Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Title: Allen's qualitative temporal calculus | |
Author: Fadoua Ghourabi (fadouaghourabi@gmail.com) | |
Affiliation: Ochanomizu University, Japan | |
*) | |
theory disjoint_relations | |
imports | |
allen | |
begin | |
section \<open>PD property\<close> | |
text \<open>The 13 time interval relations (i.e. e, b, m, s, f, d, ov and their inverse relations) are pairwise disjoint.\<close> | |
(**e**) | |
lemma em (*[simp]*):"e \<inter> m = {}" | |
using e m meets_irrefl | |
by (metis ComplI disjoint_eq_subset_Compl meets_wd subrelI) | |
lemma eb (*[simp]*):"e \<inter> b = {}" | |
using b e meets_asym | |
by (metis ComplI disjoint_eq_subset_Compl subrelI) | |
lemma eov (*[simp]*):"e \<inter> ov = {}" | |
apply (auto simp: e ov) | |
using elimmeets by blast | |
lemma es (*[simp]*):"e \<inter> s = {}" | |
apply (auto simp:e s) | |
using elimmeets by blast | |
lemma ef (*[simp]*):"e \<inter> f = {}" | |
using e f by (metis (no_types, lifting) ComplI disjoint_eq_subset_Compl meets_atrans subrelI) | |
lemma ed (*[simp]*):"e \<inter> d = {}" | |
using e d by (metis (no_types, lifting) ComplI disjoint_eq_subset_Compl meets_atrans subrelI) | |
lemma emi (*[simp]*):"e \<inter> m^-1 = {}" | |
using converseE em e | |
by (metis disjoint_iff_not_equal) | |
lemma ebi (*[simp]*):"e \<inter> b^-1 = {}" | |
using converseE eb e | |
by (metis disjoint_iff_not_equal) | |
lemma eovi (*[simp]*):"e \<inter> ov^-1 = {}" | |
using converseE eov e | |
by (metis disjoint_iff_not_equal) | |
lemma esi (*[simp]*):"e \<inter> s^-1 = {}" | |
using converseE es e | |
by (metis disjoint_iff_not_equal) | |
lemma efi (*[simp]*):"e \<inter> f^-1 = {}" | |
using converseE ef e | |
by (metis disjoint_iff_not_equal) | |
lemma edi (*[simp]*):"e \<inter> d^-1 = {}" | |
using converseE ed e | |
by (metis disjoint_iff_not_equal) | |
(**m**) | |
lemma mb (*[simp]*):"m \<inter> b = {}" | |
using m b | |
apply auto | |
using elimmeets by blast | |
lemma mov (*[simp]*): "m \<inter> ov = {}" | |
apply (auto simp:m ov) | |
by (meson M1 elimmeets) | |
lemma ms (*[simp]*):"m \<inter> s = {}" | |
apply (auto simp:m s) | |
by (meson M1 elimmeets) | |
lemma mf (*[simp]*):"m \<inter> f = {}" | |
apply (auto simp:m f) | |
using elimmeets by blast | |
lemma md (*[simp]*):"m \<inter> d = {}" | |
apply (auto simp: m d) | |
using trans2 by blast | |
lemma mi (*[simp]*):"m \<inter> m^-1 = {}" | |
apply (auto simp:m) | |
using converseE m meets_asym by blast | |
lemma mbi (*[simp]*):"m \<inter> b^-1 = {}" | |
apply (auto simp:mb) | |
apply (auto simp: m b) | |
using nontrans2 by blast | |
lemma movi (*[simp]*):"m \<inter> ov^-1 = {}" | |
using m ov | |
apply auto | |
using trans2 by blast | |
lemma msi (*[simp]*):"m \<inter> s^-1 = {}" | |
apply (auto simp:m s) | |
by (meson M1 elimmeets) | |
lemma mfi (*[simp]*):"m \<inter> f^-1 = {}" | |
apply (auto simp:m f) | |
by (meson M1 elimmeets) | |
lemma mdi (*[simp]*):"m \<inter> d^-1 = {}" | |
apply (auto simp:m d) | |
using trans2 by blast | |
(**b**) | |
lemma bov (*[simp]*):"b \<inter> ov = {}" | |
apply (auto simp:b ov) | |
by (meson M1 trans2) | |
lemma bs (*[simp]*):"b \<inter> s = {}" | |
apply (auto simp:b s) | |
by (meson M1 trans2) | |
lemma bf (*[simp]*):"b \<inter> f = {}" | |
apply (auto simp: b f) | |
by (meson M1 trans2) | |
lemma bd (*[simp]*):"b \<inter> d = {}" | |
apply (auto simp:b d) | |
by (meson M1 nonmeets4) | |
lemma bmi (*[simp]*):"b \<inter> m^-1 = {}" | |
