonneg ex_pos_a by unfold_locales | |
context | |
begin | |
private lemma g_nonneg': "eventually (\<lambda>x. g x \<ge> 0) at_top" | |
using g_nonneg by (force simp: eventually_at_top_linorder) | |
private lemma g_pos: | |
assumes "g \<in> \<Omega>(h)" | |
assumes "eventually (\<lambda>x. h x > 0) at_top" | |
shows "eventually (\<lambda>x. g x > 0) at_top" | |
proof- | |
from landau_omega.bigE_nonneg_real[OF assms(1) g_nonneg'] guess c . note c = this | |
from assms(2) c(2) show ?thesis | |
by eventually_elim (rule less_le_trans[OF mult_pos_pos[OF c(1)]], simp_all) | |
qed | |
private lemma f_pos: | |
assumes "g \<in> \<Omega>(h)" | |
assumes "eventually (\<lambda>x. h x > 0) at_top" | |
shows "eventually (\<lambda>x. f x > 0) at_top" | |
using g_pos[OF assms(1,2)] eventually_ge_at_top[of x\<^sub>1] | |
by (eventually_elim) (subst f_rec, insert step_ge_x0, | |
auto intro!: add_pos_nonneg sum_nonneg mult_nonneg_nonneg[OF a_ge_0] f_nonneg) | |
lemma bs_lower_bound: "\<exists>C>0. \<forall>b\<in>set bs. C < b" | |
proof (intro exI conjI ballI) | |
from b_pos show A: "Min (set bs) / 2 > 0" by auto | |
fix b assume b: "b \<in> set bs" | |
from A have "Min (set bs) / 2 < Min (set bs)" by simp | |
also from b have "... \<le> b" by simp | |
finally show "Min (set bs) / 2 < b" . | |
qed | |
private lemma powr_growth2: | |
"\<exists>C c2. 0 < c2 \<and> C < Min (set bs) \<and> | |
eventually (\<lambda>x. \<forall>u\<in>{C * x..x}. c2 * x powr p' \<ge> u powr p') at_top" | |
proof (intro exI conjI allI ballI) | |
define C where "C = Min (set bs) / 2" | |
from b_bounds bs_nonempty have C_pos: "C > 0" unfolding C_def by auto | |
thus "C < Min (set bs)" unfolding C_def by simp | |
show "max (C powr p') 1 > 0" by simp | |
show "eventually (\<lambda>x. \<forall>u\<in>{C * x..x}. | |
max ((Min (set bs)/2) powr p') 1 * x powr p' \<ge> u powr p') at_top" | |
using eventually_gt_at_top[of "0::real"] apply eventually_elim | |
proof clarify | |
fix x u assume x: "x > 0" and "u \<in> {C*x..x}" | |
hence u: "u \<ge> C*x" "u \<le> x" unfolding C_def by simp_all | |
from u have "u powr p' \<le> max ((C*x) powr p') (x powr p')" using C_pos x | |
by (intro powr_upper_bound mult_pos_pos) simp_all | |
also from u x C_pos have "max ((C*x) powr p') (x powr p') = x powr p' * max (C powr p') 1" | |
by (subst max_mult_left) (simp_all add: powr_mult algebra_simps) | |
finally show "u powr p' \<le> max ((Min (set bs)/2) powr p') 1 * x powr p'" | |
by (simp add: C_def algebra_simps) | |
qed | |
qed | |
private lemma powr_growth1: | |
"\<exists>C c1. 0 < c1 \<and> C < Min (set bs) \<and> | |
eventually (\<lambda>x. \<forall>u\<in>{C * x..x}. c1 * x powr p' \<le> u powr p') at_top" | |
proof (intro exI conjI allI ballI) | |
define C where "C = Min (set bs) / 2" | |
from b_bounds bs_nonempty have C_pos: "C > 0" unfolding C_def by auto | |
thus "C < Min (set bs)" unfolding C_def by simp | |
from C_pos show "min (C powr p') 1 > 0" by simp | |
show "eventually (\<lambda>x. \<forall>u\<in>{C * x..x}. | |
