Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
section \<open>Bin Packing\<close> | |
theory Approx_BP_Hoare | |
imports Complex_Main "HOL-Hoare.Hoare_Logic" "HOL-Library.Disjoint_Sets" | |
begin | |
text \<open>The algorithm and proofs are based on the work by Berghammer and Reuter @{cite BerghammerR03}.\<close> | |
subsection \<open>Formalization of a Correct Bin Packing\<close> | |
text \<open>Definition of the unary operator \<open>\<lbrakk>\<cdot>\<rbrakk>\<close> from the article. | |
\<open>B\<close> will only be wrapped into a set if it is non-empty.\<close> | |
definition wrap :: "'a set \<Rightarrow> 'a set set" where | |
"wrap B = (if B = {} then {} else {B})" | |
lemma wrap_card: | |
"card (wrap B) \<le> 1" | |
unfolding wrap_def by auto | |
text \<open>If \<open>M\<close> and \<open>N\<close> are pairwise disjoint with \<open>V\<close> and not yet contained in V, | |
then the union of \<open>M\<close> and \<open>N\<close> is also pairwise disjoint with \<open>V\<close>.\<close> | |
lemma pairwise_disjnt_Un: | |
assumes "pairwise disjnt ({M} \<union> {N} \<union> V)" "M \<notin> V" "N \<notin> V" | |
shows "pairwise disjnt ({M \<union> N} \<union> V)" | |
using assms unfolding pairwise_def by auto | |
text \<open>A Bin Packing Problem is defined like in the article:\<close> | |
locale BinPacking = | |
fixes U :: "'a set" \<comment> \<open>A finite, non-empty set of objects\<close> | |
and w :: "'a \<Rightarrow> real" \<comment> \<open>A mapping from objects to their respective weights (positive real numbers)\<close> | |
and c :: nat \<comment> \<open>The maximum capacity of a bin (a natural number)\<close> | |
and S :: "'a set" \<comment> \<open>The set of \<open>small\<close> objects (weight no larger than \<open>1/2\<close> of \<open>c\<close>)\<close> | |
and L :: "'a set" \<comment> \<open>The set of \<open>large\<close> objects (weight larger than \<open>1/2\<close> of \<open>c\<close>)\<close> | |
assumes weight: "\<forall>u \<in> U. 0 < w(u) \<and> w(u) \<le> c" | |
and U_Finite: "finite U" | |
and U_NE: "U \<noteq> {}" | |
and S_def: "S = {u \<in> U. w(u) \<le> c / 2}" | |
and L_def: "L = U - S" | |
begin | |
text \<open>In the article, this is defined as \<open>w\<close> as well. However, to avoid ambiguity, | |
we will abbreviate the weight of a bin as \<open>W\<close>.\<close> | |
abbreviation W :: "'a set \<Rightarrow> real" where | |
"W B \<equiv> (\<Sum>u \<in> B. w(u))" | |
text \<open>\<open>P\<close> constitutes as a correct bin packing if \<open>P\<close> is a partition of \<open>U\<close> | |
(as defined in @{thm [source] partition_on_def}) and the weights of | |
the bins do not exceed their maximum capacity \<open>c\<close>.\<close> | |
definition bp :: "'a set set \<Rightarrow> bool" where | |
"bp P \<longleftrightarrow> partition_on U P \<and> (\<forall>B \<in> P. W(B) \<le> c)" | |
lemma bpE: | |
assumes "bp P" | |
shows "pairwise disjnt P" "{} \<notin> P" "\<Union>P = U" "\<forall>B \<in> P. W(B) \<le> c" | |
using assms unfolding bp_def partition_on_def by blast+ | |
lemma bpI: | |
assumes "pairwise disjnt P" "{} \<notin> P" "\<Union>P = U" "\<forall>B \<in> P. W(B) \<le> c" | |
shows "bp P" | |
using assms unfolding bp_def partition_on_def by blast | |
text \<open>Although we assume the \<open>S\<close> and \<open>L\<close> sets as given, manually obtaining them from \<open>U\<close> is trivial | |
and can be achieved in linear time. Proposed by the article @{cite "BerghammerR03"}.\<close> | |
lemma S_L_set_generation: | |
"VARS S L W u | |
{True} | |
S := {}; L := {}; W := U; | |
WHILE W \<noteq> {} | |
INV {W \<subseteq> U \<and> S = {v \<in> U - W. w(v) \<le> c / 2} \<and> L = {v \<in> U - W. w(v) > c / 2}} DO | |
u := (SOME u. u \<in> W); | |
IF 2 * w(u) \<le> c | |
THEN S := S \<union> {u} | |
ELSE L := L \<union> {u} FI; | |
W := W - {u} | |
OD | |
{S = {v \<in> U. w(v) \<le> c / 2} \<and> L = {v \<in> U. w(v) > c / 2}}" | |
by vcg (auto simp: some_in_eq) | |
subsection \<open>The Proposed Approximation Algorithm\<close> | |
subsubsection \<open>Functional Correctness\<close> | |
text \<open>According to the article, \<open>inv\<^sub>1\<close> holds if \<open>P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V}\<close> | |
is a correct solution for the bin packing problem @{cite BerghammerR03}. However, various | |
assumptions made in the article seem to suggest that more information is demanded from this | |
invariant and, indeed, mere correctness (as defined in @{thm [source] bp_def}) does not appear to suffice. | |
To amend this, four additional conjuncts have been added to this invariant, whose necessity | |
will be explained in the following proofs. It should be noted that there may be other (shorter) ways to amend this invariant. | |
This approach, however, makes for rather straight-forward proofs, as these conjuncts can be utilized and proved in relatively few steps.\<close> | |
definition inv\<^sub>1 :: "'a set set \<Rightarrow> 'a set set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | |
"inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V \<longleftrightarrow> bp (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V}) \<comment> \<open>A correct solution to the bin packing problem\<close> | |
\<and> \<Union>(P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2) = U - V \<comment> \<open>The partial solution does not contain objects that have not yet been assigned\<close> | |
\<and> B\<^sub>1 \<notin> (P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2) \<comment> \<open>\<open>B\<^sub>1\<close> is distinct from all the other bins\<close> | |
\<and> B\<^sub>2 \<notin> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2) \<comment> \<open>\<open>B\<^sub>2\<close> is distinct from all the other bins\<close> | |
\<and> (P\<^sub>1 \<union> wrap B\<^sub>1) \<inter> (P\<^sub>2 \<union> wrap B\<^sub>2) = {} \<comment> \<open>The first and second partial solutions are disjoint from each other.\<close>" | |
(* | |
lemma "partition_on U (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V}) \<Longrightarrow> u \<in> V \<Longrightarrow> | |
partition_on U (P\<^sub>1 \<union> wrap (insert u B\<^sub>1) \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> (V-{u})})" | |
nitpick*) | |
lemma inv\<^sub>1E: | |
assumes "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" | |
shows "bp (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V})" | |
and "\<Union>(P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2) = U - V" | |
and "B\<^sub>1 \<notin> (P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2)" | |
and "B\<^sub>2 \<notin> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2)" | |
and "(P\<^sub>1 \<union> wrap B\<^sub>1) \<inter> (P\<^sub>2 \<union> wrap B\<^sub>2) = {}" | |
using assms unfolding inv\<^sub>1_def by auto | |
lemma inv\<^sub>1I: | |
assumes "bp (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V})" | |
and "\<Union>(P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2) = U - V" | |
and "B\<^sub>1 \<notin> (P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2)" | |
and "B\<^sub>2 \<notin> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2)" | |
and "(P\<^sub>1 \<union> wrap B\<^sub>1) \<inter> (P\<^sub>2 \<union> wrap B\<^sub>2) = {}" | |
shows "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" | |
using assms unfolding inv\<^sub>1_def by blast | |
lemma wrap_Un [simp]: "wrap (M \<union> {x}) = {M \<union> {x}}" unfolding wrap_def by simp | |
lemma wrap_empty [simp]: "wrap {} = {}" unfolding wrap_def by simp | |
lemma wrap_not_empty [simp]: "M \<noteq> {} \<longleftrightarrow> wrap M = {M}" unfolding wrap_def by simp | |
text \<open>If \<open>inv\<^sub>1\<close> holds for the current partial solution, and the weight of an object \<open>u \<in> V\<close> added to \<open>B\<^sub>1\<close> does | |
not exceed its capacity, then \<open>inv\<^sub>1\<close> also holds if \<open>B\<^sub>1\<close> and \<open>{u}\<close> are replaced by \<open>B\<^sub>1 \<union> {u}\<close>.\<close> | |
lemma inv\<^sub>1_stepA: | |
assumes "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "u \<in> V" "W(B\<^sub>1) + w(u) \<le> c" | |
shows "inv\<^sub>1 P\<^sub>1 P\<^sub>2 (B\<^sub>1 \<union> {u}) B\<^sub>2 (V - {u})" | |
proof - | |
note invrules = inv\<^sub>1E[OF assms(1)] and bprules = bpE[OF invrules(1)] | |
text \<open>In the proof for \<open>Theorem 3.2\<close> of the article it is erroneously argued that | |
if \<open>P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V}\<close> is a partition of \<open>U\<close>, | |
then the same holds if \<open>B\<^sub>1\<close> is replaced by \<open>B\<^sub>1 \<union> {u}\<close>. | |
This is, however, not necessarily the case if \<open>B\<^sub>1\<close> or \<open>{u}\<close> are already contained in the partial solution. | |
Suppose \<open>P\<^sub>1\<close> contains the non-empty bin \<open>B\<^sub>1\<close>, then \<open>P\<^sub>1 \<union> wrap B\<^sub>1\<close> would still be pairwise disjoint, provided \<open>P\<^sub>1\<close> was pairwise disjoint before, as the union simply ignores the duplicate \<open>B\<^sub>1\<close>. Now, if the algorithm modifies \<open>B\<^sub>1\<close> by adding an element from \<open>V\<close> such that \<open>B\<^sub>1\<close> becomes some non-empty \<open>B\<^sub>1'\<close> with \<open>B\<^sub>1 \<inter> B\<^sub>1' \<noteq> \<emptyset>\<close> and \<open>B\<^sub>1' \<notin> P\<^sub>1\<close>, one can see that this property would no longer be preserved. | |
To avoid such a situation, we will use the first additional conjunct in \<open>inv\<^sub>1\<close> to ensure that \<open>{u}\<close> | |
is not yet contained in the partial solution, and the second additional conjunct to ensure that \<open>B\<^sub>1\<close> | |
