Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Refinement KAT | |
Author: Victor Gomes, Georg Struth | |
Maintainer: Victor Gomes <victor.gomes@cl.cam.ac.uk> | |
Georg Struth <g.struth@sheffield.ac.uk> | |
*) | |
subsection \<open>Refinement Component\<close> | |
theory RKAT | |
imports "AVC_KAT/VC_KAT" | |
begin | |
subsubsection\<open>RKAT: Definition and Basic Properties\<close> | |
text \<open>A refinement KAT is a KAT expanded by Morgan's specification statement.\<close> | |
class rkat = kat + | |
fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" | |
assumes spec_def: "x \<le> R p q \<longleftrightarrow> H p x q" | |
begin | |
lemma R1: "H p (R p q) q" | |
using spec_def by blast | |
lemma R2: "H p x q \<Longrightarrow> x \<le> R p q" | |
by (simp add: spec_def) | |
subsubsection\<open>Propositional Refinement Calculus\<close> | |
lemma R_skip: "1 \<le> R p p" | |
proof - | |
have "H p 1 p" | |
by (simp add: H_skip) | |
thus ?thesis | |
by (rule R2) | |
qed | |
lemma R_cons: "t p \<le> t p' \<Longrightarrow> t q' \<le> t q \<Longrightarrow> R p' q' \<le> R p q" | |
proof - | |
assume h1: "t p \<le> t p'" and h2: "t q' \<le> t q" | |
have "H p' (R p' q') q'" | |
by (simp add: R1) | |
hence "H p (R p' q') q" | |
using h1 h2 H_cons_1 H_cons_2 by blast | |
thus ?thesis | |
by (rule R2) | |
qed | |
lemma R_seq: "(R p r) \<cdot> (R r q) \<le> R p q" | |
proof - | |
have "H p (R p r) r" and "H r (R r q) q" | |
by (simp add: R1)+ | |
hence "H p ((R p r) \<cdot> (R r q)) q" | |
by (rule H_seq_swap) | |
thus ?thesis | |
by (rule R2) | |
qed | |
lemma R_cond: "if v then (R (t v \<cdot> t p) q) else (R (n v \<cdot> t p) q) fi \<le> R p q" | |
proof - | |
have "H (t v \<cdot> t p) (R (t v \<cdot> t p) q) q" and "H (n v \<cdot> t p) (R (n v \<cdot> t p) q) q" | |
by (simp add: R1)+ | |
hence "H p (if v then (R (t v \<cdot> t p) q) else (R (n v \<cdot> t p) q) fi) q" | |
by (simp add: H_cond n_mult_comm) | |
thus ?thesis | |
by (rule R2) | |
qed | |
lemma R_loop: "while q do (R (t p \<cdot> t q) p) od \<le> R p (t p \<cdot> n q)" | |
proof - | |
have "H (t p \<cdot> t q) (R (t p \<cdot> t q) p) p" | |
by (simp_all add: R1) | |
hence "H p (while q do (R (t p \<cdot> t q) p) od) (t p \<cdot> n q)" | |
by (simp add: H_loop) | |
thus ?thesis | |
by (rule R2) | |
qed | |
lemma R_zero_one: "x \<le> R 0 1" | |
proof - | |
have "H 0 x 1" | |
by (simp add: H_def) | |
thus ?thesis | |
by (rule R2) | |
qed | |
lemma R_one_zero: "R 1 0 = 0" | |
proof - | |
have "H 1 (R 1 0) 0" | |
by (simp add: R1) | |
thus ?thesis | |
by (simp add: H_def join.le_bot) | |
qed | |
end | |
end | |