Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /afp /Allen_Calculus /disjoint_relations.thy
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
9.59 kB
(*
Title: Allen's qualitative temporal calculus
Author: Fadoua Ghourabi (fadouaghourabi@gmail.com)
Affiliation: Ochanomizu University, Japan
*)
theory disjoint_relations
imports
allen
begin
section \<open>PD property\<close>
text \<open>The 13 time interval relations (i.e. e, b, m, s, f, d, ov and their inverse relations) are pairwise disjoint.\<close>
(**e**)
lemma em (*[simp]*):"e \<inter> m = {}"
using e m meets_irrefl
by (metis ComplI disjoint_eq_subset_Compl meets_wd subrelI)
lemma eb (*[simp]*):"e \<inter> b = {}"
using b e meets_asym
by (metis ComplI disjoint_eq_subset_Compl subrelI)
lemma eov (*[simp]*):"e \<inter> ov = {}"
apply (auto simp: e ov)
using elimmeets by blast
lemma es (*[simp]*):"e \<inter> s = {}"
apply (auto simp:e s)
using elimmeets by blast
lemma ef (*[simp]*):"e \<inter> f = {}"
using e f by (metis (no_types, lifting) ComplI disjoint_eq_subset_Compl meets_atrans subrelI)
lemma ed (*[simp]*):"e \<inter> d = {}"
using e d by (metis (no_types, lifting) ComplI disjoint_eq_subset_Compl meets_atrans subrelI)
lemma emi (*[simp]*):"e \<inter> m^-1 = {}"
using converseE em e
by (metis disjoint_iff_not_equal)
lemma ebi (*[simp]*):"e \<inter> b^-1 = {}"
using converseE eb e
by (metis disjoint_iff_not_equal)
lemma eovi (*[simp]*):"e \<inter> ov^-1 = {}"
using converseE eov e
by (metis disjoint_iff_not_equal)
lemma esi (*[simp]*):"e \<inter> s^-1 = {}"
using converseE es e
by (metis disjoint_iff_not_equal)
lemma efi (*[simp]*):"e \<inter> f^-1 = {}"
using converseE ef e
by (metis disjoint_iff_not_equal)
lemma edi (*[simp]*):"e \<inter> d^-1 = {}"
using converseE ed e
by (metis disjoint_iff_not_equal)
(**m**)
lemma mb (*[simp]*):"m \<inter> b = {}"
using m b
apply auto
using elimmeets by blast
lemma mov (*[simp]*): "m \<inter> ov = {}"
apply (auto simp:m ov)
by (meson M1 elimmeets)
lemma ms (*[simp]*):"m \<inter> s = {}"
apply (auto simp:m s)
by (meson M1 elimmeets)
lemma mf (*[simp]*):"m \<inter> f = {}"
apply (auto simp:m f)
using elimmeets by blast
lemma md (*[simp]*):"m \<inter> d = {}"
apply (auto simp: m d)
using trans2 by blast
lemma mi (*[simp]*):"m \<inter> m^-1 = {}"
apply (auto simp:m)
using converseE m meets_asym by blast
lemma mbi (*[simp]*):"m \<inter> b^-1 = {}"
apply (auto simp:mb)
apply (auto simp: m b)
using nontrans2 by blast
lemma movi (*[simp]*):"m \<inter> ov^-1 = {}"
using m ov
apply auto
using trans2 by blast
lemma msi (*[simp]*):"m \<inter> s^-1 = {}"
apply (auto simp:m s)
by (meson M1 elimmeets)
lemma mfi (*[simp]*):"m \<inter> f^-1 = {}"
apply (auto simp:m f)
by (meson M1 elimmeets)
lemma mdi (*[simp]*):"m \<inter> d^-1 = {}"
apply (auto simp:m d)
using trans2 by blast
(**b**)
lemma bov (*[simp]*):"b \<inter> ov = {}"
apply (auto simp:b ov)
by (meson M1 trans2)
lemma bs (*[simp]*):"b \<inter> s = {}"
apply (auto simp:b s)
by (meson M1 trans2)
lemma bf (*[simp]*):"b \<inter> f = {}"
apply (auto simp: b f)
by (meson M1 trans2)
lemma bd (*[simp]*):"b \<inter> d = {}"
apply (auto simp:b d)
by (meson M1 nonmeets4)
