Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Author: René Thiemann | |
Akihisa Yamada | |
License: BSD | |
*) | |
subsection \<open>Resultant\<close> | |
text \<open>This theory contains | |
facts about resultants which are required for addition and multiplication | |
of algebraic numbers. | |
The results are taken from the textbook \cite[pages 227ff and 235ff]{AlgNumbers}. | |
\<close> | |
theory Resultant | |
imports | |
"HOL-Computational_Algebra.Fundamental_Theorem_Algebra" (* for lmpoly_base_conv *) | |
Subresultants.Resultant_Prelim | |
Berlekamp_Zassenhaus.Unique_Factorization_Poly | |
Bivariate_Polynomials | |
begin | |
subsubsection \<open>Sylvester matrices and vector representation of polynomials\<close> | |
definition vec_of_poly_rev_shifted where | |
"vec_of_poly_rev_shifted p n j \<equiv> | |
vec n (\<lambda>i. if i \<le> j \<and> j \<le> degree p + i then coeff p (degree p + i - j) else 0)" | |
lemma vec_of_poly_rev_shifted_dim[simp]: "dim_vec (vec_of_poly_rev_shifted p n j) = n" | |
unfolding vec_of_poly_rev_shifted_def by auto | |
lemma col_sylvester: | |
fixes p q | |
defines "m \<equiv> degree p" and "n \<equiv> degree q" | |
assumes j: "j < m+n" | |
shows "col (sylvester_mat p q) j = | |
vec_of_poly_rev_shifted p n j @\<^sub>v vec_of_poly_rev_shifted q m j" (is "?l = ?r") | |
proof | |
note [simp] = m_def[symmetric] n_def[symmetric] | |
show "dim_vec ?l = dim_vec ?r" by simp | |
fix i assume "i < dim_vec ?r" hence i: "i < m+n" by auto | |
show "?l $ i = ?r $ i" | |
unfolding vec_of_poly_rev_shifted_def | |
apply (subst index_col) using i apply simp using j apply simp | |
apply (subst sylvester_index_mat) using i apply simp using j apply simp | |
apply (cases "i < n") apply force using i by simp | |
qed | |
lemma inj_on_diff_nat2: "inj_on (\<lambda>i. (n::nat) - i) {..n}" by (rule inj_onI, auto) | |
lemma image_diff_atMost: "(\<lambda>i. (n::nat) - i) ` {..n} = {..n}" (is "?l = ?r") | |
unfolding set_eq_iff | |
proof (intro allI iffI) | |
fix x assume x: "x \<in> ?r" | |
thus "x \<in> ?l" unfolding image_def mem_Collect_eq | |
by(intro bexI[of _ "n-x"],auto) | |
qed auto | |
lemma sylvester_sum_mat_upper: | |
fixes p q :: "'a :: comm_semiring_1 poly" | |
defines "m \<equiv> degree p" and "n \<equiv> degree q" | |
assumes i: "i < n" | |
shows "(\<Sum>j<m+n. monom (sylvester_mat p q $$ (i,j)) (m + n - Suc j)) = | |
monom 1 (n - Suc i) * p" (is "sum ?f _ = ?r") | |
proof - | |
have n1: "n \<ge> 1" using i by auto | |
define ni1 where "ni1 = n-Suc i" | |
hence ni1: "n-i = Suc ni1" using i by auto | |
define l where "l = m+n-1" | |
hence l: "Suc l = m+n" using n1 by auto | |
let ?g = "\<lambda>j. monom (coeff (monom 1 (n-Suc i) * p) j) j" | |
let ?p = "\<lambda>j. l-j" | |
have "sum ?f {..<m+n} = sum ?f {..l}" | |
unfolding l[symmetric] unfolding lessThan_Suc_atMost.. | |
also { | |
fix j assume j: "j\<le>l" | |
have "?f j = ((\<lambda>j. monom (coeff (monom 1 (n-i) * p) (Suc j)) j) \<circ> ?p) j" | |
apply(subst sylvester_index_mat2) | |
using i j unfolding l_def m_def[symmetric] n_def[symmetric] | |
by (auto simp add: Suc_diff_Suc) | |
also have "... = (?g \<circ> ?p) j" | |
unfolding ni1 | |
unfolding coeff_monom_Suc | |
unfolding ni1_def | |
using i by auto | |
finally have "?f j = (?g \<circ> ?p) j". | |
} | |
hence "(\<Sum>j\<le>l. ?f j) = (\<Sum>j\<le>l. (?g\<circ>?p) j)" using l by auto | |
also have "... = (\<Sum>j\<le>l. ?g j)" | |
unfolding l_def | |
using sum.reindex[OF inj_on_diff_nat2,symmetric,unfolded image_diff_atMost]. | |
also have "degree ?r \<le> l" | |
using degree_mult_le[of "monom 1 (n-Suc i)" p] | |
unfolding l_def m_def | |
unfolding degree_monom_eq[OF one_neq_zero] using i by auto | |
from poly_as_sum_of_monoms'[OF this] | |
have "(\<Sum>j\<le>l. ?g j) = ?r". | |
finally show ?thesis. | |
qed | |
lemma sylvester_sum_mat_lower: | |
fixes p q :: "'a :: comm_semiring_1 poly" | |
defines "m \<equiv> degree p" and "n \<equiv> degree q" | |
assumes ni: "n \<le> i" and imn: "i < m+n" | |
shows "(\<Sum>j<m+n. monom (sylvester_mat p q $$ (i,j)) (m + n - Suc j)) = | |
monom 1 (m + n - Suc i) * q" (is "sum ?f _ = ?r") | |
proof - | |
define l where "l = m+n-1" | |
hence l: "Suc l = m+n" using imn by auto | |
define mni1 where "mni1 = m + n - Suc i" | |
hence mni1: "m+n-i = Suc mni1" using imn by auto | |
let ?g = "\<lambda>j. monom (coeff (monom 1 (m + n - Suc i) * q) j) j" | |
let ?p = "\<lambda>j. l-j" | |
have "sum ?f {..<m+n} = sum ?f {..l}" | |
unfolding l[symmetric] unfolding lessThan_Suc_atMost.. | |
also { | |
fix j assume j: "j\<le>l" | |
have "?f j = ((\<lambda>j. monom (coeff (monom 1 (m+n-i) * q) (Suc j)) j) \<circ> ?p) j" | |
apply(subst sylvester_index_mat2) | |
using ni imn j unfolding l_def m_def[symmetric] n_def[symmetric] | |
by (auto simp add: Suc_diff_Suc) | |
also have "... = (?g \<circ> ?p) j" | |
unfolding mni1 | |
unfolding coeff_monom_Suc | |
unfolding mni1_def.. | |
finally have "?f j = ...". | |
} | |
hence "(\<Sum>j\<le>l. ?f j) = (\<Sum>j\<le>l. (?g\<circ>?p) j)" by auto | |
also have "... = (\<Sum>j\<le>l. ?g j)" | |
using sum.reindex[OF inj_on_diff_nat2,symmetric,unfolded image_diff_atMost]. | |
also have "degree ?r \<le> l" | |
using degree_mult_le[of "monom 1 (m+n-1-i)" q] | |
unfolding l_def n_def[symmetric] | |
unfolding degree_monom_eq[OF one_neq_zero] using ni imn by auto | |
from poly_as_sum_of_monoms'[OF this] | |
have "(\<Sum>j\<le>l. ?g j) = ?r". | |
finally show ?thesis. | |
qed | |