min ((Min (set bs)/2) powr p') 1 * x powr p' \<le> u powr p') at_top" | |
using eventually_gt_at_top[of "0::real"] apply eventually_elim | |
proof clarify | |
fix x u assume x: "x > 0" and "u \<in> {C*x..x}" | |
hence u: "u \<ge> C*x" "u \<le> x" unfolding C_def by simp_all | |
from u x C_pos have "x powr p' * min (C powr p') 1 = min ((C*x) powr p') (x powr p')" | |
by (subst min_mult_left) (simp_all add: powr_mult algebra_simps) | |
also from u have "u powr p' \<ge> min ((C*x) powr p') (x powr p')" using C_pos x | |
by (intro powr_lower_bound mult_pos_pos) simp_all | |
finally show "u powr p' \<ge> min ((Min (set bs)/2) powr p') 1 * x powr p'" | |
by (simp add: C_def algebra_simps) | |
qed | |
qed | |
private lemma powr_ln_powr_lower_bound: | |
"a > 1 \<Longrightarrow> a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> | |
min (a powr p) (b powr p) * min (ln a powr p') (ln b powr p') \<le> x powr p * ln x powr p'" | |
by (intro mult_mono powr_lower_bound) (auto intro: min.coboundedI1) | |
private lemma powr_ln_powr_upper_bound: | |
"a > 1 \<Longrightarrow> a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> | |
max (a powr p) (b powr p) * max (ln a powr p') (ln b powr p') \<ge> x powr p * ln x powr p'" | |
by (intro mult_mono powr_upper_bound) (auto intro: max.coboundedI1) | |
private lemma powr_ln_powr_upper_bound': | |
"eventually (\<lambda>a. \<forall>b>a. \<exists>c. \<forall>x\<in>{a..b}. x powr p * ln x powr p' \<le> c) at_top" | |
by (subst eventually_at_top_dense) (force intro: powr_ln_powr_upper_bound) | |
private lemma powr_upper_bound': | |
"eventually (\<lambda>a::real. \<forall>b>a. \<exists>c. \<forall>x\<in>{a..b}. x powr p' \<le> c) at_top" | |
by (subst eventually_at_top_dense) (force intro: powr_upper_bound) | |
lemmas bounds = | |
powr_ln_powr_lower_bound powr_ln_powr_upper_bound powr_ln_powr_upper_bound' powr_upper_bound' | |
private lemma eventually_ln_const: | |
assumes "(C::real) > 0" | |
shows "eventually (\<lambda>x. ln (C*x) / ln x > 1/2) at_top" | |
proof- | |
from tendstoD[OF tendsto_ln_over_ln[of C 1], of "1/2"] assms | |
have "eventually (\<lambda>x. \<bar>ln (C*x) / ln x - 1\<bar> < 1/2) at_top" by (simp add: dist_real_def) | |
thus ?thesis by eventually_elim linarith | |
qed | |
private lemma powr_ln_powr_growth1: "\<exists>C c1. 0 < c1 \<and> C < Min (set bs) \<and> | |
eventually (\<lambda>x. \<forall>u\<in>{C * x..x}. c1 * (x powr r * ln x powr r') \<le> u powr r * ln u powr r') at_top" | |
proof (intro exI conjI) | |
let ?C = "Min (set bs) / 2" and ?f = "\<lambda>x. x powr r * ln x powr r'" | |
define C where "C = ?C" | |
from b_bounds have C_pos: "C > 0" unfolding C_def by simp | |
let ?T = "min (C powr r) (1 powr r) * min ((1/2) powr r') (1 powr r')" | |
from C_pos show "?T > 0" unfolding min_def by (auto split: if_split) | |
from bs_nonempty b_bounds have C_pos: "C > 0" unfolding C_def by simp | |
thus "C < Min (set bs)" by (simp add: C_def) | |
