Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
section "Splay Heap" | |
theory Splay_Heap_Analysis | |
imports | |
Splay_Tree.Splay_Heap | |
Amortized_Framework | |
Priority_Queue_ops | |
Lemmas_log | |
begin | |
text \<open>Timing functions must be kept in sync with the corresponding functions | |
on splay heaps.\<close> | |
fun T_part :: "'a::linorder \<Rightarrow> 'a tree \<Rightarrow> nat" where | |
"T_part p Leaf = 1" | | |
"T_part p (Node l a r) = | |
(if a \<le> p then | |
case r of | |
Leaf \<Rightarrow> 1 | | |
Node rl b rr \<Rightarrow> if b \<le> p then T_part p rr + 1 else T_part p rl + 1 | |
else case l of | |
Leaf \<Rightarrow> 1 | | |
Node ll b lr \<Rightarrow> if b \<le> p then T_part p lr + 1 else T_part p ll + 1)" | |
definition T_in :: "'a::linorder \<Rightarrow> 'a tree \<Rightarrow> nat" where | |
"T_in x h = T_part x h" | |
fun T_dm :: "'a::linorder tree \<Rightarrow> nat" where | |
"T_dm Leaf = 1" | | |
"T_dm (Node Leaf _ r) = 1" | | |
"T_dm (Node (Node ll a lr) b r) = (if ll=Leaf then 1 else T_dm ll + 1)" | |
abbreviation "\<phi> t == log 2 (size1 t)" | |
fun \<Phi> :: "'a tree \<Rightarrow> real" where | |
"\<Phi> Leaf = 0" | | |
"\<Phi> (Node l a r) = \<Phi> l + \<Phi> r + \<phi> (Node l a r)" | |
lemma amor_del_min: "T_dm t + \<Phi> (del_min t) - \<Phi> t \<le> 2 * \<phi> t + 1" | |
proof(induction t rule: T_dm.induct) | |
case (3 ll a lr b r) | |
let ?t = "Node (Node ll a lr) b r" | |
show ?case | |
proof cases | |
assume [simp]: "ll = Leaf" | |
have 1: "log 2 (real (size1 lr) + real (size1 r)) | |
\<le> 3 * log 2 (1 + (real (size1 lr) + real (size1 r)))" (is "?l \<le> 3 * ?r") | |
proof - | |
have "?l \<le> ?r" by(simp add: size1_size) | |
also have "\<dots> \<le> 3 * ?r" by(simp) | |
finally show ?thesis . | |
qed | |
have 2: "log 2 (1 + real (size1 lr)) \<ge> 0" by simp | |
thus ?case apply simp using 1 2 by linarith | |
next | |
assume ll[simp]: "\<not> ll = Leaf" | |
let ?l' = "del_min ll" | |
let ?s = "Node ll a lr" let ?t = "Node ?s b r" | |
let ?s' = "Node lr b r" let ?t' = "Node ?l' a ?s'" | |
have 0: "\<phi> ?t' \<le> \<phi> ?t" by(simp add: size1_size) | |
have 1: "\<phi> ll < \<phi> ?s" by(simp add: size1_size) | |
have 2: "log 2 (size1 ll + size1 ?s') \<le> log 2 (size1 ?t)" by(simp add: size1_size) | |
have "T_dm ?t + \<Phi> (del_min ?t) - \<Phi> ?t | |
= 1 + T_dm ll + \<Phi> (del_min ?t) - \<Phi> ?t" by simp | |
also have "\<dots> \<le> 2 + 2 * \<phi> ll + \<Phi> ll - \<Phi> ?l' + \<Phi> (del_min ?t) - \<Phi> ?t" | |
using 3 ll by linarith | |
also have "\<dots> = 2 + 2 * \<phi> ll + \<phi> ?t' + \<phi> ?s' - \<phi> ?t - \<phi> ?s" by(simp) | |
also have "\<dots> \<le> 2 + \<phi> ll + \<phi> ?s'" using 0 1 by linarith | |
also have "\<dots> < 2 * \<phi> ?t + 1" using 2 ld_ld_1_less[of "size1 ll" "size1 ?s'"] | |
by (simp add: size1_size) | |
finally show ?case by simp | |
qed | |
qed auto | |
lemma zig_zig: | |
fixes s u r r1' r2' T a b | |
defines "t == Node s a (Node u b r)" and "t' == Node (Node s a u) b r1'" | |