using mbi by auto | |
lemma bi (*[simp]*):"b \<inter> b^-1 = {}" | |
apply (auto simp:b) | |
using M5exist_var3 trans2 by blast | |
lemma bovi (*[simp]*):"b \<inter> ov^-1 = {}" | |
apply (auto simp:bov) | |
apply (auto simp:b ov) | |
by (meson M1 nontrans2) | |
lemma bsi (*[simp]*):"b \<inter> s^-1 = {}" | |
using bs apply auto using b s apply auto | |
using trans2 by blast | |
lemma bfi (*[simp]*):"b \<inter> f^-1 = {}" | |
using bf apply auto using b f apply auto | |
using trans2 by blast | |
lemma bdi (*[simp]*):"b \<inter> d^-1 = {}" | |
apply (auto simp:bd) | |
apply (auto simp:b d) | |
using trans2 | |
using M1 nonmeets4 by blast | |
(**ov**) | |
lemma ovs (*[simp]*):"ov \<inter> s = {}" | |
apply (auto simp:ov s) | |
by (meson M1 meets_atrans) | |
lemma ovf (*[simp]*):"ov \<inter> f = {}" | |
apply (auto simp:ov f) | |
by (meson M1 meets_atrans) | |
lemma ovd (*[simp]*):"ov\<inter> d = {}" | |
apply (auto simp:ov d) | |
by (meson M1 trans2) | |
lemma ovmi (*[simp]*):"ov \<inter> m^-1 = {}" | |
using movi by auto | |
lemma ovbi (*[simp]*):"ov \<inter> b^-1 = {}" | |
using bovi by blast | |
lemma ovi (*[simp]*):"ov \<inter> ov^-1 = {}" | |
apply (auto simp:ov) | |
by (meson M1 trans2) | |
lemma ovsi (*[simp]*):"ov \<inter> s^-1 = {}" | |
apply (auto simp:ov s) | |
by (meson M1 elimmeets) | |
lemma ovfi (*[simp]*):"ov \<inter> f^-1 = {}" | |
apply (auto simp:ov f) | |
by (meson M1 elimmeets) | |
lemma ovdi (*[simp]*):"ov \<inter> d^-1 = {}" | |
apply (auto simp:ov d) | |
by (meson M1 trans2) | |
(**s**) | |
lemma sf (*[simp]*):"s \<inter> f = {}" | |
apply (auto simp:s f) | |
by (metis M4 elimmeets) | |
lemma sd (*[simp]*):"s \<inter> d = {}" | |
apply (auto simp:s d) | |
by (metis M1 meets_atrans) | |
lemma smi (*[simp]*):"s \<inter> m^-1 = {}" | |
using msi by auto | |
lemma sbi (*[simp]*):"s \<inter> b^-1 = {}" | |
using bsi by blast | |
lemma sovi (*[simp]*):"s \<inter> ov^-1 = {}" | |
using ovsi by auto | |
lemma si (*[simp]*):"s \<inter> s^-1 = {}" | |
apply (auto simp:s) | |
by (meson M1 trans2) | |
lemma sfi (*[simp]*):"s \<inter> f^-1 = {}" | |
apply (auto simp:s f) | |
by (metis M4 elimmeets) | |
lemma sdi (*[simp]*):"s\<inter> d^-1 = {}" | |
apply (auto simp:s d) | |
by (meson M1 meets_atrans) | |
(**f**) | |
lemma fd (*[simp]*):"f \<inter> d = {}" | |
apply (auto simp:f d) | |
by (meson M1 meets_atrans) | |
lemma fmi (*[simp]*):"f \<inter> m^-1 = {}" | |
using mfi by auto | |
lemma fbi (*[simp]*):"f \<inter> b^-1 = {}" | |
using bfi converse_Int by auto | |
lemma fovi (*[simp]*):"f \<inter> ov^-1 = {}" | |
using ovfi by auto | |
lemma fsi (*[simp]*):"f \<inter> s^-1 = {}" | |
using sfi by auto | |
lemma fi (*[simp]*):"f \<inter> f^-1 = {}" | |
apply (auto simp:f) | |
by (meson M1 trans2) | |
lemma fdi (*[simp]*):"f \<inter> d^-1 = {}" | |
apply (auto simp:f d) | |
by (meson M1 trans2) | |
(**d**) | |
lemma dmi (*[simp]*):"d \<inter> m^-1 = {}" | |
using mdi by auto | |
lemma dbi (*[simp]*):"d \<inter> b^-1 = {}" | |
using bdi by blast | |
lemma dovi (*[simp]*):"d \<inter> ov^-1 = {}" | |
using ovdi by auto | |
lemma dsi (*[simp]*):"d \<inter> s^-1 = {}" | |
using sdi by auto | |
lemma dfi (*[simp]*):"d \<inter> f^-1 = {}" | |
apply (auto simp:d f) | |
by (meson M1 trans2) | |
lemma di (*[simp]*):"d \<inter> d^-1 = {}" | |
apply (auto simp:d) | |
by (meson M1 trans2) | |
(**m^-1**) | |
lemma mibi (*[simp]*):"m^-1 \<inter> b^-1 = {}" | |
using mb by auto | |