show "eventually (\<lambda>x. \<forall>u\<in>{C*x..x}. ?T * ?f x \<le> ?f u) at_top" | |
using eventually_gt_at_top[of "max 1 (inverse C)"] eventually_ln_const[OF C_pos] | |
apply eventually_elim | |
proof clarify | |
fix x u assume x: "x > max 1 (inverse C)" and u: "u \<in> {C*x..x}" | |
hence x': "x > 1" by (simp add: field_simps) | |
with C_pos have x_pos: "x > 0" by (simp add: field_simps) | |
from x u C_pos have u': "u > 1" by (simp add: field_simps) | |
assume A: "ln (C*x) / ln x > 1/2" | |
have "min (C powr r) (1 powr r) \<le> (u/x) powr r" | |
using x u u' C_pos by (intro powr_lower_bound) (simp_all add: field_simps) | |
moreover { | |
note A | |
also from C_pos x' u u' have "ln (C*x) \<le> ln u" by (subst ln_le_cancel_iff) simp_all | |
with x' have "ln (C*x) / ln x \<le> ln u / ln x" by (simp add: field_simps) | |
finally have "min ((1/2) powr r') (1 powr r') \<le> (ln u / ln x) powr r'" | |
using x u u' C_pos A by (intro powr_lower_bound) simp_all | |
} | |
ultimately have "?T \<le> (u/x) powr r * (ln u / ln x) powr r'" | |
using x_pos by (intro mult_mono) simp_all | |
also from x u u' have "... = ?f u / ?f x" by (simp add: powr_divide) | |
finally show "?T * ?f x \<le> ?f u" using x' by (simp add: field_simps) | |
qed | |
qed | |
private lemma powr_ln_powr_growth2: "\<exists>C c1. 0 < c1 \<and> C < Min (set bs) \<and> | |
eventually (\<lambda>x. \<forall>u\<in>{C * x..x}. c1 * (x powr r * ln x powr r') \<ge> u powr r * ln u powr r') at_top" | |
proof (intro exI conjI) | |
let ?C = "Min (set bs) / 2" and ?f = "\<lambda>x. x powr r * ln x powr r'" | |
define C where "C = ?C" | |
let ?T = "max (C powr r) (1 powr r) * max ((1/2) powr r') (1 powr r')" | |
show "?T > 0" by simp | |
from b_bounds bs_nonempty have C_pos: "C > 0" unfolding C_def by simp | |
thus "C < Min (set bs)" by (simp add: C_def) | |
show "eventually (\<lambda>x. \<forall>u\<in>{C*x..x}. ?T * ?f x \<ge> ?f u) at_top" | |
using eventually_gt_at_top[of "max 1 (inverse C)"] eventually_ln_const[OF C_pos] | |
apply eventually_elim | |
proof clarify | |
fix x u assume x: "x > max 1 (inverse C)" and u: "u \<in> {C*x..x}" | |
hence x': "x > 1" by (simp add: field_simps) | |
with C_pos have x_pos: "x > 0" by (simp add: field_simps) | |
from x u C_pos have u': "u > 1" by (simp add: field_simps) | |
assume A: "ln (C*x) / ln x > 1/2" | |
from x u u' have "?f u / ?f x = (u/x) powr r * (ln u/ln x) powr r'" by (simp add: powr_divide) | |
also { | |
have "(u/x) powr r \<le> max (C powr r) (1 powr r)" | |
using x u u' C_pos by (intro powr_upper_bound) (simp_all add: field_simps) | |
moreover { | |
note A | |
also from C_pos x' u u' have "ln (C*x) \<le> ln u" by (subst ln_le_cancel_iff) simp_all | |
with x' have "ln (C*x) / ln x \<le> ln u / ln x" by (simp add: field_simps) | |
finally have "(ln u / ln x) powr r' \<le> max ((1/2) powr r') (1 powr r')" | |
using x u u' C_pos A by (intro powr_upper_bound) simp_all | |
} ultimately have "(u/x) powr r * (ln u / ln x) powr r' \<le> ?T" | |
