Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
section \<open>Separation of Roots: Sturm\<close> | |
text \<open>We adapt the existing theory on Sturm's theorem to work on rational numbers instead of real | |
numbers. The reason is that we want to implement real numbers as real algebraic numbers with the | |
help of Sturm's theorem to separate the roots. To this end, we just copy the definitions of | |
of the algorithms w.r.t. Sturm and let them be executed on rational numbers. We then | |
prove that corresponds to a homomorphism and therefore can transfer the existing soundness results.\<close> | |
theory Sturm_Rat | |
imports | |
Sturm_Sequences.Sturm_Theorem | |
Algebraic_Numbers_Prelim | |
Berlekamp_Zassenhaus.Square_Free_Int_To_Square_Free_GFp | |
begin | |
hide_const (open) UnivPoly.coeff | |
(* TODO: Move *) | |
lemma root_primitive_part [simp]: | |
fixes p :: "'a :: {semiring_gcd, semiring_no_zero_divisors} poly" | |
shows "poly (primitive_part p) x = 0 \<longleftrightarrow> poly p x = 0" | |
proof(cases "p = 0") | |
case True | |
then show ?thesis by auto | |
next | |
case False | |
have "poly p x = content p * poly (primitive_part p) x" | |
by (metis content_times_primitive_part poly_smult) | |
also have "\<dots> = 0 \<longleftrightarrow> poly (primitive_part p) x = 0" by (simp add: False) | |
finally show ?thesis by auto | |
qed | |
(*TODO: Move*) | |
lemma irreducible_primitive_part: | |
assumes "irreducible p" and "degree p > 0" | |
shows "primitive_part p = p" | |
using irreducible_content[OF assms(1), unfolded primitive_iff_content_eq_1] assms(2) | |
by (auto simp: primitive_part_def abs_poly_def) | |
subsection \<open>Interface for Separating Roots\<close> | |
text \<open>For a given rational polynomial, we need to know how many real roots are in a given closed interval, | |
and how many real roots are in an interval $(-\infty,r]$.\<close> | |
datatype root_info = Root_Info (l_r: "rat \<Rightarrow> rat \<Rightarrow> nat") (number_root: "rat \<Rightarrow> nat") | |
hide_const (open) l_r | |
hide_const (open) number_root | |
definition count_roots_interval_sf :: "real poly \<Rightarrow> (real \<Rightarrow> real \<Rightarrow> nat) \<times> (real \<Rightarrow> nat)" where | |
"count_roots_interval_sf p = (let ps = sturm_squarefree p | |
in ((\<lambda> a b. sign_changes ps a - sign_changes ps b + (if poly p a = 0 then 1 else 0)), | |
(\<lambda> a. sign_changes_neg_inf ps - sign_changes ps a)))" | |
definition count_roots_interval :: "real poly \<Rightarrow> (real \<Rightarrow> real \<Rightarrow> nat) \<times> (real \<Rightarrow> nat)" where | |
"count_roots_interval p = (let ps = sturm p | |
in ((\<lambda> a b. sign_changes ps a - sign_changes ps b + (if poly p a = 0 then 1 else 0)), | |
(\<lambda> a. sign_changes_neg_inf ps - sign_changes ps a)))" | |
lemma count_roots_interval_iff: "square_free p \<Longrightarrow> count_roots_interval p = count_roots_interval_sf p" | |
unfolding count_roots_interval_def count_roots_interval_sf_def sturm_squarefree_def | |
square_free_iff_separable separable_def by (cases "p = 0", auto) | |
lemma count_roots_interval_sf: assumes p: "p \<noteq> 0" | |
and cr: "count_roots_interval_sf p = (cr,nr)" | |
shows "a \<le> b \<Longrightarrow> cr a b = (card {x. a \<le> x \<and> x \<le> b \<and> poly p x = 0})" | |