is not yet contained in the partial solution.\<close> | |
\<comment> \<open>Rule 1: Pairwise Disjoint\<close> | |
have NOTIN: "\<forall>M \<in> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}. u \<notin> M" | |
using invrules(2) assms(2) by blast | |
have "{{v} |v. v \<in> V} = {{u}} \<union> {{v} |v. v \<in> V - {u}}" | |
using assms(2) by blast | |
then have "pairwise disjnt (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> ({{u}} \<union> {{v} |v. v \<in> V - {u}}))" | |
using bprules(1) assms(2) by simp | |
then have "pairwise disjnt (wrap B\<^sub>1 \<union> {{u}} \<union> P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}})" by (simp add: Un_commute) | |
then have assm: "pairwise disjnt (wrap B\<^sub>1 \<union> {{u}} \<union> (P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}))" by (simp add: Un_assoc) | |
have "pairwise disjnt ({B\<^sub>1 \<union> {u}} \<union> (P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}))" | |
proof (cases \<open>B\<^sub>1 = {}\<close>) | |
case True with assm show ?thesis by simp | |
next | |
case False | |
with assm have assm: "pairwise disjnt ({B\<^sub>1} \<union> {{u}} \<union> (P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}))" by simp | |
from NOTIN have "{u} \<notin> P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}" by blast | |
from pairwise_disjnt_Un[OF assm _ this] invrules(2,3) show ?thesis | |
using False by auto | |
qed | |
then have 1: "pairwise disjnt (P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}) \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}})" | |
unfolding wrap_Un by simp | |
\<comment> \<open>Rule 2: No empty sets\<close> | |
from bprules(2) have 2: "{} \<notin> P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}) \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}" | |
unfolding wrap_def by simp | |
\<comment> \<open>Rule 3: Union preserved\<close> | |
from bprules(3) have "\<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{u}} \<union> {{v} |v. v \<in> V - {u}}) = U" | |
using assms(2) by blast | |
then have 3: "\<Union> (P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}) \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}) = U" | |
unfolding wrap_def by force | |
\<comment> \<open>Rule 4: Weights below capacity\<close> | |
have "0 < w u" using weight assms(2) bprules(3) by blast | |
have "finite B\<^sub>1" using bprules(3) U_Finite by (cases \<open>B\<^sub>1 = {}\<close>) auto | |
then have "W (B\<^sub>1 \<union> {u}) \<le> W B\<^sub>1 + w u" using \<open>0 < w u\<close> by (cases \<open>u \<in> B\<^sub>1\<close>) (auto simp: insert_absorb) | |
also have "... \<le> c" using assms(3) . | |
finally have "W (B\<^sub>1 \<union> {u}) \<le> c" . | |
then have "\<forall>B \<in> wrap (B\<^sub>1 \<union> {u}). W B \<le> c" unfolding wrap_Un by blast | |
moreover have "\<forall>B\<in>P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}. W B \<le> c" | |
using bprules(4) by blast | |
ultimately have 4: "\<forall>B\<in>P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}) \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}. W B \<le> c" by blast | |
from bpI[OF 1 2 3 4] have 1: "bp (P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}) \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}})" . | |
\<comment> \<open>Auxiliary information is preserved\<close> | |
have "u \<in> U" using assms(2) bprules(3) by blast | |
then have R: "U - (V - {u}) = U - V \<union> {u}" by blast | |
have L: "\<Union> (P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}) \<union> P\<^sub>2 \<union> wrap B\<^sub>2) = \<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2) \<union> {u}" | |
unfolding wrap_def using NOTIN by auto | |
have 2: "\<Union> (P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}) \<union> P\<^sub>2 \<union> wrap B\<^sub>2) = U - (V - {u})" | |
unfolding L R invrules(2) .. | |
have 3: "B\<^sub>1 \<union> {u} \<notin> P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2" | |
using NOTIN by auto | |
have 4: "B\<^sub>2 \<notin> P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}) \<union> P\<^sub>2" | |
using invrules(4) NOTIN unfolding wrap_def by fastforce | |
have 5: "(P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u})) \<inter> (P\<^sub>2 \<union> wrap B\<^sub>2) = {}" | |
using invrules(5) NOTIN unfolding wrap_Un by auto | |
from inv\<^sub>1I[OF 1 2 3 4 5] show ?thesis . | |
qed | |
text \<open>If \<open>inv\<^sub>1\<close> holds for the current partial solution, and the weight of an object \<open>u \<in> V\<close> added to \<open>B\<^sub>2\<close> does | |
not exceed its capacity, then \<open>inv\<^sub>1\<close> also holds if \<open>B\<^sub>2\<close> and \<open>{u}\<close> are replaced by \<open>B\<^sub>2 \<union> {u}\<close>.\<close> | |
lemma inv\<^sub>1_stepB: | |
assumes "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "u \<in> V" "W B\<^sub>2 + w u \<le> c" | |
shows "inv\<^sub>1 (P\<^sub>1 \<union> wrap B\<^sub>1) P\<^sub>2 {} (B\<^sub>2 \<union> {u}) (V - {u})" | |
proof - | |
note invrules = inv\<^sub>1E[OF assms(1)] and bprules = bpE[OF invrules(1)] | |
text \<open>The argumentation here is similar to the one in @{thm [source] inv\<^sub>1_stepA} with | |
\<open>B\<^sub>1\<close> replaced with \<open>B\<^sub>2\<close> and using the first and third additional conjuncts of \<open>inv\<^sub>1\<close> | |
to amend the issue, instead of the first and second.\<close> | |
\<comment> \<open>Rule 1: Pairwise Disjoint\<close> | |
have NOTIN: "\<forall>M \<in> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}. u \<notin> M" | |
using invrules(2) assms(2) by blast | |
have "{{v} |v. v \<in> V} = {{u}} \<union> {{v} |v. v \<in> V - {u}}" | |
using assms(2) by blast | |
then have "pairwise disjnt (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{u}} \<union> {{v} |v. v \<in> V - {u}})" | |
using bprules(1) assms(2) by simp | |
then have assm: "pairwise disjnt (wrap B\<^sub>2 \<union> {{u}} \<union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}))" | |
by (simp add: Un_assoc Un_commute) | |
have "pairwise disjnt ({B\<^sub>2 \<union> {u}} \<union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}))" | |
proof (cases \<open>B\<^sub>2 = {}\<close>) | |
case True with assm show ?thesis by simp | |
next | |
case False | |
with assm have assm: "pairwise disjnt ({B\<^sub>2} \<union> {{u}} \<union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}))" by simp | |
from NOTIN have "{u} \<notin> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}" by blast | |
from pairwise_disjnt_Un[OF assm _ this] invrules(2,4) show ?thesis | |
using False by auto | |
qed | |
then have 1: "pairwise disjnt (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u}) \<union> {{v} |v. v \<in> V - {u}})" | |
unfolding wrap_Un by simp | |
\<comment> \<open>Rule 2: No empty sets\<close> | |
from bprules(2) have 2: "{} \<notin> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u}) \<union> {{v} |v. v \<in> V - {u}}" | |
unfolding wrap_def by simp | |
\<comment> \<open>Rule 3: Union preserved\<close> | |
from bprules(3) have "\<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{u}} \<union> {{v} |v. v \<in> V - {u}}) = U" | |
using assms(2) by blast | |
then have 3: "\<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u}) \<union> {{v} |v. v \<in> V - {u}}) = U" | |
unfolding wrap_def by force | |
\<comment> \<open>Rule 4: Weights below capacity\<close> | |
have "0 < w u" using weight assms(2) bprules(3) by blast | |
have "finite B\<^sub>2" using bprules(3) U_Finite by (cases \<open>B\<^sub>2 = {}\<close>) auto | |
then have "W (B\<^sub>2 \<union> {u}) \<le> W B\<^sub>2 + w u" using \<open>0 < w u\<close> by (cases \<open>u \<in> B\<^sub>2\<close>) (auto simp: insert_absorb) | |
also have "... \<le> c" using assms(3) . | |
finally have "W (B\<^sub>2 \<union> {u}) \<le> c" . | |
then have "\<forall>B \<in> wrap (B\<^sub>2 \<union> {u}). W B \<le> c" unfolding wrap_Un by blast | |
moreover have "\<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}. W B \<le> c" | |
using bprules(4) by blast | |
ultimately have 4: "\<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u}) \<union> {{v} |v. v \<in> V - {u}}. W B \<le> c" | |
by auto | |
from bpI[OF 1 2 3 4] have 1: "bp (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u}) \<union> {{v} |v. v \<in> V - {u}})" . | |
\<comment> \<open>Auxiliary information is preserved\<close> | |
have "u \<in> U" using assms(2) bprules(3) by blast | |
then have R: "U - (V - {u}) = U - V \<union> {u}" by blast | |
have L: "\<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u})) = \<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2 \<union> wrap B\<^sub>2) \<union> {u}" | |
unfolding wrap_def using NOTIN by auto | |
have 2: "\<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u})) = U - (V - {u})" | |
unfolding L R using invrules(2) by simp | |
have 3: "{} \<notin> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u})" | |
using bpE(2)[OF 1] by simp | |
have 4: "B\<^sub>2 \<union> {u} \<notin> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2" | |
using NOTIN by auto | |
have 5: "(P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {}) \<inter> (P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u})) = {}" | |
using invrules(5) NOTIN unfolding wrap_empty wrap_Un by auto | |
from inv\<^sub>1I[OF 1 2 3 4 5] show ?thesis . | |
qed | |
text \<open>If \<open>inv\<^sub>1\<close> holds for the current partial solution, then \<open>inv\<^sub>1\<close> also holds if \<open>B\<^sub>1\<close> and \<open>B\<^sub>2\<close> are | |
added to \<open>P\<^sub>1\<close> and \<open>P\<^sub>2\<close> respectively, \<open>B\<^sub>1\<close> is emptied and \<open>B\<^sub>2\<close> initialized with \<open>u \<in> V\<close>.\<close> | |