lemma bmi (*[simp]*):"b \<inter> m^-1 = {}"
using mbi by auto
lemma bi (*[simp]*):"b \<inter> b^-1 = {}"
apply (auto simp:b)
using M5exist_var3 trans2 by blast
lemma bovi (*[simp]*):"b \<inter> ov^-1 = {}"
apply (auto simp:bov)
apply (auto simp:b ov)
by (meson M1 nontrans2)
lemma bsi (*[simp]*):"b \<inter> s^-1 = {}"
using bs apply auto using b s apply auto
using trans2 by blast
lemma bfi (*[simp]*):"b \<inter> f^-1 = {}"
using bf apply auto using b f apply auto
using trans2 by blast
lemma bdi (*[simp]*):"b \<inter> d^-1 = {}"
apply (auto simp:bd)
apply (auto simp:b d)
using trans2
using M1 nonmeets4 by blast
(**ov**)
lemma ovs (*[simp]*):"ov \<inter> s = {}"
apply (auto simp:ov s)
by (meson M1 meets_atrans)
lemma ovf (*[simp]*):"ov \<inter> f = {}"
apply (auto simp:ov f)
by (meson M1 meets_atrans)
lemma ovd (*[simp]*):"ov\<inter> d = {}"
apply (auto simp:ov d)
by (meson M1 trans2)
lemma ovmi (*[simp]*):"ov \<inter> m^-1 = {}"
using movi by auto
lemma ovbi (*[simp]*):"ov \<inter> b^-1 = {}"
using bovi by blast
lemma ovi (*[simp]*):"ov \<inter> ov^-1 = {}"
apply (auto simp:ov)
by (meson M1 trans2)
lemma ovsi (*[simp]*):"ov \<inter> s^-1 = {}"
apply (auto simp:ov s)
by (meson M1 elimmeets)
lemma ovfi (*[simp]*):"ov \<inter> f^-1 = {}"
apply (auto simp:ov f)
by (meson M1 elimmeets)
lemma ovdi (*[simp]*):"ov \<inter> d^-1 = {}"
apply (auto simp:ov d)
by (meson M1 trans2)
(**s**)
lemma sf (*[simp]*):"s \<inter> f = {}"
apply (auto simp:s f)
by (metis M4 elimmeets)
lemma sd (*[simp]*):"s \<inter> d = {}"
apply (auto simp:s d)
by (metis M1 meets_atrans)
lemma smi (*[simp]*):"s \<inter> m^-1 = {}"
using msi by auto
lemma sbi (*[simp]*):"s \<inter> b^-1 = {}"
using bsi by blast
lemma sovi (*[simp]*):"s \<inter> ov^-1 = {}"
using ovsi by auto
lemma si (*[simp]*):"s \<inter> s^-1 = {}"
apply (auto simp:s)
by (meson M1 trans2)
lemma sfi (*[simp]*):"s \<inter> f^-1 = {}"
apply (auto simp:s f)
by (metis M4 elimmeets)
lemma sdi (*[simp]*):"s\<inter> d^-1 = {}"
apply (auto simp:s d)
by (meson M1 meets_atrans)
(**f**)
lemma fd (*[simp]*):"f \<inter> d = {}"
apply (auto simp:f d)
by (meson M1 meets_atrans)
lemma fmi (*[simp]*):"f \<inter> m^-1 = {}"
using mfi by auto
lemma fbi (*[simp]*):"f \<inter> b^-1 = {}"
using bfi converse_Int by auto
lemma fovi (*[simp]*):"f \<inter> ov^-1 = {}"
using ovfi by auto
lemma fsi (*[simp]*):"f \<inter> s^-1 = {}"
using sfi by auto
lemma fi (*[simp]*):"f \<inter> f^-1 = {}"
apply (auto simp:f)
by (meson M1 trans2)
lemma fdi (*[simp]*):"f \<inter> d^-1 = {}"
apply (auto simp:f d)
by (meson M1 trans2)
(**d**)
lemma dmi (*[simp]*):"d \<inter> m^-1 = {}"
using mdi by auto
lemma dbi (*[simp]*):"d \<inter> b^-1 = {}"
using bdi by blast
lemma dovi (*[simp]*):"d \<inter> ov^-1 = {}"
using ovdi by auto
lemma dsi (*[simp]*):"d \<inter> s^-1 = {}"
using sdi by auto
lemma dfi (*[simp]*):"d \<inter> f^-1 = {}"
apply (auto simp:d f)
by (meson M1 trans2)
lemma di (*[simp]*):"d \<inter> d^-1 = {}"
apply (auto simp:d)
by (meson M1 trans2)
(**m^-1**)
lemma mibi (*[simp]*):"m^-1 \<inter> b^-1 = {}"
using mb by auto
lemma miovi (*[simp]*):"m^-1 \<inter> ov^-1 = {}"
using mov by auto