"nr a = card {x. x \<le> a \<and> poly p x = 0}" | |
proof - | |
have id: "a \<le> b \<Longrightarrow> { x. a \<le> x \<and> x \<le> b \<and> poly p x = 0} = | |
{ x. a < x \<and> x \<le> b \<and> poly p x = 0} \<union> (if poly p a = 0 then {a} else {})" | |
(is "_ \<Longrightarrow> _ = ?R \<union> ?S") using not_less by force | |
have RS: "finite ?R" "finite ?S" "?R \<inter> ?S = {}" using p by (auto simp: poly_roots_finite) | |
show "a \<le> b \<Longrightarrow> cr a b = (card {x. a \<le> x \<and> x \<le> b \<and> poly p x = 0})" | |
"nr a = card {x. x \<le> a \<and> poly p x = 0}" using cr unfolding arg_cong[OF id, of card] card_Un_disjoint[OF RS] | |
count_roots_interval_sf_def count_roots_between_correct[symmetric] | |
count_roots_below_correct[symmetric] count_roots_below_def | |
count_roots_between_def Let_def using p by auto | |
qed | |
lemma count_roots_interval: assumes cr: "count_roots_interval p = (cr,nr)" | |
and sf: "square_free p" | |
shows "a \<le> b \<Longrightarrow> cr a b = (card {x. a \<le> x \<and> x \<le> b \<and> poly p x = 0})" | |
"nr a = card {x. x \<le> a \<and> poly p x = 0}" | |
using count_roots_interval_sf[OF _ cr[unfolded count_roots_interval_iff[OF sf]]] | |
sf[unfolded square_free_def] by blast+ | |
definition root_cond :: "int poly \<times> rat \<times> rat \<Rightarrow> real \<Rightarrow> bool" where | |
"root_cond plr x = (case plr of (p,l,r) \<Rightarrow> of_rat l \<le> x \<and> x \<le> of_rat r \<and> ipoly p x = 0)" | |
definition root_info_cond :: "root_info \<Rightarrow> int poly \<Rightarrow> bool" where | |
"root_info_cond ri p \<equiv> (\<forall> a b. a \<le> b \<longrightarrow> root_info.l_r ri a b = card {x. root_cond (p,a,b) x}) | |
\<and> (\<forall> a. root_info.number_root ri a = card {x. x \<le> real_of_rat a \<and> ipoly p x = 0})" | |
lemma root_info_condD: "root_info_cond ri p \<Longrightarrow> a \<le> b \<Longrightarrow> root_info.l_r ri a b = card {x. root_cond (p,a,b) x}" | |
"root_info_cond ri p \<Longrightarrow> root_info.number_root ri a = card {x. x \<le> real_of_rat a \<and> ipoly p x = 0}" | |
unfolding root_info_cond_def by auto | |
definition count_roots_interval_sf_rat :: "int poly \<Rightarrow> root_info" where | |
"count_roots_interval_sf_rat p = (let pp = real_of_int_poly p; | |
(cr,nr) = count_roots_interval_sf pp | |
in Root_Info (\<lambda> a b. cr (of_rat a) (of_rat b)) (\<lambda> a. nr (of_rat a)))" | |
definition count_roots_interval_rat :: "int poly \<Rightarrow> root_info" where | |
[code del]: "count_roots_interval_rat p = (let pp = real_of_int_poly p; | |
(cr,nr) = count_roots_interval pp | |
in Root_Info (\<lambda> a b. cr (of_rat a) (of_rat b)) (\<lambda> a. nr (of_rat a)))" | |
definition count_roots_rat :: "int poly \<Rightarrow> nat" where | |
[code del]: "count_roots_rat p = (count_roots (real_of_int_poly p))" | |
lemma count_roots_interval_sf_rat: assumes p: "p \<noteq> 0" | |
shows "root_info_cond (count_roots_interval_sf_rat p) p" | |
proof - | |
let ?p = "real_of_int_poly p" | |
let ?r = real_of_rat | |
let ?ri = "count_roots_interval_sf_rat p" | |
from p have p: "?p \<noteq> 0" by auto | |
obtain cr nr where cr: "count_roots_interval_sf ?p = (cr,nr)" by force | |