lemma inv\<^sub>1_stepC: | |
assumes "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "u \<in> V" | |
shows "inv\<^sub>1 (P\<^sub>1 \<union> wrap B\<^sub>1) (P\<^sub>2 \<union> wrap B\<^sub>2) {} {u} (V - {u})" | |
proof - | |
note invrules = inv\<^sub>1E[OF assms(1)] | |
\<comment> \<open>Rule 1-4: Correct Bin Packing\<close> | |
have "P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> (P\<^sub>2 \<union> wrap B\<^sub>2) \<union> wrap {u} \<union> {{v} |v. v \<in> V - {u}} | |
= P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{u}} \<union> {{v} |v. v \<in> V - {u}}" | |
by (metis (no_types, lifting) Un_assoc Un_empty_right insert_not_empty wrap_empty wrap_not_empty) | |
also have "... = P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V}" | |
using assms(2) by auto | |
finally have EQ: "P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> (P\<^sub>2 \<union> wrap B\<^sub>2) \<union> wrap {u} \<union> {{v} |v. v \<in> V - {u}} | |
= P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V}" . | |
from invrules(1) have 1: "bp (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> (P\<^sub>2 \<union> wrap B\<^sub>2) \<union> wrap {u} \<union> {{v} |v. v \<in> V - {u}})" | |
unfolding EQ . | |
\<comment> \<open>Auxiliary information is preserved\<close> | |
have NOTIN: "\<forall>M \<in> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}. u \<notin> M" | |
using invrules(2) assms(2) by blast | |
have "u \<in> U" using assms(2) bpE(3)[OF invrules(1)] by blast | |
then have R: "U - (V - {u}) = U - V \<union> {u}" by blast | |
have L: "\<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> (P\<^sub>2 \<union> wrap B\<^sub>2) \<union> wrap {u}) = \<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> (P\<^sub>2 \<union> wrap B\<^sub>2)) \<union> {u}" | |
unfolding wrap_def using NOTIN by auto | |
have 2: "\<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> (P\<^sub>2 \<union> wrap B\<^sub>2) \<union> wrap {u}) = U - (V - {u})" | |
unfolding L R using invrules(2) by auto | |
have 3: "{} \<notin> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> (P\<^sub>2 \<union> wrap B\<^sub>2) \<union> wrap {u}" | |
using bpE(2)[OF 1] by simp | |
have 4: "{u} \<notin> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> (P\<^sub>2 \<union> wrap B\<^sub>2)" | |
using NOTIN by auto | |
have 5: "(P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {}) \<inter> (P\<^sub>2 \<union> wrap B\<^sub>2 \<union> wrap {u}) = {}" | |
using invrules(5) NOTIN unfolding wrap_def by force | |
from inv\<^sub>1I[OF 1 2 3 4 5] show ?thesis . | |
qed | |
text \<open>A simplified version of the bin packing algorithm proposed in the article. | |
It serves as an introduction into the approach taken, and, while it does not provide the desired | |
approximation factor, it does ensure that \<open>P\<close> is a correct solution of the bin packing problem.\<close> | |
lemma simple_bp_correct: | |
"VARS P P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V u | |
{True} | |
P\<^sub>1 := {}; P\<^sub>2 := {}; B\<^sub>1 := {}; B\<^sub>2 := {}; V := U; | |
WHILE V \<inter> S \<noteq> {} INV {inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V} DO | |
u := (SOME u. u \<in> V); V := V - {u}; | |
IF W(B\<^sub>1) + w(u) \<le> c | |
THEN B\<^sub>1 := B\<^sub>1 \<union> {u} | |
ELSE IF W(B\<^sub>2) + w(u) \<le> c | |
THEN B\<^sub>2 := B\<^sub>2 \<union> {u} | |
ELSE P\<^sub>2 := P\<^sub>2 \<union> wrap B\<^sub>2; B\<^sub>2 := {u} FI; | |
P\<^sub>1 := P\<^sub>1 \<union> wrap B\<^sub>1; B\<^sub>1 := {} FI | |
OD; | |
P := P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} | v. v \<in> V} | |
{bp P}" | |
proof (vcg, goal_cases) | |
case (1 P P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V u) | |
show ?case | |
unfolding bp_def partition_on_def pairwise_def wrap_def inv\<^sub>1_def | |
using weight by auto | |
next | |
case (2 P P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V u) | |
then have INV: "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" .. | |
from 2 have "V \<noteq> {}" by blast | |
then have IN: "(SOME u. u \<in> V) \<in> V" by (simp add: some_in_eq) | |
from inv\<^sub>1_stepA[OF INV IN] inv\<^sub>1_stepB[OF INV IN] inv\<^sub>1_stepC[OF INV IN] | |
show ?case by blast | |
next | |
case (3 P P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V u) | |
then show ?case unfolding inv\<^sub>1_def by blast | |
qed | |
subsubsection \<open>Lower Bounds for the Bin Packing Problem\<close> | |
lemma bp_bins_finite [simp]: | |
assumes "bp P" | |
shows "\<forall>B \<in> P. finite B" | |
using bpE(3)[OF assms] U_Finite by (meson Sup_upper finite_subset) | |
lemma bp_sol_finite [simp]: | |
assumes "bp P" | |
shows "finite P" | |
using bpE(3)[OF assms] U_Finite by (simp add: finite_UnionD) | |
text \<open>If \<open>P\<close> is a solution of the bin packing problem, then no bin in \<open>P\<close> may contain more than | |
one large object.\<close> | |
lemma only_one_L_per_bin: | |
assumes "bp P" "B \<in> P" | |
shows "\<forall>x \<in> B. \<forall>y \<in> B. x \<noteq> y \<longrightarrow> x \<notin> L \<or> y \<notin> L" | |
proof (rule ccontr, simp) | |
assume "\<exists>x\<in>B. \<exists>y\<in>B. x \<noteq> y \<and> x \<in> L \<and> y \<in> L" | |
then obtain x y where *: "x \<in> B" "y \<in> B" "x \<noteq> y" "x \<in> L" "y \<in> L" by blast | |
then have "c < w x + w y" using L_def S_def by force | |
have "finite B" using assms by simp | |
have "y \<in> B - {x}" using *(2,3) by blast | |
have "W B = W (B - {x}) + w x" | |
using *(1) \<open>finite B\<close> by (simp add: sum.remove) | |
also have "... = W (B - {x} - {y}) + w x + w y" | |
using \<open>y \<in> B - {x}\<close> \<open>finite B\<close> by (simp add: sum.remove) | |
finally have *: "W B = W (B - {x} - {y}) + w x + w y" . | |
have "\<forall>u \<in> B. 0 < w u" using bpE(3)[OF assms(1)] assms(2) weight by blast | |
then have "0 \<le> W (B - {x} - {y})" by (smt DiffD1 sum_nonneg) | |
with * have "c < W B" using \<open>c < w x + w y\<close> by simp | |
then show False using bpE(4)[OF assms(1)] assms(2) by fastforce | |
qed | |
text \<open>If \<open>P\<close> is a solution of the bin packing problem, then the amount of large objects | |
is a lower bound for the amount of bins in P.\<close> | |
lemma L_lower_bound_card: | |
assumes "bp P" | |
shows "card L \<le> card P" | |
proof - | |
have "\<forall>x \<in> L. \<exists>B \<in> P. x \<in> B" | |
using bpE(3)[OF assms] L_def by blast | |
then obtain f where f_def: "\<forall>u \<in> L. u \<in> f u \<and> f u \<in> P" by metis | |
then have "inj_on f L" | |
unfolding inj_on_def using only_one_L_per_bin[OF assms] by blast | |
then have card_eq: "card L = card (f ` L)" by (simp add: card_image) | |
have "f ` L \<subseteq> P" using f_def by blast | |
moreover have "finite P" using assms by simp | |
ultimately have "card (f ` L) \<le> card P" by (simp add: card_mono) | |
then show ?thesis unfolding card_eq . | |
qed | |
text \<open>If \<open>P\<close> is a solution of the bin packing problem, then the amount of bins of a subset of P | |
in which every bin contains a large object is a lower bound on the amount of large objects.\<close> | |
lemma subset_bp_card: | |
assumes "bp P" "M \<subseteq> P" "\<forall>B \<in> M. B \<inter> L \<noteq> {}" | |
shows "card M \<le> card L" | |
proof - | |
have "\<forall>B \<in> M. \<exists>u \<in> L. u \<in> B" using assms(3) by fast | |
then have "\<exists>f. \<forall>B \<in> M. f B \<in> L \<and> f B \<in> B" by metis | |
then obtain f where f_def: "\<forall>B \<in> M. f B \<in> L \<and> f B \<in> B" .. | |
have "inj_on f M" | |
proof (rule ccontr) | |
assume "\<not> inj_on f M" | |
then have "\<exists>x \<in> M. \<exists>y \<in> M. x \<noteq> y \<and> f x = f y" unfolding inj_on_def by blast | |
then obtain x y where *: "x \<in> M" "y \<in> M" "x \<noteq> y" "f x = f y" by blast | |
then have "\<exists>u. u \<in> x \<and> u \<in> y" using f_def by metis | |
then have "x \<inter> y \<noteq> {}" by blast | |
moreover have "pairwise disjnt M" using pairwise_subset[OF bpE(1)[OF assms(1)] assms(2)] . | |
ultimately show False using * unfolding pairwise_def disjnt_def by simp | |
qed | |
moreover have "finite L" using L_def U_Finite by blast | |
moreover have "f ` M \<subseteq> L" using f_def by blast | |
ultimately show ?thesis using card_inj_on_le by blast | |
qed | |
text \<open>If \<open>P\<close> is a correct solution of the bin packing problem, \<open>inv\<^sub>1\<close> holds for the partial solution, | |
and every bin in \<open>P\<^sub>1 \<union> wrap B\<^sub>1\<close> contains a large object, then the amount of bins in | |
\<open>P\<^sub>1 \<union> wrap B\<^sub>1 \<union> {{v} |v. v \<in> V \<inter> L}\<close> is a lower bound for the amount of bins in \<open>P\<close>.\<close> | |
lemma L_bins_lower_bound_card: | |
assumes "bp P" "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "\<forall>B \<in> P\<^sub>1 \<union> wrap B\<^sub>1. B \<inter> L \<noteq> {}" | |
shows "card (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> {{v} |v. v \<in> V \<inter> L}) \<le> card P" | |
proof - | |
note invrules = inv\<^sub>1E[OF assms(2)] | |
have "\<forall>B \<in> {{v} |v. v \<in> V \<inter> L}. B \<inter> L \<noteq> {}" by blast | |
with assms(3) have | |
"P\<^sub>1 \<union> wrap B\<^sub>1 \<union> {{v} |v. v \<in> V \<inter> L} \<subseteq> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V}" | |
"\<forall>B \<in> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> {{v} |v. v \<in> V \<inter> L}. B \<inter> L \<noteq> {}" by blast+ | |
from subset_bp_card[OF invrules(1) this] show ?thesis | |
using L_lower_bound_card[OF assms(1)] by linarith | |