lemma miovi (*[simp]*):"m^-1 \<inter> ov^-1 = {}" | |
using mov by auto | |
lemma misi (*[simp]*):"m^-1 \<inter> s^-1 = {}" | |
using ms by auto | |
lemma mifi (*[simp]*):"m^-1 \<inter> f^-1 = {}" | |
using mf by auto | |
lemma midi (*[simp]*):"m^-1 \<inter> d^-1 = {}" | |
using md by auto | |
(**b^-1**) | |
lemma bid (*[simp]*):"b^-1 \<inter> d = {}" | |
by (simp add: dbi inf_sup_aci(1)) | |
lemma bimi (*[simp]*):"b^-1 \<inter> m^-1 = {}" | |
using mibi by auto | |
lemma biovi (*[simp]*):"b^-1 \<inter> ov^-1 = {}" | |
using bov by blast | |
lemma bisi (*[simp]*):"b^-1 \<inter> s^-1 = {}" | |
using bs by blast | |
lemma bifi (*[simp]*):"b^-1 \<inter> f^-1 = {}" | |
using bf by blast | |
lemma bidi (*[simp]*):"b^-1 \<inter> d^-1 = {}" | |
using bd by blast | |
(** ov^-1**) | |
lemma ovisi (*[simp]*):"ov^-1 \<inter> s^-1 = {}" | |
using ovs by blast | |
lemma ovifi (*[simp]*):"ov^-1 \<inter> f^-1 = {}" | |
using ovf by blast | |
lemma ovidi (*[simp]*):"ov^-1 \<inter> d^-1 = {}" | |
using ovd by blast | |
(** s^-1 **) | |
lemma sifi (*[simp]*):"s^-1 \<inter> f^-1 = {}" | |
using sf by blast | |
lemma sidi (*[simp]*):"s^-1 \<inter> d^-1 = {}" | |
using sd by blast | |
(** f^-1**) | |
lemma fidi (*[simp]*):"f^-1 \<inter> d^-1 = {}" | |
using fd by blast | |
lemma eei[simp]:"e^-1 = e" | |
using e | |
by (metis converse_iff subrelI subset_antisym) | |
lemma rdisj_sym:"A \<inter> B = {} \<Longrightarrow> B \<inter> A = {}" | |
by auto | |
subsection \<open>Intersection rules\<close> | |
named_theorems e_rules declare em[e_rules] and eb[e_rules] and eov[e_rules] and es[e_rules] and ef[e_rules] and ed[e_rules] and emi[e_rules] and ebi[e_rules] and eovi[e_rules] | |
and esi[e_rules] and efi[e_rules] and edi[e_rules] | |
named_theorems m_rules declare em[THEN rdisj_sym, m_rules] and mb [m_rules] and ms [m_rules] and mov [m_rules] and mf[m_rules] and | |
md[m_rules] and mi [m_rules] and mbi [m_rules] and movi [m_rules] and msi [m_rules] and mfi [m_rules] and mdi [m_rules] and emi[m_rules] | |
named_theorems b_rules declare eb[THEN rdisj_sym, b_rules] and mb [THEN rdisj_sym, b_rules] and bs [b_rules] and bov [b_rules] and bf[b_rules] and | |
bd[b_rules] and bmi [b_rules] and bi [b_rules] and bovi [b_rules] and bsi [b_rules] and bfi [b_rules] and bdi [b_rules] and ebi[b_rules] | |
named_theorems ov_rules declare eov[THEN rdisj_sym, ov_rules] and mov [THEN rdisj_sym, ov_rules] and ovs [ov_rules] and bov [THEN rdisj_sym,ov_rules] and ovf[ov_rules] and | |
ovd[ov_rules] and ovmi [ov_rules] and ovi [ov_rules] and ovsi [ov_rules] and ovfi [ov_rules] and ovdi [ov_rules] and eovi[ov_rules] | |
named_theorems s_rules declare es[THEN rdisj_sym, s_rules] and ms [THEN rdisj_sym, s_rules] and ovs [THEN rdisj_sym, s_rules] and bs [THEN rdisj_sym,s_rules] and sf[s_rules] and | |
sd[s_rules] and smi [s_rules] and sovi [s_rules] and si [s_rules] and sfi [s_rules] and sdi [s_rules] | |
named_theorems d_rules declare ed[THEN rdisj_sym, d_rules] and md [THEN rdisj_sym, d_rules] and sd [THEN rdisj_sym, d_rules] and fd[THEN rdisj_sym, d_rules] and | |
ovd[THEN rdisj_sym,d_rules] and dmi [d_rules] and dovi [d_rules] and dsi [d_rules] and dfi [d_rules] and di [d_rules] | |
named_theorems f_rules declare ef[THEN rdisj_sym, f_rules] and mf [THEN rdisj_sym, f_rules] and sf [THEN rdisj_sym, f_rules] and ovf [THEN rdisj_sym,f_rules] and fd[f_rules] and | |
fmi [f_rules] and fovi [f_rules] and fsi [f_rules] and fi [f_rules] and fdi [f_rules] | |
end | |