using x_pos by (intro mult_mono) simp_all | |
} | |
finally show "?T * ?f x \<ge> ?f u" using x' by (simp add: field_simps) | |
qed | |
qed | |
lemmas growths = powr_growth1 powr_growth2 powr_ln_powr_growth1 powr_ln_powr_growth2 | |
private lemma master_integrable: | |
"\<exists>a::real. \<forall>b\<ge>a. (\<lambda>u. u powr r * ln u powr s / u powr t) integrable_on {a..b}" | |
"\<exists>a::real. \<forall>b\<ge>a. (\<lambda>u. u powr r / u powr s) integrable_on {a..b}" | |
by (rule exI[of _ 2], force intro!: integrable_continuous_real continuous_intros)+ | |
private lemma master_integral: | |
fixes a p p' :: real | |
assumes p: "p \<noteq> p'" and a: "a > 0" | |
obtains c d where "c \<noteq> 0" "p > p' \<longrightarrow> d \<noteq> 0" | |
"(\<lambda>x::nat. x powr p * (1 + integral {a..x} (\<lambda>u. u powr p' / u powr (p+1)))) \<in> | |
\<Theta>(\<lambda>x::nat. d * x powr p + c * x powr p')" | |
proof- | |
define e where "e = a powr (p' - p)" | |
from assms have e: "e \<ge> 0" by (simp add: e_def) | |
define c where "c = inverse (p' - p)" | |
define d where "d = 1 - inverse (p' - p) * e" | |
have "c \<noteq> 0" and "p > p' \<longrightarrow> d \<noteq> 0" | |
using e p a unfolding c_def d_def by (auto simp: field_simps) | |
thus ?thesis | |
apply (rule that) apply (rule bigtheta_real_nat_transfer, rule bigthetaI_cong) | |
using eventually_ge_at_top[of a] | |
proof eventually_elim | |
fix x assume x: "x \<ge> a" | |
hence "integral {a..x} (\<lambda>u. u powr p' / u powr (p+1)) = | |
integral {a..x} (\<lambda>u. u powr (p' - (p + 1)))" | |
by (intro Henstock_Kurzweil_Integration.integral_cong) (simp_all add: powr_diff [symmetric] ) | |
also have "... = inverse (p' - p) * (x powr (p' - p) - a powr (p' - p))" | |
using p x0_less_x1 a x by (simp add: integral_powr) | |
also have "x powr p * (1 + ...) = d * x powr p + c * x powr p'" | |
using p unfolding c_def d_def by (simp add: algebra_simps powr_diff e_def) | |
finally show "x powr p * (1 + integral {a..x} (\<lambda>u. u powr p' / u powr (p+1))) = | |
d * x powr p + c * x powr p'" . | |
qed | |
qed | |
private lemma master_integral': | |
fixes a p p' :: real | |
assumes p': "p' \<noteq> 0" and a: "a > 1" | |
obtains c d :: real where "p' < 0 \<longrightarrow> c \<noteq> 0" "d \<noteq> 0" | |
"(\<lambda>x::nat. x powr p * (1 + integral {a..x} (\<lambda>u. u powr p * ln u powr (p'-1) / u powr (p+1)))) \<in> | |
\<Theta>(\<lambda>x::nat. c * x powr p + d * x powr p * ln x powr p')" | |
proof- | |
define e where "e = ln a powr p'" | |
from assms have e: "e > 0" by (simp add: e_def) | |
define c where "c = 1 - inverse p' * e" | |
define d where "d = inverse p'" | |
from assms e have "p' < 0 \<longrightarrow> c \<noteq> 0" "d \<noteq> 0" unfolding c_def d_def by (auto simp: field_simps) | |
thus ?thesis | |
apply (rule that) apply (rule landau_real_nat_transfer, rule bigthetaI_cong) | |
using eventually_ge_at_top[of a] | |
proof eventually_elim | |
fix x :: real assume x: "x \<ge> a" | |