definition "vec_of_poly p \<equiv> let m = degree p in vec (Suc m) (\<lambda>i. coeff p (m-i))" | |
definition "poly_of_vec v \<equiv> let d = dim_vec v in \<Sum>i<d. monom (v $ (d - Suc i)) i" | |
lemma poly_of_vec_of_poly[simp]: | |
fixes p :: "'a :: comm_monoid_add poly" | |
shows "poly_of_vec (vec_of_poly p) = p" | |
unfolding poly_of_vec_def vec_of_poly_def Let_def | |
unfolding dim_vec | |
unfolding lessThan_Suc_atMost | |
using poly_as_sum_of_monoms[of p] by auto | |
lemma poly_of_vec_0[simp]: "poly_of_vec (0\<^sub>v n) = 0" unfolding poly_of_vec_def Let_def by auto | |
lemma poly_of_vec_0_iff[simp]: | |
fixes v :: "'a :: comm_monoid_add vec" | |
shows "poly_of_vec v = 0 \<longleftrightarrow> v = 0\<^sub>v (dim_vec v)" (is "?v = _ \<longleftrightarrow> _ = ?z") | |
proof | |
assume "?v = 0" | |
hence "\<forall>i\<in>{..<dim_vec v}. v $ (dim_vec v - Suc i) = 0" | |
unfolding poly_of_vec_def Let_def | |
by (subst sum_monom_0_iff[symmetric],auto) | |
hence a: "\<And>i. i < dim_vec v \<Longrightarrow> v $ (dim_vec v - Suc i) = 0" by auto | |
{ fix i assume "i < dim_vec v" | |
hence "v $ i = 0" using a[of "dim_vec v - Suc i"] by auto | |
} | |
thus "v = ?z" by auto | |
next assume r: "v = ?z" | |
show "?v = 0" apply (subst r) by auto | |
qed | |
(* TODO: move, copied from no longer existing Cayley-Hamilton/Polynomial_extension *) | |
lemma degree_sum_smaller: | |
assumes "n > 0" "finite A" | |
shows "(\<And> x. x \<in>A \<Longrightarrow> degree (f x) < n) \<Longrightarrow> degree (\<Sum>x\<in>A. f x) < n" | |
using \<open>finite A\<close> | |
by(induct rule: finite_induct) | |
(simp_all add: degree_add_less assms) | |
lemma degree_poly_of_vec_less: | |
fixes v :: "'a :: comm_monoid_add vec" | |
assumes dim: "dim_vec v > 0" | |
shows "degree (poly_of_vec v) < dim_vec v" | |
unfolding poly_of_vec_def Let_def | |
apply(rule degree_sum_smaller) | |
using dim apply force | |
apply force | |
unfolding lessThan_iff | |
by (metis degree_0 degree_monom_eq dim monom_eq_0_iff) | |
lemma coeff_poly_of_vec: | |
"coeff (poly_of_vec v) i = (if i < dim_vec v then v $ (dim_vec v - Suc i) else 0)" | |
(is "?l = ?r") | |
proof - | |
have "?l = (\<Sum>x<dim_vec v. if x = i then v $ (dim_vec v - Suc x) else 0)" (is "_ = ?m") | |
unfolding poly_of_vec_def Let_def coeff_sum coeff_monom .. | |
also have "\<dots> = ?r" | |
proof (cases "i < dim_vec v") | |
case False | |
show ?thesis | |
by (subst sum.neutral, insert False, auto) | |
next | |
case True | |
show ?thesis | |
by (subst sum.remove[of _ i], force, force simp: True, subst sum.neutral, insert True, auto) | |
qed | |
finally show ?thesis . | |
qed | |
lemma vec_of_poly_rev_shifted_scalar_prod: | |
fixes p v | |
defines "q \<equiv> poly_of_vec v" | |
assumes m[simp]: "degree p = m" and n: "dim_vec v = n" | |
assumes j: "j < m+n" | |
shows "vec_of_poly_rev_shifted p n (n+m-Suc j) \<bullet> v = coeff (p * q) j" (is "?l = ?r") | |
proof - | |
have id1: "\<And> i. m + i - (n + m - Suc j) = i + Suc j - n" | |
using j by auto | |
let ?g = "\<lambda> i. if i \<le> n + m - Suc j \<and> n - Suc j \<le> i then coeff p (i + Suc j - n) * v $ i else 0" | |
have "?thesis = ((\<Sum>i = 0..<n. ?g i) = | |
(\<Sum>i\<le>j. coeff p i * (if j - i < n then v $ (n - Suc (j - i)) else 0)))" (is "_ = (?l = ?r)") | |
unfolding vec_of_poly_rev_shifted_def coeff_mult m scalar_prod_def n q_def | |
coeff_poly_of_vec | |
by (subst sum.cong, insert id1, auto) | |
also have "..." | |
proof - | |
have "?r = (\<Sum>i\<le>j. (if j - i < n then coeff p i * v $ (n - Suc (j - i)) else 0))" (is "_ = sum ?f _") | |
by (rule sum.cong, auto) | |
also have "sum ?f {..j} = sum ?f ({i. i \<le> j \<and> j - i < n} \<union> {i. i \<le> j \<and> \<not> j - i < n})" | |
(is "_ = sum _ (?R1 \<union> ?R2)") | |
by (rule sum.cong, auto) | |
also have "\<dots> = sum ?f ?R1 + sum ?f ?R2" | |
by (subst sum.union_disjoint, auto) | |
also have "sum ?f ?R2 = 0" | |
by (rule sum.neutral, auto) | |
also have "sum ?f ?R1 + 0 = sum (\<lambda> i. coeff p i * v $ (i + n - Suc j)) ?R1" | |
(is "_ = sum ?F _") | |
by (subst sum.cong, auto simp: ac_simps) | |
also have "\<dots> = sum ?F ((?R1 \<inter> {..m}) \<union> (?R1 - {..m}))" | |
(is "_ = sum _ (?R \<union> ?R')") | |
by (rule sum.cong, auto) | |
also have "\<dots> = sum ?F ?R + sum ?F ?R'" | |
by (subst sum.union_disjoint, auto) | |
also have "sum ?F ?R' = 0" | |
proof - | |
{ | |
fix x | |
assume "x > m" | |
from coeff_eq_0[OF this[folded m]] | |
have "?F x = 0" by simp | |
} | |
thus ?thesis | |
by (subst sum.neutral, auto) | |
qed | |
finally have r: "?r = sum ?F ?R" by simp | |
have "?l = sum ?g ({i. i < n \<and> i \<le> n + m - Suc j \<and> n - Suc j \<le> i} | |
\<union> {i. i < n \<and> \<not> (i \<le> n + m - Suc j \<and> n - Suc j \<le> i)})" | |
(is "_ = sum _ (?L1 \<union> ?L2)") | |
by (rule sum.cong, auto) | |
also have "\<dots> = sum ?g ?L1 + sum ?g ?L2" | |
by (subst sum.union_disjoint, auto) | |
also have "sum ?g ?L2 = 0" | |
by (rule sum.neutral, auto) | |
also have "sum ?g ?L1 + 0 = sum (\<lambda> i. coeff p (i + Suc j - n) * v $ i) ?L1" | |
(is "_ = sum ?G _") | |
by (subst sum.cong, auto) | |
also have "\<dots> = sum ?G (?L1 \<inter> {i. i + Suc j - n \<le> m} \<union> (?L1 - {i. i + Suc j - n \<le> m}))" | |
(is "_ = sum _ (?L \<union> ?L')") | |
by (subst sum.cong, auto) | |
also have "\<dots> = sum ?G ?L + sum ?G ?L'" | |
by (subst sum.union_disjoint, auto) | |
also have "sum ?G ?L' = 0" | |
proof - | |
{ | |