lemma misi (*[simp]*):"m^-1 \<inter> s^-1 = {}"
using ms by auto
lemma mifi (*[simp]*):"m^-1 \<inter> f^-1 = {}"
using mf by auto
lemma midi (*[simp]*):"m^-1 \<inter> d^-1 = {}"
using md by auto
(**b^-1**)
lemma bid (*[simp]*):"b^-1 \<inter> d = {}"
by (simp add: dbi inf_sup_aci(1))
lemma bimi (*[simp]*):"b^-1 \<inter> m^-1 = {}"
using mibi by auto
lemma biovi (*[simp]*):"b^-1 \<inter> ov^-1 = {}"
using bov by blast
lemma bisi (*[simp]*):"b^-1 \<inter> s^-1 = {}"
using bs by blast
lemma bifi (*[simp]*):"b^-1 \<inter> f^-1 = {}"
using bf by blast
lemma bidi (*[simp]*):"b^-1 \<inter> d^-1 = {}"
using bd by blast
(** ov^-1**)
lemma ovisi (*[simp]*):"ov^-1 \<inter> s^-1 = {}"
using ovs by blast
lemma ovifi (*[simp]*):"ov^-1 \<inter> f^-1 = {}"
using ovf by blast
lemma ovidi (*[simp]*):"ov^-1 \<inter> d^-1 = {}"
using ovd by blast
(** s^-1 **)
lemma sifi (*[simp]*):"s^-1 \<inter> f^-1 = {}"
using sf by blast
lemma sidi (*[simp]*):"s^-1 \<inter> d^-1 = {}"
using sd by blast
(** f^-1**)
lemma fidi (*[simp]*):"f^-1 \<inter> d^-1 = {}"
using fd by blast
lemma eei[simp]:"e^-1 = e"
using e
by (metis converse_iff subrelI subset_antisym)
lemma rdisj_sym:"A \<inter> B = {} \<Longrightarrow> B \<inter> A = {}"
by auto
subsection \<open>Intersection rules\<close>
named_theorems e_rules declare em[e_rules] and eb[e_rules] and eov[e_rules] and es[e_rules] and ef[e_rules] and ed[e_rules] and emi[e_rules] and ebi[e_rules] and eovi[e_rules]
and esi[e_rules] and efi[e_rules] and edi[e_rules]
named_theorems m_rules declare em[THEN rdisj_sym, m_rules] and mb [m_rules] and ms [m_rules] and mov [m_rules] and mf[m_rules] and
md[m_rules] and mi [m_rules] and mbi [m_rules] and movi [m_rules] and msi [m_rules] and mfi [m_rules] and mdi [m_rules] and emi[m_rules]
named_theorems b_rules declare eb[THEN rdisj_sym, b_rules] and mb [THEN rdisj_sym, b_rules] and bs [b_rules] and bov [b_rules] and bf[b_rules] and
bd[b_rules] and bmi [b_rules] and bi [b_rules] and bovi [b_rules] and bsi [b_rules] and bfi [b_rules] and bdi [b_rules] and ebi[b_rules]
named_theorems ov_rules declare eov[THEN rdisj_sym, ov_rules] and mov [THEN rdisj_sym, ov_rules] and ovs [ov_rules] and bov [THEN rdisj_sym,ov_rules] and ovf[ov_rules] and
ovd[ov_rules] and ovmi [ov_rules] and ovi [ov_rules] and ovsi [ov_rules] and ovfi [ov_rules] and ovdi [ov_rules] and eovi[ov_rules]
named_theorems s_rules declare es[THEN rdisj_sym, s_rules] and ms [THEN rdisj_sym, s_rules] and ovs [THEN rdisj_sym, s_rules] and bs [THEN rdisj_sym,s_rules] and sf[s_rules] and
sd[s_rules] and smi [s_rules] and sovi [s_rules] and si [s_rules] and sfi [s_rules] and sdi [s_rules]
named_theorems d_rules declare ed[THEN rdisj_sym, d_rules] and md [THEN rdisj_sym, d_rules] and sd [THEN rdisj_sym, d_rules] and fd[THEN rdisj_sym, d_rules] and
ovd[THEN rdisj_sym,d_rules] and dmi [d_rules] and dovi [d_rules] and dsi [d_rules] and dfi [d_rules] and di [d_rules]
named_theorems f_rules declare ef[THEN rdisj_sym, f_rules] and mf [THEN rdisj_sym, f_rules] and sf [THEN rdisj_sym, f_rules] and ovf [THEN rdisj_sym,f_rules] and fd[f_rules] and
fmi [f_rules] and fovi [f_rules] and fsi [f_rules] and fi [f_rules] and fdi [f_rules]
end