have "integral {a..x} (\<lambda>u. u powr p * ln u powr (p' - 1) / u powr (p + 1)) = | |
integral {a..x} (\<lambda>u. ln u powr (p' - 1) / u)" using x a x0_less_x1 | |
by (intro Henstock_Kurzweil_Integration.integral_cong) (simp_all add: powr_add) | |
also have "... = inverse p' * (ln x powr p' - ln a powr p')" | |
using p' x0_less_x1 a(1) x by (simp add: integral_ln_powr_over_x) | |
also have "x powr p * (1 + ...) = c * x powr p + d * x powr p * ln x powr p'" | |
using p' by (simp add: algebra_simps c_def d_def e_def) | |
finally show "x powr p * (1+integral {a..x} (\<lambda>u. u powr p * ln u powr (p'-1) / u powr (p+1))) = | |
c * x powr p + d * x powr p * ln x powr p'" . | |
qed | |
qed | |
private lemma master_integral'': | |
fixes a p p' :: real | |
assumes a: "a > 1" | |
shows "(\<lambda>x::nat. x powr p * (1 + integral {a..x} (\<lambda>u. u powr p * ln u powr - 1/u powr (p+1)))) \<in> | |
\<Theta>(\<lambda>x::nat. x powr p * ln (ln x))" | |
proof (rule landau_real_nat_transfer) | |
have "(\<lambda>x::real. x powr p * (1 + integral {a..x} (\<lambda>u. u powr p * ln u powr - 1/u powr (p+1)))) \<in> | |
\<Theta>(\<lambda>x::real. (1 - ln (ln a)) * x powr p + x powr p * ln (ln x))" (is "?f \<in> _") | |
apply (rule bigthetaI_cong) using eventually_ge_at_top[of a] | |
proof eventually_elim | |
fix x assume x: "x \<ge> a" | |
have "integral {a..x} (\<lambda>u. u powr p * ln u powr -1 / u powr (p + 1)) = | |
integral {a..x} (\<lambda>u. inverse (u * ln u))" using x a x0_less_x1 | |
by (intro Henstock_Kurzweil_Integration.integral_cong) (simp_all add: powr_add powr_minus field_simps) | |
also have "... = ln (ln x) - ln (ln a)" | |
using x0_less_x1 a(1) x by (subst integral_one_over_x_ln_x) simp_all | |
also have "x powr p * (1 + ...) = (1 - ln (ln a)) * x powr p + x powr p * ln (ln x)" | |
by (simp add: algebra_simps) | |
finally show "x powr p * (1 + integral {a..x} (\<lambda>u. u powr p * ln u powr - 1 / u powr (p+1))) = | |
(1 - ln (ln a)) * x powr p + x powr p * ln (ln x)" . | |
qed | |
also have "(\<lambda>x. (1 - ln (ln a)) * x powr p + x powr p * ln (ln x)) \<in> | |
\<Theta>(\<lambda>x. x powr p * ln (ln x))" by simp | |
finally show "?f \<in> \<Theta>(\<lambda>a. a powr p * ln (ln a))" . | |
qed | |
lemma master1_bigo: | |
assumes g_bigo: "g \<in> O(\<lambda>x. real x powr p')" | |
assumes less_p': "(\<Sum>i<k. as!i * bs!i powr p') > 1" | |
shows "f \<in> O(\<lambda>x. real x powr p)" | |
proof- | |
interpret akra_bazzi_upper x\<^sub>0 x\<^sub>1 k as bs ts f | |
"\<lambda>f a b. f integrable_on {a..b}" "\<lambda>f a b. integral {a..b} f" g "\<lambda>x. x powr p'" | |
using assms growths g_bigo master_integrable by unfold_locales (assumption | simp)+ | |
from less_p' have less_p: "p' < p" by (rule p_greaterI) | |
from bigo_f[of "0"] guess a . note a = this | |
note a(2) | |
also from a(1) less_p x0_less_x1 have "p \<noteq> p'" by simp_all | |
from master_integral[OF this a(1)] guess c d . note cd = this | |