assumes "size r1' \<le> size r" | |
"T_part p r + \<Phi> r1' + \<Phi> r2' - \<Phi> r \<le> 2 * \<phi> r + 1" | |
shows "T_part p r + 1 + \<Phi> t' + \<Phi> r2' - \<Phi> t \<le> 2 * \<phi> t + 1" | |
proof - | |
have 1: "\<phi> r \<le> \<phi> (Node u b r)" by (simp add: size1_size) | |
have 2: "log 2 (real (size1 s + size1 u + size1 r1')) \<le> \<phi> t" | |
using assms(3) by (simp add: t_def size1_size) | |
from ld_ld_1_less[of "size1 s + size1 u" "size1 r"] | |
have "1 + \<phi> r + log 2 (size1 s + size1 u) \<le> 2 * log 2 (size1 s + size1 u + size1 r)" | |
by(simp add: size1_size) | |
thus ?thesis using assms 1 2 by (simp add: algebra_simps) | |
qed | |
lemma zig_zag: | |
fixes s u r r1' r2' a b | |
defines "t \<equiv> Node s a (Node r b u)" and "t1' == Node s a r1'" and "t2' \<equiv> Node u b r2'" | |
assumes "size r = size r1' + size r2'" | |
"T_part p r + \<Phi> r1' + \<Phi> r2' - \<Phi> r \<le> 2 * \<phi> r + 1" | |
shows "T_part p r + 1 + \<Phi> t1' + \<Phi> t2' - \<Phi> t \<le> 2 * \<phi> t + 1" | |
proof - | |
have 1: "\<phi> r \<le> \<phi> (Node u b r)" by (simp add: size1_size) | |
have 2: "\<phi> r \<le> \<phi> t" by (simp add: t_def size1_size) | |
from ld_ld_less2[of "size1 s + size1 r1'" "size1 u + size1 r2'"] | |
have "1 + log 2 (size1 s + size1 r1') + log 2 (size1 u + size1 r2') \<le> 2 * \<phi> t" | |
by(simp add: assms(4) size1_size t_def ac_simps) | |
thus ?thesis using assms 1 2 by (simp add: algebra_simps) | |
qed | |
lemma amor_partition: "bst_wrt (\<le>) t \<Longrightarrow> partition p t = (l',r') | |
\<Longrightarrow> T_part p t + \<Phi> l' + \<Phi> r' - \<Phi> t \<le> 2 * log 2 (size1 t) + 1" | |
proof(induction p t arbitrary: l' r' rule: partition.induct) | |
case 1 thus ?case by simp | |
next | |
case (2 p l a r) | |
show ?case | |
proof cases | |
assume "a \<le> p" | |
show ?thesis | |
proof (cases r) | |
case Leaf thus ?thesis using \<open>a \<le> p\<close> "2.prems" by fastforce | |
next | |
case [simp]: (Node rl b rr) | |
let ?t = "Node l a r" | |
show ?thesis | |
proof cases | |
assume "b \<le> p" | |
with \<open>a \<le> p\<close> "2.prems" obtain rrl | |
where 0: "partition p rr = (rrl, r')" "l' = Node (Node l a rl) b rrl" | |
by (auto split: tree.splits prod.splits) | |
have "size rrl \<le> size rr" | |
using size_partition[OF 0(1)] by (simp add: size1_size) | |
with 0 \<open>a \<le> p\<close> \<open>b \<le> p\<close> "2.prems"(1) "2.IH"(1)[OF _ Node , of rrl r'] | |
zig_zig[where s=l and u=rl and r=rr and r1'=rrl and r2'=r' and p=p, of a b] | |
show ?thesis by (simp add: algebra_simps) | |
next | |
assume "\<not> b \<le> p" | |
with \<open>a \<le> p\<close> "2.prems" obtain rll rlr | |
where 0: "partition p rl = (rll, rlr)" "l' = Node l a rll" "r' = Node rlr b rr" | |
by (auto split: tree.splits prod.splits) | |
from 0 \<open>a \<le> p\<close> \<open>\<not> b \<le> p\<close> "2.prems"(1) "2.IH"(2)[OF _ Node, of rll rlr] | |
size_partition[OF 0(1)] | |
zig_zag[where s=l and u=rr and r=rl and r1'=rll and r2'=rlr and p=p, of a b] | |