fix x | |
assume "x + Suc j - n > m" | |
from coeff_eq_0[OF this[folded m]] | |
have "?G x = 0" by simp | |
} | |
thus ?thesis | |
by (subst sum.neutral, auto) | |
qed | |
finally have l: "?l = sum ?G ?L" by simp | |
let ?bij = "\<lambda> i. i + n - Suc j" | |
{ | |
fix x | |
assume x: "j < m + n" "Suc (x + j) - n \<le> m" "x < n" "n - Suc j \<le> x" | |
define y where "y = x + Suc j - n" | |
from x have "x + Suc j \<ge> n" by auto | |
with x have xy: "x = ?bij y" unfolding y_def by auto | |
from x have y: "y \<in> ?R" unfolding y_def by auto | |
have "x \<in> ?bij ` ?R" unfolding xy using y by blast | |
} note tedious = this | |
show ?thesis unfolding l r | |
by (rule sum.reindex_cong[of ?bij], insert j, auto simp: inj_on_def tedious) | |
qed | |
finally show ?thesis by simp | |
qed | |
lemma sylvester_vec_poly: | |
fixes p q :: "'a :: comm_semiring_0 poly" | |
defines "m \<equiv> degree p" | |
and "n \<equiv> degree q" | |
assumes v: "v \<in> carrier_vec (m+n)" | |
shows "poly_of_vec (transpose_mat (sylvester_mat p q) *\<^sub>v v) = | |
poly_of_vec (vec_first v n) * p + poly_of_vec (vec_last v m) * q" (is "?l = ?r") | |
proof (rule poly_eqI) | |
fix i | |
note mn[simp] = m_def[symmetric] n_def[symmetric] | |
let ?Tv = "transpose_mat (sylvester_mat p q) *\<^sub>v v" | |
have dim: "dim_vec (vec_first v n) = n" "dim_vec (vec_last v m) = m" "dim_vec ?Tv = n + m" | |
using v by auto | |
have if_distrib: "\<And> x y z. (if x then y else (0 :: 'a)) * z = (if x then y * z else 0)" | |
by auto | |
show "coeff ?l i = coeff ?r i" | |
proof (cases "i < m+n") | |
case False | |
hence i_mn: "i \<ge> m+n" | |
and i_n: "\<And>x. x \<le> i \<and> x < n \<longleftrightarrow> x < n" | |
and i_m: "\<And>x. x \<le> i \<and> x < m \<longleftrightarrow> x < m" by auto | |
have "coeff ?r i = | |
(\<Sum> x < n. vec_first v n $ (n - Suc x) * coeff p (i - x)) + | |
(\<Sum> x < m. vec_last v m $ (m - Suc x) * coeff q (i - x))" | |
(is "_ = sum ?f _ + sum ?g _") | |
unfolding coeff_add coeff_mult Let_def | |
unfolding coeff_poly_of_vec dim if_distrib | |
unfolding atMost_def | |
apply(subst sum.inter_filter[symmetric],simp) | |
apply(subst sum.inter_filter[symmetric],simp) | |
unfolding mem_Collect_eq | |
unfolding i_n i_m | |
unfolding lessThan_def by simp | |
also { fix x assume x: "x < n" | |
have "coeff p (i-x) = 0" | |
apply(rule coeff_eq_0) using i_mn x unfolding m_def by auto | |
hence "?f x = 0" by auto | |
} hence "sum ?f {..<n} = 0" by auto | |
also { fix x assume x: "x < m" | |
have "coeff q (i-x) = 0" | |
apply(rule coeff_eq_0) using i_mn x unfolding n_def by auto | |
hence "?g x = 0" by auto | |
} hence "sum ?g {..<m} = 0" by auto | |
finally have "coeff ?r i = 0" by auto | |
also from False have "0 = coeff ?l i" | |
unfolding coeff_poly_of_vec dim sum.distrib[symmetric] by auto | |
finally show ?thesis by auto | |
next case True | |
hence "coeff ?l i = (transpose_mat (sylvester_mat p q) *\<^sub>v v) $ (n + m - Suc i)" | |
unfolding coeff_poly_of_vec dim sum.distrib[symmetric] by auto | |
also have "... = coeff (p * poly_of_vec (vec_first v n) + q * poly_of_vec (vec_last v m)) i" | |
apply(subst index_mult_mat_vec) using True apply simp | |
apply(subst row_transpose) using True apply simp | |
apply(subst col_sylvester) | |
unfolding mn using True apply simp | |
apply(subst vec_first_last_append[of v n m,symmetric]) using v apply(simp add: add.commute) | |
apply(subst scalar_prod_append) | |
apply (rule carrier_vecI,simp)+ | |
apply (subst vec_of_poly_rev_shifted_scalar_prod,simp,simp) using True apply simp | |
apply (subst add.commute[of n m]) | |
apply (subst vec_of_poly_rev_shifted_scalar_prod,simp,simp) using True apply simp | |
by simp | |
also have "... = | |
(\<Sum>x\<le>i. (if x < n then vec_first v n $ (n - Suc x) else 0) * coeff p (i - x)) + | |
(\<Sum>x\<le>i. (if x < m then vec_last v m $ (m - Suc x) else 0) * coeff q (i - x))" | |
unfolding coeff_poly_of_vec[of "vec_first v n",unfolded dim_vec_first,symmetric] | |
unfolding coeff_poly_of_vec[of "vec_last v m",unfolded dim_vec_last,symmetric] | |
unfolding coeff_mult[symmetric] by (simp add: mult.commute) | |
also have "... = coeff ?r i" | |
unfolding coeff_add coeff_mult Let_def | |
unfolding coeff_poly_of_vec dim.. | |
finally show ?thesis. | |
qed | |
qed | |
subsubsection \<open>Homomorphism and Resultant\<close> | |
text \<open>Here we prove Lemma~7.3.1 of the textbook.\<close> | |
lemma(in comm_ring_hom) resultant_sub_map_poly: | |
fixes p q :: "'a poly" | |
shows "hom (resultant_sub m n p q) = resultant_sub m n (map_poly hom p) (map_poly hom q)" | |
(is "?l = ?r'") | |
proof - | |
let ?mh = "map_poly hom" | |
have "?l = det (sylvester_mat_sub m n (?mh p) (?mh q))" | |
unfolding resultant_sub_def | |
apply(subst sylvester_mat_sub_map[symmetric]) by auto | |
thus ?thesis unfolding resultant_sub_def. | |
qed | |
(* | |
lemma (in comm_ring_hom) resultant_map_poly: | |
fixes p q :: "'a poly" | |
defines "p' \<equiv> map_poly hom p" | |
defines "q' \<equiv> map_poly hom q" | |
defines "m \<equiv> degree p" | |
defines "n \<equiv> degree q" | |
defines "m' \<equiv> degree p'" | |
defines "n' \<equiv> degree q'" | |
defines "r \<equiv> resultant p q" | |
defines "r' \<equiv> resultant p' q'" | |
shows "m' = m \<Longrightarrow> n' = n \<Longrightarrow> hom r = r'" | |
and "m' = m \<Longrightarrow> hom r = hom (coeff p m')^(n-n') * r'" | |
and "m' \<noteq> m \<Longrightarrow> n' = n \<Longrightarrow> | |