qed | |
text \<open>If \<open>P\<close> is a correct solution of the bin packing problem, then the sum of the weights of the | |
objects is equal to the sum of the weights of the bins in \<open>P\<close>.\<close> | |
lemma sum_Un_eq_sum_sum: | |
assumes "bp P" | |
shows "(\<Sum>u \<in> U. w u) = (\<Sum>B \<in> P. W B)" | |
proof - | |
have FINITE: "\<forall>B \<in> P. finite B" using assms by simp | |
have DISJNT: "\<forall>A \<in> P. \<forall>B \<in> P. A \<noteq> B \<longrightarrow> A \<inter> B = {}" | |
using bpE(1)[OF assms] unfolding pairwise_def disjnt_def . | |
have "(\<Sum>u \<in> (\<Union>P). w u) = (\<Sum>B \<in> P. W B)" | |
using sum.Union_disjoint[OF FINITE DISJNT] by auto | |
then show ?thesis unfolding bpE(3)[OF assms] . | |
qed | |
text \<open>If \<open>P\<close> is a correct solution of the bin packing problem, then the sum of the weights of the items | |
is a lower bound of amount of bins in \<open>P\<close> multiplied by their maximum capacity.\<close> | |
lemma sum_lower_bound_card: | |
assumes "bp P" | |
shows "(\<Sum>u \<in> U. w u) \<le> c * card P" | |
proof - | |
have *: "\<forall>B \<in> P. 0 < W B \<and> W B \<le> c" | |
using bpE(2-4)[OF assms] weight by (metis UnionI assms bp_bins_finite sum_pos) | |
have "(\<Sum>u \<in> U. w u) = (\<Sum>B \<in> P. W B)" | |
using sum_Un_eq_sum_sum[OF assms] . | |
also have "... \<le> (\<Sum>B \<in> P. c)" using sum_mono * by fastforce | |
also have "... = c * card P" by simp | |
finally show ?thesis . | |
qed | |
lemma bp_NE: | |
assumes "bp P" | |
shows "P \<noteq> {}" | |
using U_NE bpE(3)[OF assms] by blast | |
lemma sum_Un_ge: | |
fixes f :: "_ \<Rightarrow> real" | |
assumes "finite M" "finite N" "\<forall>B \<in> M \<union> N. 0 < f B" | |
shows "sum f M \<le> sum f (M \<union> N)" | |
proof - | |
have "0 \<le> sum f N - sum f (M \<inter> N)" | |
using assms by (smt DiffD1 inf.cobounded2 UnCI sum_mono2) | |
then have "sum f M \<le> sum f M + sum f N - sum f (M \<inter> N)" | |
by simp | |
also have "... = sum f (M \<union> N)" | |
using sum_Un[OF assms(1,2), symmetric] . | |
finally show ?thesis . | |
qed | |
text \<open>If \<open>bij_exists\<close> holds, one can obtain a function which is bijective between the bins in \<open>P\<close> | |
and the objects in \<open>V\<close> such that an object returned by the function would cause the bin to | |
exceed its capacity.\<close> | |
definition bij_exists :: "'a set set \<Rightarrow> 'a set \<Rightarrow> bool" where | |
"bij_exists P V = (\<exists>f. bij_betw f P V \<and> (\<forall>B \<in> P. W B + w (f B) > c))" | |
text \<open>If \<open>P\<close> is a functionally correct solution of the bin packing problem, \<open>inv\<^sub>1\<close> holds for the | |
partial solution, and such a bijective function exists between the bins in \<open>P\<^sub>1\<close> and the objects in | |
@{term "P\<^sub>2 \<union> wrap B\<^sub>2"}, the following strict lower bound can be shown:\<close> | |
lemma P\<^sub>1_lower_bound_card: | |
assumes "bp P" "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "bij_exists P\<^sub>1 (\<Union>(P\<^sub>2 \<union> wrap B\<^sub>2))" | |
shows "card P\<^sub>1 + 1 \<le> card P" | |
proof (cases \<open>P\<^sub>1 = {}\<close>) | |
case True | |
have "finite P" using assms(1) by simp | |
then have "1 \<le> card P" using bp_NE[OF assms(1)] | |
by (metis Nat.add_0_right Suc_diff_1 Suc_le_mono card_gt_0_iff le0 mult_Suc_right nat_mult_1) | |
then show ?thesis unfolding True by simp | |
next | |
note invrules = inv\<^sub>1E[OF assms(2)] | |
case False | |
obtain f where f_def: "bij_betw f P\<^sub>1 (\<Union>(P\<^sub>2 \<union> wrap B\<^sub>2))" "\<forall>B \<in> P\<^sub>1. W B + w (f B) > c" | |
using assms(3) unfolding bij_exists_def by blast | |
have FINITE: "finite P\<^sub>1" "finite (P\<^sub>2 \<union> wrap B\<^sub>2)" "finite (P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2)" "finite (wrap B\<^sub>1 \<union> {{v} |v. v \<in> V})" | |
using inv\<^sub>1E(1)[OF assms(2)] bp_sol_finite by blast+ | |
have F: "\<forall>B \<in> P\<^sub>2 \<union> wrap B\<^sub>2. finite B" using invrules(1) by simp | |
have D: "\<forall>A \<in> P\<^sub>2 \<union> wrap B\<^sub>2. \<forall>B \<in> P\<^sub>2 \<union> wrap B\<^sub>2. A \<noteq> B \<longrightarrow> A \<inter> B = {}" | |
using bpE(1)[OF invrules(1)] unfolding pairwise_def disjnt_def by auto | |
have sum_eq: "W (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2)) = (\<Sum>B \<in> P\<^sub>2 \<union> wrap B\<^sub>2. W B)" | |
using sum.Union_disjoint[OF F D] by auto | |
have "\<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V}. 0 < W B" | |
using bpE(2,3)[OF invrules(1)] weight by (metis (no_types, lifting) UnionI bp_bins_finite invrules(1) sum_pos) | |
then have "(\<Sum>B \<in> P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2. W B) \<le> (\<Sum>B \<in> P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> (wrap B\<^sub>1 \<union> {{v} |v. v \<in> V}). W B)" | |
using sum_Un_ge[OF FINITE(3,4), of W] by blast | |
also have "... = (\<Sum>B \<in> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V}. W B)" by (smt Un_assoc Un_commute) | |
also have "... = W U" using sum_Un_eq_sum_sum[OF invrules(1), symmetric] . | |
finally have *: "(\<Sum>B \<in> P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2. W B) \<le> W U" . | |
\<comment> \<open>This follows from the fourth and final additional conjunct of \<open>inv\<^sub>1\<close> and is necessary to combine the sums of the bins | |
of the two partial solutions. This does not inherently follow from the union being a correct solution, | |
as this need not be the case if \<open>P\<^sub>1\<close> and \<open>P\<^sub>2 \<union> wrap B\<^sub>2\<close> happened to be equal.\<close> | |
have DISJNT: "P\<^sub>1 \<inter> (P\<^sub>2 \<union> wrap B\<^sub>2) = {}" using invrules(5) by blast | |
\<comment> \<open>This part of the proof is based on the proof on page 72 of the article @{cite BerghammerR03}.\<close> | |
have "c * card P\<^sub>1 = (\<Sum>B \<in> P\<^sub>1. c)" by simp | |
also have "... < (\<Sum>B \<in> P\<^sub>1. W B + w (f B))" | |
using f_def(2) sum_strict_mono[OF FINITE(1) False] by fastforce | |
also have "... = (\<Sum>B \<in> P\<^sub>1. W B) + (\<Sum>B \<in> P\<^sub>1. w (f B))" | |
by (simp add: Groups_Big.comm_monoid_add_class.sum.distrib) | |
also have "... = (\<Sum>B \<in> P\<^sub>1. W B) + W (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))" unfolding sum.reindex_bij_betw[OF f_def(1), of w] .. | |
also have "... = (\<Sum>B \<in> P\<^sub>1. W B) + (\<Sum>B \<in> P\<^sub>2 \<union> wrap B\<^sub>2. W B)" unfolding sum_eq .. | |
also have "... = (\<Sum>B \<in> P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2. W B)" using sum.union_disjoint[OF FINITE(1,2) DISJNT, of W] by (simp add: Un_assoc) | |
also have "... \<le> (\<Sum>u \<in> U. w u)" using * . | |
also have "... \<le> c * card P" using sum_lower_bound_card[OF assms(1)] . | |
finally show ?thesis by (meson discrete nat_mult_less_cancel_disj of_nat_less_imp_less) | |
qed | |
text \<open>As @{thm wrap_card} holds, it follows that the amount of bins in \<open>P\<^sub>1 \<union> wrap B\<^sub>1\<close> | |
are a lower bound for the amount of bins in \<open>P\<close>.\<close> | |
lemma P\<^sub>1_B\<^sub>1_lower_bound_card: | |
assumes "bp P" "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "bij_exists P\<^sub>1 (\<Union>(P\<^sub>2 \<union> wrap B\<^sub>2))" | |
shows "card (P\<^sub>1 \<union> wrap B\<^sub>1) \<le> card P" | |
proof - | |
have "card (P\<^sub>1 \<union> wrap B\<^sub>1) \<le> card P\<^sub>1 + card (wrap B\<^sub>1)" | |
using card_Un_le by blast | |
also have "... \<le> card P\<^sub>1 + 1" using wrap_card by simp | |
also have "... \<le> card P" using P\<^sub>1_lower_bound_card[OF assms] . | |
finally show ?thesis . | |
qed | |
text \<open>If \<open>inv\<^sub>1\<close> holds, there are at most half as many bins in \<open>P\<^sub>2\<close> as there are objects in \<open>P\<^sub>2\<close>, and we can again | |
obtain a bijective function between the bins in \<open>P\<^sub>1\<close> and the objects of the second partial solution, | |
then the amount of bins in the second partial solution are a strict lower bound for half the bins of | |
the first partial solution.\<close> | |
lemma P\<^sub>2_B\<^sub>2_lower_bound_P\<^sub>1: | |
assumes "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "2 * card P\<^sub>2 \<le> card (\<Union>P\<^sub>2)" "bij_exists P\<^sub>1 (\<Union>(P\<^sub>2 \<union> wrap B\<^sub>2))" | |
shows "2 * card (P\<^sub>2 \<union> wrap B\<^sub>2) \<le> card P\<^sub>1 + 1" | |
proof - | |
note invrules = inv\<^sub>1E[OF assms(1)] and bprules = bpE[OF invrules(1)] | |
have "pairwise disjnt (P\<^sub>2 \<union> wrap B\<^sub>2)" | |
using bprules(1) pairwise_subset by blast | |
moreover have "B\<^sub>2 \<notin> P\<^sub>2" using invrules(4) by simp | |
ultimately have DISJNT: "\<Union>P\<^sub>2 \<inter> B\<^sub>2 = {}" | |
by (auto, metis (no_types, opaque_lifting) sup_bot.right_neutral Un_insert_right disjnt_iff mk_disjoint_insert pairwise_insert wrap_Un) | |
have "finite (\<Union>P\<^sub>2)" using U_Finite bprules(3) by auto | |
have "finite B\<^sub>2" using bp_bins_finite[OF invrules(1)] wrap_not_empty by blast | |
have "finite P\<^sub>2" "finite (wrap B\<^sub>2)" using bp_sol_finite[OF invrules(1)] by blast+ | |
have DISJNT2: "P\<^sub>2 \<inter> wrap B\<^sub>2 = {}" unfolding wrap_def using \<open>B\<^sub>2 \<notin> P\<^sub>2\<close> by auto | |
have "card (wrap B\<^sub>2) \<le> card B\<^sub>2" | |
proof (cases \<open>B\<^sub>2 = {}\<close>) | |
case False | |
then have "1 \<le> card B\<^sub>2" by (simp add: leI \<open>finite B\<^sub>2\<close>) | |
then show ?thesis using wrap_card[of B\<^sub>2] by linarith | |