note cd(3) | |
also from cd(1,2) less_p | |
have "(\<lambda>x::nat. d * real x powr p + c * real x powr p') \<in> \<Theta>(\<lambda>x. real x powr p)" by force | |
finally show "f \<in> O(\<lambda>x::nat. x powr p)" . | |
qed | |
lemma master1: | |
assumes g_bigo: "g \<in> O(\<lambda>x. real x powr p')" | |
assumes less_p': "(\<Sum>i<k. as!i * bs!i powr p') > 1" | |
assumes f_pos: "eventually (\<lambda>x. f x > 0) at_top" | |
shows "f \<in> \<Theta>(\<lambda>x. real x powr p)" | |
proof (rule bigthetaI) | |
interpret akra_bazzi_lower x\<^sub>0 x\<^sub>1 k as bs ts f | |
"\<lambda>f a b. f integrable_on {a..b}" "\<lambda>f a b. integral {a..b} f" g "\<lambda>_. 0" | |
using assms(1,3) bs_lower_bound by unfold_locales (auto intro: always_eventually) | |
from bigomega_f show "f \<in> \<Omega>(\<lambda>x. real x powr p)" by force | |
qed (fact master1_bigo[OF g_bigo less_p']) | |
lemma master2_3: | |
assumes g_bigtheta: "g \<in> \<Theta>(\<lambda>x. real x powr p * ln (real x) powr (p' - 1))" | |
assumes p': "p' > 0" | |
shows "f \<in> \<Theta>(\<lambda>x. real x powr p * ln (real x) powr p')" | |
proof- | |
have "eventually (\<lambda>x::real. x powr p * ln x powr (p' - 1) > 0) at_top" | |
using eventually_gt_at_top[of "1::real"] by eventually_elim simp | |
hence "eventually (\<lambda>x. f x > 0) at_top" | |
by (rule f_pos[OF bigthetaD2[OF g_bigtheta] eventually_nat_real]) | |
then interpret akra_bazzi x\<^sub>0 x\<^sub>1 k as bs ts f | |
"\<lambda>f a b. f integrable_on {a..b}" "\<lambda>f a b. integral {a..b} f" g "\<lambda>x. x powr p * ln x powr (p' - 1)" | |
using assms growths bounds master_integrable by unfold_locales (assumption | simp)+ | |
from bigtheta_f[of "1"] guess a . note a = this | |
note a(2) | |
also from a(1) p' have "p' \<noteq> 0" by simp_all | |
from master_integral'[OF this a(1), of p] guess c d . note cd = this | |
note cd(3) | |
also have "(\<lambda>x::nat. c * real x powr p + d * real x powr p * ln (real x) powr p') \<in> | |
\<Theta>(\<lambda>x::nat. x powr p * ln x powr p')" using cd(1,2) p' by force | |
finally show "f \<in> \<Theta>(\<lambda>x. real x powr p * ln (real x) powr p')" . | |
qed | |
lemma master2_1: | |
assumes g_bigtheta: "g \<in> \<Theta>(\<lambda>x. real x powr p * ln (real x) powr p')" | |
assumes p': "p' < -1" | |
shows "f \<in> \<Theta>(\<lambda>x. real x powr p)" | |
proof- | |
have "eventually (\<lambda>x::real. x powr p * ln x powr p' > 0) at_top" | |
using eventually_gt_at_top[of "1::real"] by eventually_elim simp | |
hence "eventually (\<lambda>x. f x > 0) at_top" | |
by (rule f_pos[OF bigthetaD2[OF g_bigtheta] eventually_nat_real]) | |
then interpret akra_bazzi x\<^sub>0 x\<^sub>1 k as bs ts f | |
"\<lambda>f a b. f integrable_on {a..b}" "\<lambda>f a b. integral {a..b} f" g "\<lambda>x. x powr p * ln x powr p'" | |
using assms growths bounds master_integrable by unfold_locales (assumption | simp)+ | |
from bigtheta_f[of "1"] guess a . note a = this | |
note a(2) | |