hom r = (if even n then 1 else (-1)^(m-m')) * hom (coeff q n)^(m-m') * r'" | |
(is "_ \<Longrightarrow> _ \<Longrightarrow> ?goal") | |
and "m' \<noteq> m \<Longrightarrow> n' \<noteq> n \<Longrightarrow> hom r = 0" | |
proof - | |
have m'm: "m' \<le> m" unfolding m_def m'_def p'_def using degree_map_poly_le by auto | |
have n'n: "n' \<le> n" unfolding n_def n'_def q'_def using degree_map_poly_le by auto | |
have coeffp'[simp]: "\<And>i. coeff p' i = hom (coeff p i)" unfolding p'_def by auto | |
have coeffq'[simp]: "\<And>i. coeff q' i = hom (coeff q i)" unfolding q'_def by auto | |
let ?f = "\<lambda>i. (if even n then 1 else (-1)^i) * hom (coeff q n)^i" | |
have "hom r = resultant_sub m n p' q'" | |
unfolding r_def resultant_sub | |
unfolding m_def n_def p'_def q'_def | |
by(rule resultant_sub_map_poly) | |
also have "... = ?f (m-m') * resultant_sub m' n p' q'" | |
using resultant_sub_trim_upper[of p' "m-m'" n q',folded m'_def] m'm | |
by (auto simp: power_minus[symmetric]) | |
also have "... = ?f (m-m') * hom (coeff p m')^(n-n') * r'" | |
using resultant_sub_trim_lower[of m' q' "n-n'" p'] n'n | |
unfolding r'_def resultant_sub m'_def n'_def by auto | |
finally have main: "hom r = ?f (m-m') * hom (coeff p m')^(n-n') * r'" by auto | |
{ assume "m' = m" | |
thus "hom r = hom (coeff p m')^(n-n') * r'" using main by auto | |
thus "n' = n \<Longrightarrow> hom r = r'" by auto | |
} | |
assume "m' \<noteq> m" | |
hence m'm: "m' < m" using m'm by auto | |
thus "n' = n \<Longrightarrow> ?goal" using main by simp | |
assume "n' \<noteq> n" | |
hence "n' < n" using n'n by auto | |
hence "hom (coeff q n) = 0" | |
unfolding coeffq'[symmetric] unfolding n'_def by(rule coeff_eq_0) | |
hence "hom (coeff q n) ^ (m-m') = 0" using m'm by (simp add: power_0_left) | |
from main[unfolded this] | |
show "hom r = 0" using power_0_Suc by auto | |
qed | |
*) | |
subsubsection\<open>Resultant as Polynomial Expression\<close> | |
context begin | |
text \<open>This context provides notions for proving Lemma 7.2.1 of the textbook.\<close> | |
private fun mk_poly_sub where | |
"mk_poly_sub A l 0 = A" | |
| "mk_poly_sub A l (Suc j) = mat_addcol (monom 1 (Suc j)) l (l-Suc j) (mk_poly_sub A l j)" | |
definition "mk_poly A = mk_poly_sub (map_mat coeff_lift A) (dim_col A - 1) (dim_col A - 1)" | |
private lemma mk_poly_sub_dim[simp]: | |
"dim_row (mk_poly_sub A l j) = dim_row A" | |
"dim_col (mk_poly_sub A l j) = dim_col A" | |
by (induct j,auto) | |
private lemma mk_poly_sub_carrier: | |
assumes "A \<in> carrier_mat nr nc" shows "mk_poly_sub A l j \<in> carrier_mat nr nc" | |
apply (rule carrier_matI) using assms by auto | |
private lemma mk_poly_dim[simp]: | |
"dim_col (mk_poly A) = dim_col A" | |
"dim_row (mk_poly A) = dim_row A" | |
unfolding mk_poly_def by auto | |
private lemma mk_poly_sub_others[simp]: | |
assumes "l \<noteq> j'" and "i < dim_row A" and "j' < dim_col A" | |
shows "mk_poly_sub A l j $$ (i,j') = A $$ (i,j')" | |
using assms by (induct j; simp) | |
private lemma mk_poly_others[simp]: | |
assumes i: "i < dim_row A" and j: "j < dim_col A - 1" | |
shows "mk_poly A $$ (i,j) = [: A $$ (i,j) :]" | |
unfolding mk_poly_def | |
apply(subst mk_poly_sub_others) | |
using i j by auto | |
private lemma mk_poly_delete[simp]: | |
assumes i: "i < dim_row A" | |
shows "mat_delete (mk_poly A) i (dim_col A - 1) = map_mat coeff_lift (mat_delete A i (dim_col A - 1))" | |
apply(rule eq_matI) unfolding mat_delete_def by auto | |
private lemma col_mk_poly_sub[simp]: | |
assumes "l \<noteq> j'" and "j' < dim_col A" | |
shows "col (mk_poly_sub A l j) j' = col A j'" | |
by(rule eq_vecI; insert assms; simp) | |
private lemma det_mk_poly_sub: | |
assumes A: "(A :: 'a :: comm_ring_1 poly mat) \<in> carrier_mat n n" and i: "i < n" | |
shows "det (mk_poly_sub A (n-1) i) = det A" | |
using i | |
proof (induct i) | |
case (Suc i) | |
show ?case unfolding mk_poly_sub.simps | |
apply(subst det_addcol[of _ n]) | |
using Suc apply simp | |
using Suc apply simp | |
apply (rule mk_poly_sub_carrier[OF A]) | |
using Suc by auto | |
qed simp | |
private lemma det_mk_poly: | |
fixes A :: "'a :: comm_ring_1 mat" | |
shows "det (mk_poly A) = [: det A :]" | |
proof (cases "dim_row A = dim_col A") | |
case True | |
define n where "n = dim_col A" | |
have "map_mat coeff_lift A \<in> carrier_mat (dim_row A) (dim_col A)" by simp | |
hence sq: "map_mat coeff_lift A \<in> carrier_mat (dim_col A) (dim_col A)" unfolding True. | |
show ?thesis | |
proof(cases "dim_col A = 0") | |
case True thus ?thesis unfolding det_def by simp | |
next case False thus ?thesis | |
unfolding mk_poly_def | |
by (subst det_mk_poly_sub[OF sq]; simp) | |
qed | |
next case False | |
hence f2: "dim_row A = dim_col A \<longleftrightarrow> False" by simp | |
hence f3: "dim_row (mk_poly A) = dim_col (mk_poly A) \<longleftrightarrow> False" | |
unfolding mk_poly_dim by auto | |
show ?thesis unfolding det_def unfolding f2 f3 if_False by simp | |
qed | |
private fun mk_poly2_row where | |
"mk_poly2_row A d j pv 0 = pv" | |
| "mk_poly2_row A d j pv (Suc n) = | |
mk_poly2_row A d j pv n |\<^sub>v n \<mapsto> pv $ n + monom (A$$(n,j)) d" | |
private fun mk_poly2_col where | |
"mk_poly2_col A pv 0 = pv" | |
| "mk_poly2_col A pv (Suc m) = | |
mk_poly2_row A m (dim_col A - Suc m) (mk_poly2_col A pv m) (dim_row A)" | |
private definition "mk_poly2 A \<equiv> mk_poly2_col A (0\<^sub>v (dim_row A)) (dim_col A)" | |
private lemma mk_poly2_row_dim[simp]: "dim_vec (mk_poly2_row A d j pv i) = dim_vec pv" | |