qed simp | |
\<comment> \<open>This part of the proof is based on the proof on page 73 of the article @{cite BerghammerR03}.\<close> | |
from assms(2) have "2 * card P\<^sub>2 + 2 * card (wrap B\<^sub>2) \<le> card (\<Union>P\<^sub>2) + card (wrap B\<^sub>2) + 1" | |
using wrap_card[of B\<^sub>2] by linarith | |
then have "2 * (card P\<^sub>2 + card (wrap B\<^sub>2)) \<le> card (\<Union>P\<^sub>2) + card B\<^sub>2 + 1" | |
using \<open>card (wrap B\<^sub>2) \<le> card B\<^sub>2\<close> by simp | |
then have "2 * (card (P\<^sub>2 \<union> wrap B\<^sub>2)) \<le> card (\<Union>P\<^sub>2 \<union> B\<^sub>2) + 1" | |
using card_Un_disjoint[OF \<open>finite (\<Union>P\<^sub>2)\<close> \<open>finite B\<^sub>2\<close> DISJNT] | |
and card_Un_disjoint[OF \<open>finite P\<^sub>2\<close> \<open>finite (wrap B\<^sub>2)\<close> DISJNT2] by argo | |
then have "2 * (card (P\<^sub>2 \<union> wrap B\<^sub>2)) \<le> card (\<Union>(P\<^sub>2 \<union> wrap B\<^sub>2)) + 1" | |
by (cases \<open>B\<^sub>2 = {}\<close>) (auto simp: Un_commute) | |
then show "2 * (card (P\<^sub>2 \<union> wrap B\<^sub>2)) \<le> card P\<^sub>1 + 1" | |
using assms(3) bij_betw_same_card unfolding bij_exists_def by metis | |
qed | |
subsubsection \<open>Proving the Approximation Factor\<close> | |
text \<open>We define \<open>inv\<^sub>2\<close> as it is defined in the article. | |
These conjuncts allow us to prove the desired approximation factor.\<close> | |
definition inv\<^sub>2 :: "'a set set \<Rightarrow> 'a set set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | |
"inv\<^sub>2 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V \<longleftrightarrow> inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V \<comment> \<open>\<open>inv\<^sub>1\<close> holds for the partial solution\<close> | |
\<and> (V \<inter> L \<noteq> {} \<longrightarrow> (\<forall>B \<in> P\<^sub>1 \<union> wrap B\<^sub>1. B \<inter> L \<noteq> {})) \<comment> \<open>If there are still large objects left, then every bin of the first partial solution must contain a large object\<close> | |
\<and> bij_exists P\<^sub>1 (\<Union>(P\<^sub>2 \<union> wrap B\<^sub>2)) \<comment> \<open>There exists a bijective function between the bins of the first partial solution and the objects of the second one\<close> | |
\<and> (2 * card P\<^sub>2 \<le> card (\<Union>P\<^sub>2)) \<comment> \<open>There are at most twice as many bins in \<open>P\<^sub>2\<close> as there are objects in \<open>P\<^sub>2\<close>\<close>" | |
lemma inv\<^sub>2E: | |
assumes "inv\<^sub>2 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" | |
shows "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" | |
and "V \<inter> L \<noteq> {} \<Longrightarrow> \<forall>B \<in> P\<^sub>1 \<union> wrap B\<^sub>1. B \<inter> L \<noteq> {}" | |
and "bij_exists P\<^sub>1 (\<Union>(P\<^sub>2 \<union> wrap B\<^sub>2))" | |
and "2 * card P\<^sub>2 \<le> card (\<Union>P\<^sub>2)" | |
using assms unfolding inv\<^sub>2_def by blast+ | |
lemma inv\<^sub>2I: | |
assumes "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" | |
and "V \<inter> L \<noteq> {} \<Longrightarrow> \<forall>B \<in> P\<^sub>1 \<union> wrap B\<^sub>1. B \<inter> L \<noteq> {}" | |
and "bij_exists P\<^sub>1 (\<Union>(P\<^sub>2 \<union> wrap B\<^sub>2))" | |
and "2 * card P\<^sub>2 \<le> card (\<Union>P\<^sub>2)" | |
shows "inv\<^sub>2 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" | |
using assms unfolding inv\<^sub>2_def by blast | |
text \<open>If \<open>P\<close> is a correct solution of the bin packing problem, \<open>inv\<^sub>2\<close> holds for the partial solution, | |
and there are no more small objects left to be distributed, then the amount of bins of the partial solution | |
is no larger than \<open>3 / 2\<close> of the amount of bins in \<open>P\<close>. This proof strongly follows the proof in | |
\<open>Theorem 4.1\<close> of the article @{cite BerghammerR03}.\<close> | |
lemma bin_packing_lower_bound_card: | |
assumes "V \<inter> S = {}" "inv\<^sub>2 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "bp P" | |
shows "card (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V}) \<le> 3 / 2 * card P" | |
proof (cases \<open>V = {}\<close>) | |
note invrules = inv\<^sub>2E[OF assms(2)] | |
case True | |
then have "card (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V}) | |
= card (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2)" by simp | |
also have "... \<le> card (P\<^sub>1 \<union> wrap B\<^sub>1) + card (P\<^sub>2 \<union> wrap B\<^sub>2)" | |
using card_Un_le[of \<open>P\<^sub>1 \<union> wrap B\<^sub>1\<close>] by (simp add: Un_assoc) | |
also have "... \<le> card P + card (P\<^sub>2 \<union> wrap B\<^sub>2)" | |
using P\<^sub>1_B\<^sub>1_lower_bound_card[OF assms(3) invrules(1,3)] by simp | |
also have "... \<le> card P + card P / 2" | |
using P\<^sub>2_B\<^sub>2_lower_bound_P\<^sub>1[OF invrules(1,4,3)] | |
and P\<^sub>1_lower_bound_card[OF assms(3) invrules(1,3)] by linarith | |
finally show ?thesis by linarith | |
next | |
note invrules = inv\<^sub>2E[OF assms(2)] | |
case False | |
have "U = S \<union> L" using S_def L_def by blast | |
then have *: "V = V \<inter> L" | |
using bpE(3)[OF inv\<^sub>1E(1)[OF invrules(1)]] | |
and assms(1) by blast | |
with False have NE: "V \<inter> L \<noteq> {}" by simp | |
have "card (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V}) | |
= card (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> {{v} |v. v \<in> V \<inter> L} \<union> P\<^sub>2 \<union> wrap B\<^sub>2)" | |
using * by (simp add: Un_commute Un_assoc) | |
also have "... \<le> card (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> {{v} |v. v \<in> V \<inter> L}) + card (P\<^sub>2 \<union> wrap B\<^sub>2)" | |
using card_Un_le[of \<open>P\<^sub>1 \<union> wrap B\<^sub>1 \<union> {{v} |v. v \<in> V \<inter> L}\<close>] by (simp add: Un_assoc) | |
also have "... \<le> card P + card (P\<^sub>2 \<union> wrap B\<^sub>2)" | |
using L_bins_lower_bound_card[OF assms(3) invrules(1) invrules(2)[OF NE]] by linarith | |
also have "... \<le> card P + card P / 2" | |
using P\<^sub>2_B\<^sub>2_lower_bound_P\<^sub>1[OF invrules(1,4,3)] | |
and P\<^sub>1_lower_bound_card[OF assms(3) invrules(1,3)] by linarith | |
finally show ?thesis by linarith | |
qed | |
text \<open>We define \<open>inv\<^sub>3\<close> as it is defined in the article. | |
This final conjunct allows us to prove that the invariant will be maintained by the algorithm.\<close> | |
definition inv\<^sub>3 :: "'a set set \<Rightarrow> 'a set set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | |
"inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V \<longleftrightarrow> inv\<^sub>2 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V \<and> B\<^sub>2 \<subseteq> S" | |
lemma inv\<^sub>3E: | |
assumes "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" | |
shows "inv\<^sub>2 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" and "B\<^sub>2 \<subseteq> S" | |
using assms unfolding inv\<^sub>3_def by blast+ | |
lemma inv\<^sub>3I: | |
assumes "inv\<^sub>2 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" and "B\<^sub>2 \<subseteq> S" | |
shows "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" | |
using assms unfolding inv\<^sub>3_def by blast | |
lemma loop_init: | |
"inv\<^sub>3 {} {} {} {} U" | |
proof - | |
have *: "inv\<^sub>1 {} {} {} {} U" | |
unfolding bp_def partition_on_def pairwise_def wrap_def inv\<^sub>1_def | |
using weight by auto | |
have "bij_exists {} (\<Union> ({} \<union> wrap {}))" | |
using bij_betwI' unfolding bij_exists_def by fastforce | |
from inv\<^sub>2I[OF * _ this] have "inv\<^sub>2 {} {} {} {} U" by auto | |
from inv\<^sub>3I[OF this] show ?thesis by blast | |
qed | |
text \<open>If \<open>B\<^sub>1\<close> is empty and there are no large objects left, then \<open>inv\<^sub>3\<close> will be maintained | |
if \<open>B\<^sub>1\<close> is initialized with \<open>u \<in> V \<inter> S\<close>.\<close> | |
lemma loop_stepA: | |
assumes "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "B\<^sub>1 = {}" "V \<inter> L = {}" "u \<in> V \<inter> S" | |
shows "inv\<^sub>3 P\<^sub>1 P\<^sub>2 {u} B\<^sub>2 (V - {u})" | |
proof - | |
note invrules = inv\<^sub>2E[OF inv\<^sub>3E(1)[OF assms(1)]] | |
have WEIGHT: "W B\<^sub>1 + w u \<le> c" using S_def assms(2,4) by simp | |
from assms(4) have "u \<in> V" by blast | |
from inv\<^sub>1_stepA[OF invrules(1) this WEIGHT] assms(2) have 1: "inv\<^sub>1 P\<^sub>1 P\<^sub>2 {u} B\<^sub>2 (V - {u})" by simp | |
have 2: "(V - {u}) \<inter> L \<noteq> {} \<Longrightarrow> \<forall>B\<in>P\<^sub>1 \<union> wrap {u}. B \<inter> L \<noteq> {}" using assms(3) by blast | |
from inv\<^sub>2I[OF 1 2] invrules have "inv\<^sub>2 P\<^sub>1 P\<^sub>2 {u} B\<^sub>2 (V - {u})" by blast | |
from inv\<^sub>3I[OF this] show ?thesis using inv\<^sub>3E(2)[OF assms(1)] . | |
qed | |
text \<open>If \<open>B\<^sub>1\<close> is empty and there are large objects left, then \<open>inv\<^sub>3\<close> will be maintained | |
if \<open>B\<^sub>1\<close> is initialized with \<open>u \<in> V \<inter> L\<close>.\<close> | |
lemma loop_stepB: | |
assumes "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "B\<^sub>1 = {}" "u \<in> V \<inter> L" | |
shows "inv\<^sub>3 P\<^sub>1 P\<^sub>2 {u} B\<^sub>2 (V - {u})" | |
proof - | |
note invrules = inv\<^sub>2E[OF inv\<^sub>3E(1)[OF assms(1)]] | |
have WEIGHT: "W B\<^sub>1 + w u \<le> c" using L_def weight assms(2,3) by simp | |
from assms(3) have "u \<in> V" by blast | |
from inv\<^sub>1_stepA[OF invrules(1) this WEIGHT] assms(2) have 1: "inv\<^sub>1 P\<^sub>1 P\<^sub>2 {u} B\<^sub>2 (V - {u})" by simp | |
have "\<forall>B\<in>P\<^sub>1. B \<inter> L \<noteq> {}" using assms(3) invrules(2) by blast | |