have "?ri = Root_Info (\<lambda>a b. cr (?r a) (?r b)) (\<lambda>a. nr (?r a))" | |
unfolding count_roots_interval_sf_rat_def Let_def cr by auto | |
hence id: "root_info.l_r ?ri = (\<lambda>a b. cr (?r a) (?r b))" "root_info.number_root ?ri = (\<lambda>a. nr (?r a))" | |
by auto | |
note cr = count_roots_interval_sf[OF p cr] | |
show ?thesis unfolding root_info_cond_def id | |
proof (intro conjI impI allI) | |
fix a | |
show "nr (?r a) = card {x. x \<le> (?r a) \<and> ipoly p x = 0}" | |
using cr(2)[of "?r a"] by simp | |
next | |
fix a b :: rat | |
assume ab: "a \<le> b" | |
from ab have ab: "?r a \<le> ?r b" by (simp add: of_rat_less_eq) | |
from cr(1)[OF this] show "cr (?r a) (?r b) = card (Collect (root_cond (p, a, b)))" | |
unfolding root_cond_def[abs_def] split by simp | |
qed | |
qed | |
lemma of_rat_of_int_poly: "map_poly of_rat (of_int_poly p) = of_int_poly p" | |
by (subst map_poly_map_poly, auto simp: o_def) | |
lemma square_free_of_int_poly: assumes "square_free p" | |
shows "square_free (of_int_poly p :: 'a :: {field_gcd, field_char_0} poly)" | |
proof - | |
have "square_free (map_poly of_rat (of_int_poly p) :: 'a poly)" | |
unfolding of_rat_hom.square_free_map_poly by (rule square_free_int_rat[OF assms]) | |
thus ?thesis unfolding of_rat_of_int_poly . | |
qed | |
lemma count_roots_interval_rat: assumes sf: "square_free p" | |
shows "root_info_cond (count_roots_interval_rat p) p" | |
proof - | |
from sf have sf: "square_free (real_of_int_poly p)" by (rule square_free_of_int_poly) | |
from sf have p: "p \<noteq> 0" unfolding square_free_def by auto | |
show ?thesis | |
using count_roots_interval_sf_rat[OF p] | |
unfolding count_roots_interval_rat_def count_roots_interval_sf_rat_def | |
Let_def count_roots_interval_iff[OF sf] . | |
qed | |
lemma count_roots_rat: "count_roots_rat p = card {x. ipoly p x = (0 :: real)}" | |
unfolding count_roots_rat_def count_roots_correct .. | |
subsection \<open>Implementing Sturm on Rational Polynomials\<close> | |
function sturm_aux_rat where | |
"sturm_aux_rat (p :: rat poly) q = | |
(if degree q = 0 then [p,q] else p # sturm_aux_rat q (-(p mod q)))" | |
by (pat_completeness, simp_all) | |
termination by (relation "measure (degree \<circ> snd)", | |
simp_all add: o_def degree_mod_less') | |
lemma sturm_aux_rat: "sturm_aux (real_of_rat_poly p) (real_of_rat_poly q) = | |
map real_of_rat_poly (sturm_aux_rat p q)" | |
proof (induct p q rule: sturm_aux_rat.induct) | |
case (1 p q) | |
interpret map_poly_inj_idom_hom of_rat.. | |
note deg = of_int_hom.degree_map_poly_hom | |
show ?case | |
unfolding sturm_aux.simps[of "real_of_rat_poly p"] sturm_aux_rat.simps[of p] | |
using 1 by (cases "degree q = 0"; simp add: hom_distribs) | |
qed | |
definition sturm_rat where "sturm_rat p = sturm_aux_rat p (pderiv p)" | |
lemma sturm_rat: "sturm (real_of_rat_poly p) = map real_of_rat_poly (sturm_rat p)" | |
unfolding sturm_rat_def sturm_def | |
apply (fold of_rat_hom.map_poly_pderiv) | |
unfolding sturm_aux_rat.. | |
definition poly_number_rootat :: "rat poly \<Rightarrow> rat" where | |
"poly_number_rootat p \<equiv> sgn (coeff p (degree p))" | |
definition poly_neg_number_rootat :: "rat poly \<Rightarrow> rat" where | |
"poly_neg_number_rootat p \<equiv> if even (degree p) then sgn (coeff p (degree p)) | |
else -sgn (coeff p (degree p))" | |