by(induct i arbitrary: pv, auto) | |
private lemma mk_poly2_col_dim[simp]: "dim_vec (mk_poly2_col A pv j) = dim_vec pv" | |
by (induct j arbitrary: pv, auto) | |
private lemma mk_poly2_row: | |
assumes n: "n \<le> dim_vec pv" | |
shows "mk_poly2_row A d j pv n $ i = | |
(if i < n then pv $ i + monom (A $$ (i,j)) d else pv $ i)" | |
using n | |
proof (induct n arbitrary: pv) | |
case (Suc n) thus ?case | |
unfolding mk_poly2_row.simps by (cases rule: linorder_cases[of "i" "n"],auto) | |
qed simp | |
private lemma mk_poly2_row_col: | |
assumes dim[simp]: "dim_vec pv = n" "dim_row A = n" and j: "j < dim_col A" | |
shows "mk_poly2_row A d j pv n = pv + map_vec (\<lambda>a. monom a d) (col A j)" | |
apply rule using mk_poly2_row[of _ pv] j by auto | |
private lemma mk_poly2_col: | |
fixes pv :: "'a :: comm_semiring_1 poly vec" and A :: "'a mat" | |
assumes i: "i < dim_row A" and dim: "dim_row A = dim_vec pv" | |
shows "mk_poly2_col A pv j $ i = pv $ i + (\<Sum>j'<j. monom (A $$ (i, dim_col A - Suc j')) j')" | |
using dim | |
proof (induct j arbitrary: pv) | |
case (Suc j) show ?case | |
unfolding mk_poly2_col.simps | |
apply (subst mk_poly2_row) | |
using Suc apply simp | |
unfolding Suc(1)[OF Suc(2)] | |
using i by (simp add: add.assoc) | |
qed simp | |
private lemma mk_poly2_pre: | |
fixes A :: "'a :: comm_semiring_1 mat" | |
assumes i: "i < dim_row A" | |
shows "mk_poly2 A $ i = (\<Sum>j'<dim_col A. monom (A $$ (i, dim_col A - Suc j')) j')" | |
unfolding mk_poly2_def | |
apply(subst mk_poly2_col) using i by auto | |
private lemma mk_poly2: | |
fixes A :: "'a :: comm_semiring_1 mat" | |
assumes i: "i < dim_row A" | |
and c: "dim_col A > 0" | |
shows "mk_poly2 A $ i = (\<Sum>j'<dim_col A. monom (A $$ (i,j')) (dim_col A - Suc j'))" | |
(is "?l = sum ?f ?S") | |
proof - | |
define l where "l = dim_col A - 1" | |
have dim: "dim_col A = Suc l" unfolding l_def using i c by auto | |
let ?g = "\<lambda>j. l - j" | |
have "?l = sum (?f \<circ> ?g) ?S" unfolding l_def mk_poly2_pre[OF i] by auto | |
also have "... = sum ?f ?S" | |
unfolding dim | |
unfolding lessThan_Suc_atMost | |
using sum.reindex[OF inj_on_diff_nat2,symmetric,unfolded image_diff_atMost]. | |
finally show ?thesis. | |
qed | |
private lemma mk_poly2_sylvester_upper: | |
fixes p q :: "'a :: comm_semiring_1 poly" | |
assumes i: "i < degree q" | |
shows "mk_poly2 (sylvester_mat p q) $ i = monom 1 (degree q - Suc i) * p" | |
apply (subst mk_poly2) | |
using i apply simp using i apply simp | |
apply (subst sylvester_sum_mat_upper[OF i,symmetric]) | |
apply (rule sum.cong) | |
unfolding sylvester_mat_dim lessThan_Suc_atMost apply simp | |
by auto | |
private lemma mk_poly2_sylvester_lower: | |
fixes p q :: "'a :: comm_semiring_1 poly" | |
assumes mi: "i \<ge> degree q" and imn: "i < degree p + degree q" | |
shows "mk_poly2 (sylvester_mat p q) $ i = monom 1 (degree p + degree q - Suc i) * q" | |
apply (subst mk_poly2) | |
using imn apply simp using mi imn apply simp | |
unfolding sylvester_mat_dim | |
using sylvester_sum_mat_lower[OF mi imn] | |
apply (subst sylvester_sum_mat_lower) using mi imn by auto | |
private lemma foo: | |
fixes v :: "'a :: comm_semiring_1 vec" | |
shows "monom 1 d \<cdot>\<^sub>v map_vec coeff_lift v = map_vec (\<lambda>a. monom a d) v" | |
apply (rule eq_vecI) | |
unfolding index_map_vec index_col | |
by (auto simp add: Polynomial.smult_monom) | |
private lemma mk_poly_sub_corresp: | |
assumes dimA[simp]: "dim_col A = Suc l" and dimpv[simp]: "dim_vec pv = dim_row A" | |
and j: "j < dim_col A" | |
shows "pv + col (mk_poly_sub (map_mat coeff_lift A) l j) l = | |
mk_poly2_col A pv (Suc j)" | |
proof(insert j, induct j) | |
have le: "dim_row A \<le> dim_vec pv" using dimpv by simp | |
have l: "l < dim_col A" using dimA by simp | |
{ case 0 show ?case | |
apply (rule eq_vecI) | |
using mk_poly2_row[OF le] | |
by (auto simp add: monom_0) | |
} | |
{ case (Suc j) | |
hence j: "j < dim_col A" by simp | |
show ?case | |
unfolding mk_poly_sub.simps | |
apply(subst col_addcol) | |
apply simp | |
apply simp | |
apply(subst(2) comm_add_vec) | |
apply(rule carrier_vecI, simp) | |
apply(rule carrier_vecI, simp) | |
apply(subst assoc_add_vec[symmetric]) | |
apply(rule carrier_vecI, rule refl) | |
apply(rule carrier_vecI, simp) | |
apply(rule carrier_vecI, simp) | |
unfolding Suc(1)[OF j] | |
apply(subst(2) mk_poly2_col.simps) | |
apply(subst mk_poly2_row_col) | |
apply simp | |
apply simp | |
using Suc apply simp | |
apply(subst col_mk_poly_sub) | |
using Suc apply simp | |
using Suc apply simp | |
apply(subst col_map_mat) | |
using dimA apply simp | |
unfolding foo dimA by simp | |
} | |
qed | |
private lemma col_mk_poly_mk_poly2: | |
fixes A :: "'a :: comm_semiring_1 mat" | |
assumes dim: "dim_col A > 0" | |
shows "col (mk_poly A) (dim_col A - 1) = mk_poly2 A" | |
proof - | |
define l where "l = dim_col A - 1" | |
have dim: "dim_col A = Suc l" unfolding l_def using dim by auto | |
show ?thesis | |
unfolding mk_poly_def mk_poly2_def dim | |
apply(subst mk_poly_sub_corresp[symmetric]) | |
apply(rule dim) | |
apply simp | |
using dim apply simp | |
apply(subst left_zero_vec) | |
apply(rule carrier_vecI) using dim apply simp | |
apply simp | |
done | |
qed | |
private lemma mk_poly_mk_poly2: | |
fixes A :: "'a :: comm_semiring_1 mat" | |
assumes dim: "dim_col A > 0" and i: "i < dim_row A" | |
shows "mk_poly A $$ (i,dim_col A - 1) = mk_poly2 A $ i" | |
proof - | |