show ?thesis by (simp add: algebra_simps) | |
qed | |
qed | |
next | |
assume "\<not> a \<le> p" | |
show ?thesis | |
proof (cases l) | |
case Leaf thus ?thesis using \<open>\<not> a \<le> p\<close> "2.prems" by fastforce | |
next | |
case [simp]: (Node ll b lr) | |
let ?t = "Node l a r" | |
show ?thesis | |
proof cases | |
assume "b \<le> p" | |
with \<open>\<not> a \<le> p\<close> "2.prems" obtain lrl lrr | |
where 0: "partition p lr = (lrl, lrr)" "l' = Node ll b lrl" "r' = Node lrr a r" | |
by (auto split: tree.splits prod.splits) | |
from 0 \<open>\<not> a \<le> p\<close> \<open>b \<le> p\<close> "2.prems"(1) "2.IH"(3)[OF _ Node, of lrl lrr] | |
size_partition[OF 0(1)] | |
zig_zag[where s=r and u=ll and r=lr and r1'=lrr and r2'=lrl and p=p, of a b] | |
show ?thesis by (auto simp: algebra_simps) | |
next | |
assume "\<not> b \<le> p" | |
with \<open>\<not> a \<le> p\<close> "2.prems" obtain llr | |
where 0: "partition p ll = (l',llr)" "r' = Node llr b (Node lr a r)" | |
by (auto split: tree.splits prod.splits) | |
have "size llr \<le> size ll" | |
using size_partition[OF 0(1)] by (simp add: size1_size) | |
with 0 \<open>\<not> a \<le> p\<close> \<open>\<not> b \<le> p\<close> "2.prems"(1) "2.IH"(4)[OF _ Node, of l' llr] | |
zig_zig[where s=r and u=lr and r=ll and r1'=llr and r2'=l' and p=p, of a b] | |
show ?thesis by (auto simp: algebra_simps) | |
qed | |
qed | |
qed | |
qed | |
fun exec :: "'a::linorder op \<Rightarrow> 'a tree list \<Rightarrow> 'a tree" where | |
"exec Empty [] = Leaf" | | |
"exec (Insert a) [t] = insert a t" | | |
"exec Del_min [t] = del_min t" | |
fun cost :: "'a::linorder op \<Rightarrow> 'a tree list \<Rightarrow> nat" where | |
"cost Empty [] = 1" | | |
"cost (Insert a) [t] = T_in a t" | | |
"cost Del_min [t] = T_dm t" | |
fun U where | |
"U Empty [] = 1" | | |
"U (Insert _) [t] = 3 * log 2 (size1 t + 1) + 1" | | |
"U Del_min [t] = 2 * \<phi> t + 1" | |
interpretation Amortized | |
where arity = arity and exec = exec and inv = "bst_wrt (\<le>)" | |
and cost = cost and \<Phi> = \<Phi> and U = U | |
proof (standard, goal_cases) | |
case (1 _ f) thus ?case | |
by(cases f) | |
(auto simp: insert_def bst_del_min dest!: bst_partition split: prod.splits) | |
next | |
case (2 h) thus ?case by(induction h) (auto simp: size1_size) | |
next | |
case (3 s f) | |
show ?case | |
proof (cases f) | |
case Empty with 3 show ?thesis by(auto) | |
next | |
case Del_min with 3 show ?thesis by(auto simp: amor_del_min) | |
next | |
case [simp]: (Insert x) | |
then obtain t where [simp]: "s = [t]" "bst_wrt (\<le>) t" using 3 by auto | |
{ fix l r assume 1: "partition x t = (l,r)" | |
have "log 2 (1 + size t) < log 2 (2 + size t)" by simp | |
with 1 amor_partition[OF \<open>bst_wrt (\<le>) t\<close> 1] size_partition[OF 1] have ?thesis | |
by(simp add: T_in_def insert_def algebra_simps size1_size | |
del: log_less_cancel_iff) } | |
thus ?thesis by(simp add: insert_def split: prod.split) | |
qed | |
qed | |
end | |