then have 2: "(V - {u}) \<inter> L \<noteq> {} \<Longrightarrow> \<forall>B\<in>P\<^sub>1 \<union> wrap {u}. B \<inter> L \<noteq> {}" | |
using assms(3) by (metis Int_iff UnE empty_iff insertE singletonI wrap_not_empty) | |
from inv\<^sub>2I[OF 1 2] invrules have "inv\<^sub>2 P\<^sub>1 P\<^sub>2 {u} B\<^sub>2 (V - {u})" by blast | |
from inv\<^sub>3I[OF this] show ?thesis using inv\<^sub>3E(2)[OF assms(1)] . | |
qed | |
text \<open>If \<open>B\<^sub>1\<close> is not empty and \<open>u \<in> V \<inter> S\<close> does not exceed its maximum capacity, then \<open>inv\<^sub>3\<close> | |
will be maintained if \<open>B\<^sub>1\<close> and \<open>{u}\<close> are replaced with \<open>B\<^sub>1 \<union> {u}\<close>.\<close> | |
lemma loop_stepC: | |
assumes "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "B\<^sub>1 \<noteq> {}" "u \<in> V \<inter> S" "W B\<^sub>1 + w(u) \<le> c" | |
shows "inv\<^sub>3 P\<^sub>1 P\<^sub>2 (B\<^sub>1 \<union> {u}) B\<^sub>2 (V - {u})" | |
proof - | |
note invrules = inv\<^sub>2E[OF inv\<^sub>3E(1)[OF assms(1)]] | |
from assms(3) have "u \<in> V" by blast | |
from inv\<^sub>1_stepA[OF invrules(1) this assms(4)] have 1: "inv\<^sub>1 P\<^sub>1 P\<^sub>2 (B\<^sub>1 \<union> {u}) B\<^sub>2 (V - {u})" . | |
have "(V - {u}) \<inter> L \<noteq> {} \<Longrightarrow> \<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1. B \<inter> L \<noteq> {}" using invrules(2) by blast | |
then have 2: "(V - {u}) \<inter> L \<noteq> {} \<Longrightarrow> \<forall>B\<in>P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}). B \<inter> L \<noteq> {}" | |
by (metis Int_commute Un_empty_right Un_insert_right assms(2) disjoint_insert(2) insert_iff wrap_not_empty) | |
from inv\<^sub>2I[OF 1 2] invrules have "inv\<^sub>2 P\<^sub>1 P\<^sub>2 (B\<^sub>1 \<union> {u}) B\<^sub>2 (V - {u})" by blast | |
from inv\<^sub>3I[OF this] show ?thesis using inv\<^sub>3E(2)[OF assms(1)] . | |
qed | |
text \<open>If \<open>B\<^sub>1\<close> is not empty and \<open>u \<in> V \<inter> S\<close> does exceed its maximum capacity but not the capacity of \<open>B\<^sub>2\<close>, | |
then \<open>inv\<^sub>3\<close> will be maintained if \<open>B\<^sub>1\<close> is added to \<open>P\<^sub>1\<close> and emptied, and \<open>B\<^sub>2\<close> and \<open>{u}\<close> are replaced with \<open>B\<^sub>2 \<union> {u}\<close>.\<close> | |
lemma loop_stepD: | |
assumes "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "B\<^sub>1 \<noteq> {}" "u \<in> V \<inter> S" "W B\<^sub>1 + w(u) > c" "W B\<^sub>2 + w(u) \<le> c" | |
shows "inv\<^sub>3 (P\<^sub>1 \<union> wrap B\<^sub>1) P\<^sub>2 {} (B\<^sub>2 \<union> {u}) (V - {u})" | |
proof - | |
note invrules = inv\<^sub>2E[OF inv\<^sub>3E(1)[OF assms(1)]] | |
from assms(3) have "u \<in> V" by blast | |
from inv\<^sub>1_stepB[OF invrules(1) this assms(5)] have 1: "inv\<^sub>1 (P\<^sub>1 \<union> wrap B\<^sub>1) P\<^sub>2 {} (B\<^sub>2 \<union> {u}) (V - {u})" . | |
have 2: "(V - {u}) \<inter> L \<noteq> {} \<Longrightarrow> \<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {}. B \<inter> L \<noteq> {}" | |
using invrules(2) unfolding wrap_empty by blast | |
from invrules(3) obtain f where f_def: "bij_betw f P\<^sub>1 (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))" "\<forall>B\<in>P\<^sub>1. c < W B + w (f B)" unfolding bij_exists_def by blast | |
have "B\<^sub>1 \<notin> P\<^sub>1" using inv\<^sub>1E(3)[OF invrules(1)] by blast | |
have "u \<notin> (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))" using inv\<^sub>1E(2)[OF invrules(1)] assms(3) by blast | |
then have "(\<Union> (P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u}))) = (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{u}}))" | |
by (metis Sup_empty Un_assoc Union_Un_distrib ccpo_Sup_singleton wrap_empty wrap_not_empty) | |
also have "... = (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2)) \<union> {u}" by simp | |
finally have UN: "(\<Union> (P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u}))) = (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2)) \<union> {u}" . | |
have "wrap B\<^sub>1 = {B\<^sub>1}" using wrap_not_empty[of B\<^sub>1] assms(2) by simp | |
let ?f = "f (B\<^sub>1 := u)" | |
have BIJ: "bij_betw ?f (P\<^sub>1 \<union> wrap B\<^sub>1) (\<Union> (P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u})))" | |
unfolding wrap_empty \<open>wrap B\<^sub>1 = {B\<^sub>1}\<close> UN using f_def(1) \<open>B\<^sub>1 \<notin> P\<^sub>1\<close> \<open>u \<notin> (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))\<close> | |
by (metis (no_types, lifting) bij_betw_cong fun_upd_other fun_upd_same notIn_Un_bij_betw3) | |
have "c < W B\<^sub>1 + w (?f B\<^sub>1)" using assms(4) by simp | |
then have "(\<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1. c < W B + w (?f B))" | |
unfolding \<open>wrap B\<^sub>1 = {B\<^sub>1}\<close> using f_def(2) by simp | |
with BIJ have "bij_betw ?f (P\<^sub>1 \<union> wrap B\<^sub>1) (\<Union> (P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u}))) | |
\<and> (\<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1. c < W B + w (?f B))" by blast | |
then have 3: "bij_exists (P\<^sub>1 \<union> wrap B\<^sub>1) (\<Union> (P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u})))" | |
unfolding bij_exists_def by blast | |
from inv\<^sub>2I[OF 1 2 3] have "inv\<^sub>2 (P\<^sub>1 \<union> wrap B\<^sub>1) P\<^sub>2 {} (B\<^sub>2 \<union> {u}) (V - {u})" using invrules(4) by blast | |
from inv\<^sub>3I[OF this] show ?thesis using inv\<^sub>3E(2)[OF assms(1)] assms(3) by blast | |
qed | |
text \<open>If the maximum capacity of \<open>B\<^sub>2\<close> is exceeded by \<open>u \<in> V \<inter> S\<close>, | |
then \<open>B\<^sub>2\<close> must contain at least two objects.\<close> | |
lemma B\<^sub>2_at_least_two_objects: | |
assumes "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "u \<in> V \<inter> S" "W B\<^sub>2 + w(u) > c" | |
shows "2 \<le> card B\<^sub>2" | |
proof (rule ccontr, simp add: not_le) | |
have FINITE: "finite B\<^sub>2" using inv\<^sub>1E(1)[OF inv\<^sub>2E(1)[OF inv\<^sub>3E(1)[OF assms(1)]]] | |
by (metis (no_types, lifting) Finite_Set.finite.simps U_Finite Union_Un_distrib bpE(3) ccpo_Sup_singleton finite_Un wrap_not_empty) | |
assume "card B\<^sub>2 < 2" | |
then consider (0) "card B\<^sub>2 = 0" | (1) "card B\<^sub>2 = 1" by linarith | |
then show False proof cases | |
case 0 then have "B\<^sub>2 = {}" using FINITE by simp | |
then show ?thesis using assms(2,3) S_def by simp | |
next | |
case 1 then obtain v where "B\<^sub>2 = {v}" | |
using card_1_singletonE by auto | |
with inv\<^sub>3E(2)[OF assms(1)] have "2 * w v \<le> c" using S_def by simp | |
moreover from \<open>B\<^sub>2 = {v}\<close> have "W B\<^sub>2 = w v" by simp | |
ultimately show ?thesis using assms(2,3) S_def by simp | |
qed | |
qed | |
text \<open>If \<open>B\<^sub>1\<close> is not empty and \<open>u \<in> V \<inter> S\<close> exceeds the maximum capacity of both \<open>B\<^sub>1\<close> and \<open>B\<^sub>2\<close>, | |
then \<open>inv\<^sub>3\<close> will be maintained if \<open>B\<^sub>1\<close> and \<open>B\<^sub>2\<close> are added to \<open>P\<^sub>1\<close> and \<open>P\<^sub>2\<close> respectively, | |
emptied, and \<open>B\<^sub>2\<close> initialized with \<open>u\<close>.\<close> | |
lemma loop_stepE: | |
assumes "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "B\<^sub>1 \<noteq> {}" "u \<in> V \<inter> S" "W B\<^sub>1 + w(u) > c" "W B\<^sub>2 + w(u) > c" | |
shows "inv\<^sub>3 (P\<^sub>1 \<union> wrap B\<^sub>1) (P\<^sub>2 \<union> wrap B\<^sub>2) {} {u} (V - {u})" | |
proof - | |
note invrules = inv\<^sub>2E[OF inv\<^sub>3E(1)[OF assms(1)]] | |
from assms(3) have "u \<in> V" by blast | |
from inv\<^sub>1_stepC[OF invrules(1) this] have 1: "inv\<^sub>1 (P\<^sub>1 \<union> wrap B\<^sub>1) (P\<^sub>2 \<union> wrap B\<^sub>2) {} {u} (V - {u})" . | |
have 2: "(V - {u}) \<inter> L \<noteq> {} \<Longrightarrow> \<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {}. B \<inter> L \<noteq> {}" | |
using invrules(2) unfolding wrap_empty by blast | |
from invrules(3) obtain f where f_def: "bij_betw f P\<^sub>1 (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))" "\<forall>B\<in>P\<^sub>1. c < W B + w (f B)" unfolding bij_exists_def by blast | |
have "B\<^sub>1 \<notin> P\<^sub>1" using inv\<^sub>1E(3)[OF invrules(1)] by blast | |
have "u \<notin> (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))" using inv\<^sub>1E(2)[OF invrules(1)] assms(3) by blast | |
have "(\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2 \<union> wrap {u})) = (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{u}}))" unfolding wrap_def by simp | |
also have "... = (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2)) \<union> {u}" by simp | |
finally have UN: "(\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2 \<union> wrap {u})) = (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2)) \<union> {u}" . | |
have "wrap B\<^sub>1 = {B\<^sub>1}" using wrap_not_empty[of B\<^sub>1] assms(2) by simp | |
let ?f = "f (B\<^sub>1 := u)" | |
have BIJ: "bij_betw ?f (P\<^sub>1 \<union> wrap B\<^sub>1) (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2 \<union> wrap {u}))" | |
unfolding wrap_empty \<open>wrap B\<^sub>1 = {B\<^sub>1}\<close> UN using f_def(1) \<open>B\<^sub>1 \<notin> P\<^sub>1\<close> \<open>u \<notin> (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))\<close> | |
by (metis (no_types, lifting) bij_betw_cong fun_upd_other fun_upd_same notIn_Un_bij_betw3) | |
have "c < W B\<^sub>1 + w (?f B\<^sub>1)" using assms(4) by simp | |
then have "(\<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1. c < W B + w (?f B))" | |