have "mk_poly A $$ (i,dim_col A - 1) = col (mk_poly A) (dim_col A - 1) $ i" | |
apply (subst index_col(1)) using dim i by auto | |
also note col_mk_poly_mk_poly2[OF dim] | |
finally show ?thesis. | |
qed | |
lemma mk_poly_sylvester_upper: | |
fixes p q :: "'a :: comm_ring_1 poly" | |
defines "m \<equiv> degree p" and "n \<equiv> degree q" | |
assumes i: "i < n" | |
shows "mk_poly (sylvester_mat p q) $$ (i, m + n - 1) = monom 1 (n - Suc i) * p" (is "?l = ?r") | |
proof - | |
let ?S = "sylvester_mat p q" | |
have c: "m+n = dim_col ?S" and r: "m+n = dim_row ?S" unfolding m_def n_def by auto | |
hence "dim_col ?S > 0" "i < dim_row ?S" using i by auto | |
from mk_poly_mk_poly2[OF this] | |
have "?l = mk_poly2 (sylvester_mat p q) $ i" unfolding m_def n_def by auto | |
also have "... = ?r" | |
apply(subst mk_poly2_sylvester_upper) | |
using i unfolding n_def m_def by auto | |
finally show ?thesis. | |
qed | |
lemma mk_poly_sylvester_lower: | |
fixes p q :: "'a :: comm_ring_1 poly" | |
defines "m \<equiv> degree p" and "n \<equiv> degree q" | |
assumes ni: "n \<le> i" and imn: "i < m+n" | |
shows "mk_poly (sylvester_mat p q) $$ (i, m + n - 1) = monom 1 (m + n - Suc i) * q" (is "?l = ?r") | |
proof - | |
let ?S = "sylvester_mat p q" | |
have c: "m+n = dim_col ?S" and r: "m+n = dim_row ?S" unfolding m_def n_def by auto | |
hence "dim_col ?S > 0" "i < dim_row ?S" using imn by auto | |
from mk_poly_mk_poly2[OF this] | |
have "?l = mk_poly2 (sylvester_mat p q) $ i" unfolding m_def n_def by auto | |
also have "... = ?r" | |
apply(subst mk_poly2_sylvester_lower) | |
using ni imn unfolding n_def m_def by auto | |
finally show ?thesis. | |
qed | |
text \<open>The next lemma corresponds to Lemma 7.2.1.\<close> | |
lemma resultant_as_poly: | |
fixes p q :: "'a :: comm_ring_1 poly" | |
assumes degp: "degree p > 0" and degq: "degree q > 0" | |
shows "\<exists>p' q'. degree p' < degree q \<and> degree q' < degree p \<and> | |
[: resultant p q :] = p' * p + q' * q" | |
proof (intro exI conjI) | |
define m where "m = degree p" | |
define n where "n = degree q" | |
define d where "d = dim_row (mk_poly (sylvester_mat p q))" | |
define c where "c = (\<lambda>i. coeff_lift (cofactor (sylvester_mat p q) i (m+n-1)))" | |
define p' where "p' = (\<Sum>i<n. monom 1 (n - Suc i) * c i)" | |
define q' where "q' = (\<Sum>i<m. monom 1 (m - Suc i) * c (n+i))" | |
have degc: "\<And>i. degree (c i) = 0" unfolding c_def by auto | |
have dmn: "d = m+n" and mnd: "m + n = d" unfolding d_def m_def n_def by auto | |
have "[: resultant p q :] = | |
(\<Sum>i<d. mk_poly (sylvester_mat p q) $$ (i,m+n-1) * | |
cofactor (mk_poly (sylvester_mat p q)) i (m+n-1))" | |
unfolding resultant_def | |
unfolding det_mk_poly[symmetric] | |
unfolding m_def n_def d_def | |
apply(rule laplace_expansion_column[of _ _ "degree p + degree q - 1"]) | |
apply(rule carrier_matI) using degp by auto | |
also { fix i assume i: "i<d" | |
have d2: "d = dim_row (sylvester_mat p q)" unfolding d_def by auto | |
have "cofactor (mk_poly (sylvester_mat p q)) i (m+n-1) = | |
(- 1) ^ (i + (m+n-1)) * det (mat_delete (mk_poly (sylvester_mat p q)) i (m+n-1))" | |
using cofactor_def. | |
also have "... = | |
(- 1) ^ (i+m+n-1) * coeff_lift (det (mat_delete (sylvester_mat p q) i (m+n-1)))" | |
using mk_poly_delete[OF i[unfolded d2]] degp degq | |
unfolding m_def n_def by (auto simp add: add.assoc) | |
also have "i+m+n-1 = i+(m+n-1)" using i[folded mnd] by auto | |
finally have "cofactor (mk_poly (sylvester_mat p q)) i (m+n-1) = c i" | |
unfolding c_def cofactor_def hom_distribs by simp | |
} | |
hence "... = (\<Sum>i<d. mk_poly (sylvester_mat p q) $$ (i, m+n-1) * c i)" | |
(is "_ = sum ?f _") by auto | |
also have "... = sum ?f ({..<n} \<union> {n ..<d})" unfolding dmn apply(subst ivl_disj_un(8)) by auto | |
also have "... = sum ?f {..<n} + sum ?f {n..<d}" apply(subst sum.union_disjoint) by auto | |
also { fix i assume i: "i < n" | |
have "?f i = monom 1 (n - Suc i) * c i * p" | |
unfolding m_def n_def | |
apply(subst mk_poly_sylvester_upper) | |
using i unfolding n_def by auto | |
} | |
hence "sum ?f {..<n} = p' * p" unfolding p'_def sum_distrib_right by auto | |
also { fix i assume i: "i \<in> {n..<d}" | |
have "?f i = monom 1 (m + n - Suc i) * c i * q" | |
unfolding m_def n_def | |
apply(subst mk_poly_sylvester_lower) | |
using i unfolding dmn n_def m_def by auto | |
} | |
hence "sum ?f {n..<d} = (\<Sum>i=n..<d. monom 1 (m + n - Suc i) * c i) * q" | |
(is "_ = sum ?h _ * _") unfolding sum_distrib_right by auto | |
also have "{n..<d} = (\<lambda>i. i+n) ` {0..<m}" | |
by (simp add: dmn) | |
also have "sum ?h ... = sum (?h \<circ> (\<lambda>i. i+n)) {0..<m}" | |
apply(subst sum.reindex[symmetric]) | |
apply (rule inj_onI) by auto | |
also have "... = q'" unfolding q'_def apply(rule sum.cong) by (auto simp add: add.commute) | |
finally show main: "[:resultant p q:] = p' * p + q' * q". | |
show "degree p' < n" | |
unfolding p'_def | |
apply(rule degree_sum_smaller) | |
using degq[folded n_def] apply force+ | |
proof - | |
fix i assume i: "i \<in> {..<n}" | |
show "degree (monom 1 (n - Suc i) * c i) < n" | |
apply (rule order.strict_trans1) | |
apply (rule degree_mult_le) | |
unfolding add.right_neutral degc | |
apply (rule order.strict_trans1) | |
apply (rule degree_monom_le) using i by auto | |
qed | |
show "degree q' < m" | |
unfolding q'_def | |
apply (rule degree_sum_smaller) | |
using degp[folded m_def] apply force+ | |
proof - | |
fix i assume i: "i \<in> {..<m}" | |