lemma poly_number_rootat: "poly_inf (real_of_rat_poly p) = real_of_rat (poly_number_rootat p)" | |
unfolding poly_inf_def poly_number_rootat_def of_int_hom.degree_map_poly_hom of_rat_hom.coeff_map_poly_hom | |
real_of_rat_sgn by simp | |
lemma poly_neg_number_rootat: "poly_neg_inf (real_of_rat_poly p) = real_of_rat (poly_neg_number_rootat p)" | |
unfolding poly_neg_inf_def poly_neg_number_rootat_def of_int_hom.degree_map_poly_hom of_rat_hom.coeff_map_poly_hom | |
real_of_rat_sgn by (simp add:hom_distribs) | |
definition sign_changes_rat where | |
"sign_changes_rat ps (x::rat) = | |
length (remdups_adj (filter (\<lambda>x. x \<noteq> 0) (map (\<lambda>p. sgn (poly p x)) ps))) - 1" | |
definition sign_changes_number_rootat where | |
"sign_changes_number_rootat ps = | |
length (remdups_adj (filter (\<lambda>x. x \<noteq> 0) (map poly_number_rootat ps))) - 1" | |
definition sign_changes_neg_number_rootat where | |
"sign_changes_neg_number_rootat ps = | |
length (remdups_adj (filter (\<lambda>x. x \<noteq> 0) (map poly_neg_number_rootat ps))) - 1" | |
lemma real_of_rat_list_neq: "list_neq (map real_of_rat xs) 0 | |
= map real_of_rat (list_neq xs 0)" | |
by (induct xs, auto) | |
lemma real_of_rat_remdups_adj: "remdups_adj (map real_of_rat xs) = map real_of_rat (remdups_adj xs)" | |
by (induct xs rule: remdups_adj.induct, auto) | |
lemma sign_changes_rat: "sign_changes (map real_of_rat_poly ps) (real_of_rat x) | |
= sign_changes_rat ps x" (is "?l = ?r") | |
proof - | |
define xs where "xs = list_neq (map (\<lambda>p. sgn (poly p x)) ps) 0" | |
have "?l = length (remdups_adj (list_neq (map real_of_rat (map (\<lambda>xa. (sgn (poly xa x))) ps)) 0)) - 1" | |
by (simp add: sign_changes_def real_of_rat_sgn o_def) | |
also have "\<dots> = ?r" unfolding sign_changes_rat_def real_of_rat_list_neq | |
unfolding real_of_rat_remdups_adj by simp | |
finally show ?thesis . | |
qed | |
lemma sign_changes_neg_number_rootat: "sign_changes_neg_inf (map real_of_rat_poly ps) | |
= sign_changes_neg_number_rootat ps" (is "?l = ?r") | |
proof - | |
have "?l = length (remdups_adj (list_neq (map real_of_rat (map poly_neg_number_rootat ps)) 0)) - 1" | |
by (simp add: sign_changes_neg_inf_def o_def real_of_rat_sgn poly_neg_number_rootat) | |
also have "\<dots> = ?r" unfolding sign_changes_neg_number_rootat_def real_of_rat_list_neq | |
unfolding real_of_rat_remdups_adj by simp | |
finally show ?thesis . | |
qed | |
lemma sign_changes_number_rootat: "sign_changes_inf (map real_of_rat_poly ps) | |
= sign_changes_number_rootat ps" (is "?l = ?r") | |
proof - | |
have "?l = length (remdups_adj (list_neq (map real_of_rat (map poly_number_rootat ps)) 0)) - 1" | |
unfolding sign_changes_inf_def | |
unfolding map_map o_def real_of_rat_sgn poly_number_rootat .. | |
also have "\<dots> = ?r" unfolding sign_changes_number_rootat_def real_of_rat_list_neq | |
unfolding real_of_rat_remdups_adj by simp | |
finally show ?thesis . | |
qed | |
lemma count_roots_interval_rat_code[code]: | |
"count_roots_interval_rat p = (let rp = map_poly rat_of_int p; ps = sturm_rat rp | |
in Root_Info | |
(\<lambda> a b. sign_changes_rat ps a - sign_changes_rat ps b + (if poly rp a = 0 then 1 else 0)) | |
(\<lambda> a. sign_changes_neg_number_rootat ps - sign_changes_rat ps a))" | |