unfolding \<open>wrap B\<^sub>1 = {B\<^sub>1}\<close> using f_def(2) by simp | |
with BIJ have "bij_betw ?f (P\<^sub>1 \<union> wrap B\<^sub>1) (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2 \<union> wrap {u})) | |
\<and> (\<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1. c < W B + w (?f B))" by blast | |
then have 3: "bij_exists (P\<^sub>1 \<union> wrap B\<^sub>1) (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2 \<union> wrap {u}))" | |
unfolding bij_exists_def by blast | |
have 4: "2 * card (P\<^sub>2 \<union> wrap B\<^sub>2) \<le> card (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))" | |
proof - | |
note bprules = bpE[OF inv\<^sub>1E(1)[OF invrules(1)]] | |
have "pairwise disjnt (P\<^sub>2 \<union> wrap B\<^sub>2)" | |
using bprules(1) pairwise_subset by blast | |
moreover have "B\<^sub>2 \<notin> P\<^sub>2" using inv\<^sub>1E(4)[OF invrules(1)] by simp | |
ultimately have DISJNT: "\<Union>P\<^sub>2 \<inter> B\<^sub>2 = {}" | |
by (auto, metis (no_types, opaque_lifting) sup_bot.right_neutral Un_insert_right disjnt_iff mk_disjoint_insert pairwise_insert wrap_Un) | |
have "finite (\<Union>P\<^sub>2)" using U_Finite bprules(3) by auto | |
have "finite B\<^sub>2" using inv\<^sub>1E(1)[OF invrules(1)] bp_bins_finite wrap_not_empty by blast | |
have "2 * card (P\<^sub>2 \<union> wrap B\<^sub>2) \<le> 2 * (card P\<^sub>2 + card (wrap B\<^sub>2))" | |
using card_Un_le[of P\<^sub>2 \<open>wrap B\<^sub>2\<close>] by simp | |
also have "... \<le> 2 * card P\<^sub>2 + 2" using wrap_card by auto | |
also have "... \<le> card (\<Union> P\<^sub>2) + 2" using invrules(4) by simp | |
also have "... \<le> card (\<Union> P\<^sub>2) + card B\<^sub>2" using B\<^sub>2_at_least_two_objects[OF assms(1,3,5)] by simp | |
also have "... = card (\<Union> (P\<^sub>2 \<union> {B\<^sub>2}))" using DISJNT card_Un_disjoint[OF \<open>finite (\<Union>P\<^sub>2)\<close> \<open>finite B\<^sub>2\<close>] by (simp add: Un_commute) | |
also have "... = card (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))" by (cases \<open>B\<^sub>2 = {}\<close>) auto | |
finally show ?thesis . | |
qed | |
from inv\<^sub>2I[OF 1 2 3 4] have "inv\<^sub>2 (P\<^sub>1 \<union> wrap B\<^sub>1) (P\<^sub>2 \<union> wrap B\<^sub>2) {} {u} (V - {u})" . | |
from inv\<^sub>3I[OF this] show ?thesis using assms(3) by blast | |
qed | |
text \<open>The bin packing algorithm as it is proposed in the article @{cite BerghammerR03}. | |
\<open>P\<close> will not only be a correct solution of the bin packing problem, but the amount of bins | |
will be a lower bound for \<open>3 / 2\<close> of the amount of bins of any correct solution \<open>Q\<close>, and thus | |
guarantee an approximation factor of \<open>3 / 2\<close> for the optimum.\<close> | |
lemma bp_approx: | |
"VARS P P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V u | |
{True} | |
P\<^sub>1 := {}; P\<^sub>2 := {}; B\<^sub>1 := {}; B\<^sub>2 := {}; V := U; | |
WHILE V \<inter> S \<noteq> {} INV {inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V} DO | |
IF B\<^sub>1 \<noteq> {} | |
THEN u := (SOME u. u \<in> V \<inter> S) | |
ELSE IF V \<inter> L \<noteq> {} | |
THEN u := (SOME u. u \<in> V \<inter> L) | |
ELSE u := (SOME u. u \<in> V \<inter> S) FI FI; | |
V := V - {u}; | |
IF W(B\<^sub>1) + w(u) \<le> c | |
THEN B\<^sub>1 := B\<^sub>1 \<union> {u} | |
ELSE IF W(B\<^sub>2) + w(u) \<le> c | |
THEN B\<^sub>2 := B\<^sub>2 \<union> {u} | |
ELSE P\<^sub>2 := P\<^sub>2 \<union> wrap B\<^sub>2; B\<^sub>2 := {u} FI; | |
P\<^sub>1 := P\<^sub>1 \<union> wrap B\<^sub>1; B\<^sub>1 := {} FI | |
OD; | |
P := P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} | v. v \<in> V} | |
{bp P \<and> (\<forall>Q. bp Q \<longrightarrow> card P \<le> 3 / 2 * card Q)}" | |
proof (vcg, goal_cases) | |
case (1 P P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V u) | |
then show ?case by (simp add: loop_init) | |
next | |
case (2 P P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V u) | |
then have INV: "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" .. | |
let ?s = "SOME u. u \<in> V \<inter> S" | |
let ?l = "SOME u. u \<in> V \<inter> L" | |
have LIN: "V \<inter> L \<noteq> {} \<Longrightarrow> ?l \<in> V \<inter> L" using some_in_eq by metis | |
then have LWEIGHT: "V \<inter> L \<noteq> {} \<Longrightarrow> w ?l \<le> c" using L_def weight by blast | |
from 2 have "V \<inter> S \<noteq> {}" .. | |
then have IN: "?s \<in> V \<inter> S" using some_in_eq by metis | |
then have "w ?s \<le> c" using S_def by simp | |
then show ?case | |
using LWEIGHT loop_stepA[OF INV _ _ IN] loop_stepB[OF INV _ LIN] loop_stepC[OF INV _ IN] | |
and loop_stepD[OF INV _ IN] loop_stepE[OF INV _ IN] by (cases \<open>B\<^sub>1 = {}\<close>, cases \<open>V \<inter> L = {}\<close>) auto | |
next | |
case (3 P P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V u) | |
then have INV: "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" and EMPTY: "V \<inter> S = {}" by blast+ | |
from inv\<^sub>1E(1)[OF inv\<^sub>2E(1)[OF inv\<^sub>3E(1)[OF INV]]] and bin_packing_lower_bound_card[OF EMPTY inv\<^sub>3E(1)[OF INV]] | |
show ?case by blast | |
qed | |
end (* BinPacking *) | |
subsection \<open>The Full Linear Time Version of the Proposed Algorithm\<close> | |
text \<open>Finally, we prove the Algorithm proposed on page 78 of the article @{cite BerghammerR03}. | |
This version generates the S and L sets beforehand and uses them directly to calculate the solution, | |
thus removing the need for intersection operations, and ensuring linear time if we can | |
perform \<open>insertion, removal, and selection of an element, the union of two sets, | |
and the emptiness test in constant time\<close> @{cite BerghammerR03}.\<close> | |
locale BinPacking_Complete = | |
fixes U :: "'a set" \<comment> \<open>A finite, non-empty set of objects\<close> | |
and w :: "'a \<Rightarrow> real" \<comment> \<open>A mapping from objects to their respective weights (positive real numbers)\<close> | |
and c :: nat \<comment> \<open>The maximum capacity of a bin (as a natural number)\<close> | |
assumes weight: "\<forall>u \<in> U. 0 < w(u) \<and> w(u) \<le> c" | |
and U_Finite: "finite U" | |
and U_NE: "U \<noteq> {}" | |
begin | |
text \<open>The correctness proofs will be identical to the ones of the simplified algorithm.\<close> | |
abbreviation W :: "'a set \<Rightarrow> real" where | |
"W B \<equiv> (\<Sum>u \<in> B. w(u))" | |
definition bp :: "'a set set \<Rightarrow> bool" where | |
"bp P \<longleftrightarrow> partition_on U P \<and> (\<forall>B \<in> P. W(B) \<le> c)" | |
lemma bpE: | |
assumes "bp P" | |
shows "pairwise disjnt P" "{} \<notin> P" "\<Union>P = U" "\<forall>B \<in> P. W(B) \<le> c" | |
using assms unfolding bp_def partition_on_def by blast+ | |
lemma bpI: | |
assumes "pairwise disjnt P" "{} \<notin> P" "\<Union>P = U" "\<forall>B \<in> P. W(B) \<le> c" | |
shows "bp P" | |
using assms unfolding bp_def partition_on_def by blast | |
definition inv\<^sub>1 :: "'a set set \<Rightarrow> 'a set set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | |
"inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V \<longleftrightarrow> bp (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V}) \<comment> \<open>A correct solution to the bin packing problem\<close> | |
\<and> \<Union>(P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2) = U - V \<comment> \<open>The partial solution does not contain objects that have not yet been assigned\<close> | |
\<and> B\<^sub>1 \<notin> (P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2) \<comment> \<open>\<open>B\<^sub>1\<close> is distinct from all the other bins\<close> | |
\<and> B\<^sub>2 \<notin> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2) \<comment> \<open>\<open>B\<^sub>2\<close> is distinct from all the other bins\<close> | |
\<and> (P\<^sub>1 \<union> wrap B\<^sub>1) \<inter> (P\<^sub>2 \<union> wrap B\<^sub>2) = {} \<comment> \<open>The first and second partial solutions are disjoint from each other.\<close>" | |
lemma inv\<^sub>1E: | |
assumes "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" | |
shows "bp (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V})" | |
and "\<Union>(P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2) = U - V" | |
and "B\<^sub>1 \<notin> (P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2)" | |
and "B\<^sub>2 \<notin> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2)" | |
and "(P\<^sub>1 \<union> wrap B\<^sub>1) \<inter> (P\<^sub>2 \<union> wrap B\<^sub>2) = {}" | |
using assms unfolding inv\<^sub>1_def by auto | |
lemma inv\<^sub>1I: | |
assumes "bp (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V})" | |
and "\<Union>(P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2) = U - V" | |
and "B\<^sub>1 \<notin> (P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2)" | |
and "B\<^sub>2 \<notin> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2)" | |
and "(P\<^sub>1 \<union> wrap B\<^sub>1) \<inter> (P\<^sub>2 \<union> wrap B\<^sub>2) = {}" | |
shows "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" | |
using assms unfolding inv\<^sub>1_def by blast | |
lemma wrap_Un [simp]: "wrap (M \<union> {x}) = {M \<union> {x}}" unfolding wrap_def by simp | |
lemma wrap_empty [simp]: "wrap {} = {}" unfolding wrap_def by simp | |
lemma wrap_not_empty [simp]: "M \<noteq> {} \<longleftrightarrow> wrap M = {M}" unfolding wrap_def by simp | |
lemma inv\<^sub>1_stepA: | |
assumes "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "u \<in> V" "W(B\<^sub>1) + w(u) \<le> c" | |
shows "inv\<^sub>1 P\<^sub>1 P\<^sub>2 (B\<^sub>1 \<union> {u}) B\<^sub>2 (V - {u})" | |
proof - | |
note invrules = inv\<^sub>1E[OF assms(1)] and bprules = bpE[OF invrules(1)] | |