show "degree (monom 1 (m-Suc i) * c (n+i)) < m" | |
apply (rule order.strict_trans1) | |
apply (rule degree_mult_le) | |
unfolding add.right_neutral degc | |
apply (rule order.strict_trans1) | |
apply (rule degree_monom_le) using i by auto | |
qed | |
qed | |
end | |
subsubsection \<open>Resultant as Nonzero Polynomial Expression\<close> | |
lemma resultant_zero: | |
fixes p q :: "'a :: comm_ring_1 poly" | |
assumes deg: "degree p > 0 \<or> degree q > 0" | |
and xp: "poly p x = 0" and xq: "poly q x = 0" | |
shows "resultant p q = 0" | |
proof - | |
{ assume degp: "degree p > 0" and degq: "degree q > 0" | |
obtain p' q' where "[: resultant p q :] = p' * p + q' * q" | |
using resultant_as_poly[OF degp degq] by force | |
hence "resultant p q = poly (p' * p + q' * q) x" | |
using mpoly_base_conv(2)[of "resultant p q"] by auto | |
also have "... = poly p x * poly p' x + poly q x * poly q' x" | |
unfolding poly2_def by simp | |
finally have ?thesis using xp xq by simp | |
} moreover | |
{ assume degp: "degree p = 0" | |
have p: "p = [:0:]" using xp degree_0_id[OF degp,symmetric] by (metis mpoly_base_conv(2)) | |
have ?thesis unfolding p using degp deg by simp | |
} moreover | |
{ assume degq: "degree q = 0" | |
have q: "q = [:0:]" using xq degree_0_id[OF degq,symmetric] by (metis mpoly_base_conv(2)) | |
have ?thesis unfolding q using degq deg by simp | |
} | |
ultimately show ?thesis by auto | |
qed | |
lemma poly_resultant_zero: | |
fixes p q :: "'a :: comm_ring_1 poly poly" | |
assumes deg: "degree p > 0 \<or> degree q > 0" | |
assumes p0: "poly2 p x y = 0" and q0: "poly2 q x y = 0" | |
shows "poly (resultant p q) x = 0" | |
proof - | |
{ assume "degree p > 0" "degree q > 0" | |
from resultant_as_poly[OF this] | |
obtain p' q' where "[: resultant p q :] = p' * p + q' * q" by force | |
hence "resultant p q = poly (p' * p + q' * q) [:y:]" | |
using mpoly_base_conv(2)[of "resultant p q"] by auto | |
also have "poly ... x = poly2 p x y * poly2 p' x y + poly2 q x y * poly2 q' x y" | |
unfolding poly2_def by simp | |
finally have ?thesis unfolding p0 q0 by simp | |
} moreover { | |
assume degp: "degree p = 0" | |
hence p: "p = [: coeff p 0 :]" by(subst degree_0_id[OF degp,symmetric],simp) | |
hence "resultant p q = coeff p 0 ^ degree q" using resultant_const(1) by metis | |
also have "poly ... x = poly (coeff p 0) x ^ degree q" by auto | |
also have "... = poly2 p x y ^ degree q" unfolding poly2_def by(subst p, auto) | |
finally have ?thesis unfolding p0 using deg degp zero_power by auto | |
} moreover { | |
assume degq: "degree q = 0" | |
hence q: "q = [: coeff q 0 :]" by(subst degree_0_id[OF degq,symmetric],simp) | |
hence "resultant p q = coeff q 0 ^ degree p" using resultant_const(2) by metis | |
also have "poly ... x = poly (coeff q 0) x ^ degree p" by auto | |
also have "... = poly2 q x y ^ degree p" unfolding poly2_def by(subst q, auto) | |
finally have ?thesis unfolding q0 using deg degq zero_power by auto | |
} | |
ultimately show ?thesis by auto | |
qed | |
lemma resultant_as_nonzero_poly_weak: | |
fixes p q :: "'a :: idom poly" | |
assumes degp: "degree p > 0" and degq: "degree q > 0" | |
and r0: "resultant p q \<noteq> 0" | |
shows "\<exists>p' q'. degree p' < degree q \<and> degree q' < degree p \<and> | |
[: resultant p q :] = p' * p + q' * q \<and> p' \<noteq> 0 \<and> q' \<noteq> 0" | |
proof - | |
obtain p' q' | |
where deg: "degree p' < degree q" "degree q' < degree p" | |
and main: "[: resultant p q :] = p' * p + q' * q" | |
using resultant_as_poly[OF degp degq] by auto | |
have p0: "p \<noteq> 0" using degp by auto | |
have q0: "q \<noteq> 0" using degq by auto | |
show ?thesis | |
proof (intro exI conjI notI) | |
assume "p' = 0" | |
hence "[: resultant p q :] = q' * q" using main by auto | |
also hence d0: "0 = degree (q' * q)" by (metis degree_pCons_0) | |
{ assume "q' \<noteq> 0" | |
hence "degree (q' * q) = degree q' + degree q" | |
apply(rule degree_mult_eq) using q0 by auto | |
hence False using d0 degq by auto | |
} hence "q' = 0" by auto | |
finally show False using r0 by auto | |
next | |
assume "q' = 0" | |
hence "[: resultant p q :] = p' * p" using main by auto | |
also | |
hence d0: "0 = degree (p' * p)" by (metis degree_pCons_0) | |
{ assume "p' \<noteq> 0" | |
hence "degree (p' * p) = degree p' + degree p" | |
apply(rule degree_mult_eq) using p0 by auto | |
hence False using d0 degp by auto | |
} hence "p' = 0" by auto | |
finally show False using r0 by auto | |
qed fact+ | |
qed | |
text \<open> Next lemma corresponds to Lemma 7.2.2 of the textbook \<close> | |
lemma resultant_as_nonzero_poly: | |
fixes p q :: "'a :: idom poly" | |
defines "m \<equiv> degree p" and "n \<equiv> degree q" | |
assumes degp: "m > 0" and degq: "n > 0" | |
shows "\<exists>p' q'. degree p' < n \<and> degree q' < m \<and> | |
[: resultant p q :] = p' * p + q' * q \<and> p' \<noteq> 0 \<and> q' \<noteq> 0" | |
proof (cases "resultant p q = 0") | |
case False | |
thus ?thesis | |
using resultant_as_nonzero_poly_weak degp degq | |
unfolding m_def n_def by auto | |
next case True | |
define S where "S = transpose_mat (sylvester_mat p q)" | |
have S: "S \<in> carrier_mat (m+n) (m+n)" unfolding S_def m_def n_def by auto | |
have "det S = 0" using True | |
unfolding resultant_def S_def apply (subst det_transpose) by auto | |
then obtain v | |
where v: "v \<in> carrier_vec (m+n)" and v0: "v \<noteq> 0\<^sub>v (m+n)" and "S *\<^sub>v v = 0\<^sub>v (m+n)" | |