also from a(1) p' have A: "p' + 1 \<noteq> 0" by simp_all | |
obtain c d :: real where cd: "c \<noteq> 0" "d \<noteq> 0" and | |
"(\<lambda>x::nat. x powr p * (1 + integral {a..x} (\<lambda>u. u powr p * ln u powr p'/ u powr (p+1)))) \<in> | |
\<Theta>(\<lambda>x::nat. c * x powr p + d * x powr p * ln x powr (p' + 1))" | |
by (rule master_integral'[OF A a(1), of p]) (insert p', simp) | |
note this(3) | |
also have "(\<lambda>x::nat. c * real x powr p + d * real x powr p * ln (real x) powr (p' + 1)) \<in> | |
\<Theta>(\<lambda>x::nat. x powr p)" using cd(1,2) p' by force | |
finally show "f \<in> \<Theta>(\<lambda>x::nat. x powr p)" . | |
qed | |
lemma master2_2: | |
assumes g_bigtheta: "g \<in> \<Theta>(\<lambda>x. real x powr p / ln (real x))" | |
shows "f \<in> \<Theta>(\<lambda>x. real x powr p * ln (ln (real x)))" | |
proof- | |
have "eventually (\<lambda>x::real. x powr p / ln x > 0) at_top" | |
using eventually_gt_at_top[of "1::real"] by eventually_elim simp | |
hence "eventually (\<lambda>x. f x > 0) at_top" | |
by (rule f_pos[OF bigthetaD2[OF g_bigtheta] eventually_nat_real]) | |
moreover from g_bigtheta have g_bigtheta': "g \<in> \<Theta>(\<lambda>x. real x powr p * ln (real x) powr -1)" | |
by (rule landau_theta.trans, intro landau_real_nat_transfer) simp | |
ultimately interpret akra_bazzi x\<^sub>0 x\<^sub>1 k as bs ts f | |
"\<lambda>f a b. f integrable_on {a..b}" "\<lambda>f a b. integral {a..b} f" g "\<lambda>x. x powr p * ln x powr -1" | |
using assms growths bounds master_integrable by unfold_locales (assumption | simp)+ | |
from bigtheta_f[of 1] guess a . note a = this | |
note a(2) | |
also note master_integral''[OF a(1)] | |
finally show "f \<in> \<Theta>(\<lambda>x::nat. x powr p * ln (ln x))" . | |
qed | |
lemma master3: | |
assumes g_bigtheta: "g \<in> \<Theta>(\<lambda>x. real x powr p')" | |
assumes p'_greater': "(\<Sum>i<k. as!i * bs!i powr p') < 1" | |
shows "f \<in> \<Theta>(\<lambda>x. real x powr p')" | |
proof- | |
have "eventually (\<lambda>x::real. x powr p' > 0) at_top" | |
using eventually_gt_at_top[of "1::real"] by eventually_elim simp | |
hence "eventually (\<lambda>x. f x > 0) at_top" | |
by (rule f_pos[OF bigthetaD2[OF g_bigtheta] eventually_nat_real]) | |
then interpret akra_bazzi x\<^sub>0 x\<^sub>1 k as bs ts f | |
"\<lambda>f a b. f integrable_on {a..b}" "\<lambda>f a b. integral {a..b} f" g "\<lambda>x. x powr p'" | |
using assms growths bounds master_integrable by unfold_locales (assumption | simp)+ | |
from p'_greater' have p'_greater: "p' > p" by (rule p_lessI) | |
from bigtheta_f[of 0] guess a . note a = this | |
note a(2) | |
also from p'_greater have "p \<noteq> p'" by simp | |
from master_integral[OF this a(1)] guess c d . note cd = this | |
note cd(3) | |
also have "(\<lambda>x::nat. d * x powr p + c * x powr p') \<in> \<Theta>(\<lambda>x::real. x powr p')" | |
using p'_greater cd(1,2) by force | |
finally show "f \<in> \<Theta>(\<lambda>x. real x powr p')" . | |
qed | |
end | |
end | |
end | |