unfolding count_roots_interval_rat_def Let_def count_roots_interval_def split of_rat_of_int_poly[symmetric, where 'a = real] | |
sturm_rat sign_changes_rat | |
by (simp add: sign_changes_neg_number_rootat) | |
lemma count_roots_rat_code[code]: | |
"count_roots_rat p = (let rp = map_poly rat_of_int p in if p = 0 then 0 else let ps = sturm_rat rp | |
in sign_changes_neg_number_rootat ps - sign_changes_number_rootat ps)" | |
unfolding count_roots_rat_def Let_def sturm_rat count_roots_code of_rat_of_int_poly[symmetric, where 'a = real] | |
sign_changes_neg_number_rootat sign_changes_number_rootat | |
by simp | |
hide_const (open) count_roots_interval_sf_rat | |
text \<open>Finally we provide an even more efficient implementation which | |
avoids the "poly p x = 0" test, but it is restricted to irreducible polynomials.\<close> | |
definition root_info :: "int poly \<Rightarrow> root_info" where | |
"root_info p = (if degree p = 1 then | |
(let x = Rat.Fract (- coeff p 0) (coeff p 1) | |
in Root_Info (\<lambda> l r. if l \<le> x \<and> x \<le> r then 1 else 0) (\<lambda> b. if x \<le> b then 1 else 0)) else | |
(let rp = map_poly rat_of_int p; ps = sturm_rat rp in | |
Root_Info (\<lambda> a b. sign_changes_rat ps a - sign_changes_rat ps b) | |
(\<lambda> a. sign_changes_neg_number_rootat ps - sign_changes_rat ps a)))" | |
lemma root_info: | |
assumes irr: "irreducible p" and deg: "degree p > 0" | |
shows "root_info_cond (root_info p) p" | |
proof (cases "degree p = 1") | |
case deg: True | |
from degree1_coeffs[OF this] obtain a b where p: "p = [:b,a:]" and "a \<noteq> 0" by auto | |
from deg have "degree (real_of_int_poly p) = 1" by simp | |
from roots1[OF this, unfolded roots1_def] p | |
have id: "(ipoly p x = 0) = ((x :: real) = - b / a)" for x by auto | |
have idd: "{x. real_of_rat aa \<le> x \<and> | |
x \<le> real_of_rat ba \<and> x = real_of_int (- b) / real_of_int a} | |
= (if real_of_rat aa \<le> real_of_int (- b) / real_of_int a \<and> | |
real_of_int (- b) / real_of_int a \<le> real_of_rat ba then {real_of_int (- b) / real_of_int a} else {})" | |
for aa ba by auto | |
have iddd: "{x. x \<le> real_of_rat aa \<and> x = real_of_int (- b) / real_of_int a} | |
= (if real_of_int (- b) / real_of_int a \<le> real_of_rat aa then {real_of_int (- b) / real_of_int a} else {})" for aa | |
by auto | |
have id4: "real_of_int x = real_of_rat (rat_of_int x)" for x by simp | |
show ?thesis unfolding root_info_def deg unfolding root_info_cond_def id root_cond_def split | |
unfolding p Fract_of_int_quotient Let_def idd iddd | |
unfolding id4 of_rat_divide[symmetric] of_rat_less_eq by auto | |
next | |
case False | |
have irr_d: "irreducible\<^sub>d p" by (simp add: deg irr irreducible_connect_rev) | |
from irreducible\<^sub>d_int_rat[OF this] | |
have "irreducible (of_int_poly p :: rat poly)" by auto | |
from irreducible_root_free[OF this] | |
have idd: "(poly (of_int_poly p) a = 0) = False" for a :: rat | |
unfolding root_free_def using False by auto | |
have id: "root_info p = count_roots_interval_rat p" | |
unfolding root_info_def if_False count_roots_interval_rat_code Let_def idd using False by auto | |
show ?thesis unfolding id | |
by (rule count_roots_interval_rat[OF irreducible\<^sub>d_square_free[OF irr_d]]) | |
qed | |
end | |