using det_0_iff_vec_prod_zero[OF S] by auto | |
hence "poly_of_vec (S *\<^sub>v v) = 0" by auto | |
hence main: "poly_of_vec (vec_first v n) * p + poly_of_vec (vec_last v m) * q = 0" | |
(is "?p * _ + ?q * _ = _") | |
using sylvester_vec_poly[OF v[unfolded m_def n_def], folded m_def n_def S_def] | |
by auto | |
have split: "vec_first v n @\<^sub>v vec_last v m = v" | |
using vec_first_last_append[simplified add.commute] v by auto | |
show ?thesis | |
proof(intro exI conjI) | |
show "[: resultant p q :] = ?p * p + ?q * q" unfolding True using main by auto | |
show "?p \<noteq> 0" | |
proof | |
assume p'0: "?p = 0" | |
hence "?q * q = 0" using main by auto | |
hence "?q = 0" using degq n_def by auto | |
hence "vec_last v m = 0\<^sub>v m" unfolding poly_of_vec_0_iff by auto | |
also have "vec_first v n @\<^sub>v ... = 0\<^sub>v (m+n)" using p'0 unfolding poly_of_vec_0_iff by auto | |
finally have "v = 0\<^sub>v (m+n)" using split by auto | |
thus False using v0 by auto | |
qed | |
show "?q \<noteq> 0" | |
proof | |
assume q'0: "?q = 0" | |
hence "?p * p = 0" using main by auto | |
hence "?p = 0" using degp m_def by auto | |
hence "vec_first v n = 0\<^sub>v n" unfolding poly_of_vec_0_iff by auto | |
also have "... @\<^sub>v vec_last v m = 0\<^sub>v (m+n)" using q'0 unfolding poly_of_vec_0_iff by auto | |
finally have "v = 0\<^sub>v (m+n)" using split by auto | |
thus False using v0 by auto | |
qed | |
show "degree ?p < n" using degree_poly_of_vec_less[of "vec_first v n"] using degq by auto | |
show "degree ?q < m" using degree_poly_of_vec_less[of "vec_last v m"] using degp by auto | |
qed | |
qed | |
text\<open>Corresponds to Lemma 7.2.3 of the textbook\<close> | |
lemma resultant_zero_imp_common_factor: | |
fixes p q :: "'a :: ufd poly" | |
assumes deg: "degree p > 0 \<or> degree q > 0" and r0: "resultant p q = 0" | |
shows "\<not> coprime p q" | |
unfolding neq0_conv[symmetric] | |
proof - | |
{ assume degp: "degree p > 0" and degq: "degree q > 0" | |
assume cop: "coprime p q" | |
obtain p' q' where "p' * p + q' * q = 0" | |
and p': "degree p' < degree q" and q': "degree q' < degree p" | |
and p'0: "p' \<noteq> 0" and q'0: "q' \<noteq> 0" | |
using resultant_as_nonzero_poly[OF degp degq] r0 by auto | |
hence "p' * p = - q' * q" by (simp add: eq_neg_iff_add_eq_0) | |
from some_gcd.coprime_mult_cross_dvd[OF cop this] | |
have "p dvd q'" by auto | |
from dvd_imp_degree_le[OF this q'0] | |
have "degree p \<le> degree q'" by auto | |
hence False using q' by auto | |
} | |
moreover | |
{ assume degp: "degree p = 0" | |
then obtain x where "p = [:x:]" by (elim degree_eq_zeroE) | |
moreover hence "resultant p q = x ^ degree q" using resultant_const by auto | |
hence "x = 0" using r0 by auto | |
ultimately have "p = 0" by auto | |
hence ?thesis unfolding not_coprime_iff_common_factor | |
by (metis deg degp dvd_0_right dvd_refl less_numeral_extra(3) poly_dvd_1) | |
} | |
moreover | |
{ assume degq: "degree q = 0" | |
then obtain x where "q = [:x:]" by (elim degree_eq_zeroE) | |
moreover hence "resultant p q = x ^ degree p" using resultant_const by auto | |
hence "x = 0" using r0 by auto | |
ultimately have "q = 0" by auto | |
hence ?thesis unfolding not_coprime_iff_common_factor | |
by (metis deg degq dvd_0_right dvd_refl less_numeral_extra(3) poly_dvd_1) | |
} | |
ultimately show ?thesis by auto | |
qed | |
lemma resultant_non_zero_imp_coprime: | |
assumes nz: "resultant (f :: 'a :: field poly) g \<noteq> 0" | |
and nz': "f \<noteq> 0 \<or> g \<noteq> 0" | |
shows "coprime f g" | |
proof (cases "degree f = 0 \<or> degree g = 0") | |
case False | |
define r where "r = [:resultant f g:]" | |
from nz have r: "r \<noteq> 0" unfolding r_def by auto | |
from False have "degree f > 0" "degree g > 0" by auto | |
from resultant_as_nonzero_poly_weak[OF this nz] | |
obtain p q where "degree p < degree g" "degree q < degree f" | |
and id: "r = p * f + q * g" | |
and "p \<noteq> 0" "q \<noteq> 0" unfolding r_def by auto | |
define h where "h = some_gcd f g" | |
have "h dvd f" "h dvd g" unfolding h_def by auto | |
then obtain j k where f: "f = h * j" and g: "g = h * k" unfolding dvd_def by auto | |
from id[unfolded f g] have id: "h * (p * j + q * k) = r" by (auto simp: field_simps) | |
from arg_cong[OF id, of degree] have "degree (h * (p * j + q * k)) = 0" | |
unfolding r_def by auto | |
also have "degree (h * (p * j + q * k)) = degree h + degree (p * j + q * k)" | |
by (subst degree_mult_eq, insert id r, auto) | |
finally have h: "degree h = 0" "h \<noteq> 0" using r id by auto | |
thus ?thesis unfolding h_def using is_unit_iff_degree some_gcd.gcd_dvd_1 by blast | |
next | |
case True | |
thus ?thesis | |
proof | |
assume deg_g: "degree g = 0" | |
show ?thesis | |
proof (cases "g = 0") | |
case False | |
then show ?thesis using divides_degree[of _ g, unfolded deg_g] | |
by (simp add: is_unit_right_imp_coprime) | |
next | |
case g: True | |
then have "g = [:0:]" by auto | |
from nz[unfolded this resultant_const] have "degree f = 0" by auto | |
with nz' show ?thesis unfolding g by auto | |
qed | |
next | |
assume deg_f: "degree f = 0" | |
show ?thesis | |
proof (cases "f = 0") | |
case False | |
then show ?thesis using divides_degree[of _ f, unfolded deg_f] | |
by (simp add: is_unit_left_imp_coprime) | |
next | |
case f: True | |
then have "f = [:0:]" by auto | |
from nz[unfolded this resultant_const] have "degree g = 0" by auto | |
with nz' show ?thesis unfolding f by auto | |
qed | |
qed | |
qed | |
end | |