\<comment> \<open>Rule 1: Pairwise Disjoint\<close> | |
have NOTIN: "\<forall>M \<in> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}. u \<notin> M" | |
using invrules(2) assms(2) by blast | |
have "{{v} |v. v \<in> V} = {{u}} \<union> {{v} |v. v \<in> V - {u}}" | |
using assms(2) by blast | |
then have "pairwise disjnt (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> ({{u}} \<union> {{v} |v. v \<in> V - {u}}))" | |
using bprules(1) assms(2) by simp | |
then have "pairwise disjnt (wrap B\<^sub>1 \<union> {{u}} \<union> P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}})" by (simp add: Un_commute) | |
then have assm: "pairwise disjnt (wrap B\<^sub>1 \<union> {{u}} \<union> (P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}))" by (simp add: Un_assoc) | |
have "pairwise disjnt ({B\<^sub>1 \<union> {u}} \<union> (P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}))" | |
proof (cases \<open>B\<^sub>1 = {}\<close>) | |
case True with assm show ?thesis by simp | |
next | |
case False | |
with assm have assm: "pairwise disjnt ({B\<^sub>1} \<union> {{u}} \<union> (P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}))" by simp | |
from NOTIN have "{u} \<notin> P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}" by blast | |
from pairwise_disjnt_Un[OF assm _ this] invrules(2,3) show ?thesis | |
using False by auto | |
qed | |
then have 1: "pairwise disjnt (P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}) \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}})" | |
unfolding wrap_Un by simp | |
\<comment> \<open>Rule 2: No empty sets\<close> | |
from bprules(2) have 2: "{} \<notin> P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}) \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}" | |
unfolding wrap_def by simp | |
\<comment> \<open>Rule 3: Union preserved\<close> | |
from bprules(3) have "\<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{u}} \<union> {{v} |v. v \<in> V - {u}}) = U" | |
using assms(2) by blast | |
then have 3: "\<Union> (P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}) \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}) = U" | |
unfolding wrap_def by force | |
\<comment> \<open>Rule 4: Weights below capacity\<close> | |
have "0 < w u" using weight assms(2) bprules(3) by blast | |
have "finite B\<^sub>1" using bprules(3) U_Finite by (cases \<open>B\<^sub>1 = {}\<close>) auto | |
then have "W (B\<^sub>1 \<union> {u}) \<le> W B\<^sub>1 + w u" using \<open>0 < w u\<close> by (cases \<open>u \<in> B\<^sub>1\<close>) (auto simp: insert_absorb) | |
also have "... \<le> c" using assms(3) . | |
finally have "W (B\<^sub>1 \<union> {u}) \<le> c" . | |
then have "\<forall>B \<in> wrap (B\<^sub>1 \<union> {u}). W B \<le> c" unfolding wrap_Un by blast | |
moreover have "\<forall>B\<in>P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}. W B \<le> c" | |
using bprules(4) by blast | |
ultimately have 4: "\<forall>B\<in>P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}) \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}. W B \<le> c" by blast | |
from bpI[OF 1 2 3 4] have 1: "bp (P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}) \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}})" . | |
\<comment> \<open>Auxiliary information is preserved\<close> | |
have "u \<in> U" using assms(2) bprules(3) by blast | |
then have R: "U - (V - {u}) = U - V \<union> {u}" by blast | |
have L: "\<Union> (P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}) \<union> P\<^sub>2 \<union> wrap B\<^sub>2) = \<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2) \<union> {u}" | |
unfolding wrap_def using NOTIN by auto | |
have 2: "\<Union> (P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}) \<union> P\<^sub>2 \<union> wrap B\<^sub>2) = U - (V - {u})" | |
unfolding L R invrules(2) .. | |
have 3: "B\<^sub>1 \<union> {u} \<notin> P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2" | |
using NOTIN by auto | |
have 4: "B\<^sub>2 \<notin> P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}) \<union> P\<^sub>2" | |
using invrules(4) NOTIN unfolding wrap_def by fastforce | |
have 5: "(P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u})) \<inter> (P\<^sub>2 \<union> wrap B\<^sub>2) = {}" | |
using invrules(5) NOTIN unfolding wrap_Un by auto | |
from inv\<^sub>1I[OF 1 2 3 4 5] show ?thesis . | |
qed | |
lemma inv\<^sub>1_stepB: | |
assumes "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "u \<in> V" "W B\<^sub>2 + w u \<le> c" | |
shows "inv\<^sub>1 (P\<^sub>1 \<union> wrap B\<^sub>1) P\<^sub>2 {} (B\<^sub>2 \<union> {u}) (V - {u})" | |
proof - | |
note invrules = inv\<^sub>1E[OF assms(1)] and bprules = bpE[OF invrules(1)] | |
have NOTIN: "\<forall>M \<in> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}. u \<notin> M" | |
using invrules(2) assms(2) by blast | |
have "{{v} |v. v \<in> V} = {{u}} \<union> {{v} |v. v \<in> V - {u}}" | |
using assms(2) by blast | |
then have "pairwise disjnt (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{u}} \<union> {{v} |v. v \<in> V - {u}})" | |
using bprules(1) assms(2) by simp | |
then have assm: "pairwise disjnt (wrap B\<^sub>2 \<union> {{u}} \<union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}))" | |
by (simp add: Un_assoc Un_commute) | |
have "pairwise disjnt ({B\<^sub>2 \<union> {u}} \<union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}))" | |
proof (cases \<open>B\<^sub>2 = {}\<close>) | |
case True with assm show ?thesis by simp | |
next | |
case False | |
with assm have assm: "pairwise disjnt ({B\<^sub>2} \<union> {{u}} \<union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}))" by simp | |
from NOTIN have "{u} \<notin> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}" by blast | |
from pairwise_disjnt_Un[OF assm _ this] invrules(2,4) show ?thesis | |
using False by auto | |
qed | |
then have 1: "pairwise disjnt (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u}) \<union> {{v} |v. v \<in> V - {u}})" | |
unfolding wrap_Un by simp | |
\<comment> \<open>Rule 2: No empty sets\<close> | |
from bprules(2) have 2: "{} \<notin> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u}) \<union> {{v} |v. v \<in> V - {u}}" | |
unfolding wrap_def by simp | |
\<comment> \<open>Rule 3: Union preserved\<close> | |
from bprules(3) have "\<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{u}} \<union> {{v} |v. v \<in> V - {u}}) = U" | |
using assms(2) by blast | |
then have 3: "\<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u}) \<union> {{v} |v. v \<in> V - {u}}) = U" | |
unfolding wrap_def by force | |
\<comment> \<open>Rule 4: Weights below capacity\<close> | |
have "0 < w u" using weight assms(2) bprules(3) by blast | |
have "finite B\<^sub>2" using bprules(3) U_Finite by (cases \<open>B\<^sub>2 = {}\<close>) auto | |
then have "W (B\<^sub>2 \<union> {u}) \<le> W B\<^sub>2 + w u" using \<open>0 < w u\<close> by (cases \<open>u \<in> B\<^sub>2\<close>) (auto simp: insert_absorb) | |
also have "... \<le> c" using assms(3) . | |
finally have "W (B\<^sub>2 \<union> {u}) \<le> c" . | |
then have "\<forall>B \<in> wrap (B\<^sub>2 \<union> {u}). W B \<le> c" unfolding wrap_Un by blast | |
moreover have "\<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}. W B \<le> c" | |
using bprules(4) by blast | |
ultimately have 4: "\<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u}) \<union> {{v} |v. v \<in> V - {u}}. W B \<le> c" | |
by auto | |
from bpI[OF 1 2 3 4] have 1: "bp (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u}) \<union> {{v} |v. v \<in> V - {u}})" . | |
\<comment> \<open>Auxiliary information is preserved\<close> | |
have "u \<in> U" using assms(2) bprules(3) by blast | |
then have R: "U - (V - {u}) = U - V \<union> {u}" by blast | |
have L: "\<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u})) = \<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2 \<union> wrap B\<^sub>2) \<union> {u}" | |
unfolding wrap_def using NOTIN by auto | |
have 2: "\<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u})) = U - (V - {u})" | |
unfolding L R using invrules(2) by simp | |
have 3: "{} \<notin> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u})" | |
using bpE(2)[OF 1] by simp | |
have 4: "B\<^sub>2 \<union> {u} \<notin> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> P\<^sub>2" | |
using NOTIN by auto | |
have 5: "(P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {}) \<inter> (P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u})) = {}" | |
using invrules(5) NOTIN unfolding wrap_empty wrap_Un by auto | |
from inv\<^sub>1I[OF 1 2 3 4 5] show ?thesis . | |
qed | |
lemma inv\<^sub>1_stepC: | |
assumes "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V" "u \<in> V" | |
shows "inv\<^sub>1 (P\<^sub>1 \<union> wrap B\<^sub>1) (P\<^sub>2 \<union> wrap B\<^sub>2) {} {u} (V - {u})" | |
proof - | |
note invrules = inv\<^sub>1E[OF assms(1)] | |
\<comment> \<open>Rule 1-4: Correct Bin Packing\<close> | |
have "P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> (P\<^sub>2 \<union> wrap B\<^sub>2) \<union> wrap {u} \<union> {{v} |v. v \<in> V - {u}} | |
= P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{u}} \<union> {{v} |v. v \<in> V - {u}}" | |
by (metis (no_types, lifting) Un_assoc Un_empty_right insert_not_empty wrap_empty wrap_not_empty) | |
also have "... = P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V}" | |
using assms(2) by auto | |
finally have EQ: "P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> (P\<^sub>2 \<union> wrap B\<^sub>2) \<union> wrap {u} \<union> {{v} |v. v \<in> V - {u}} | |
= P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V}" . | |
from invrules(1) have 1: "bp (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> (P\<^sub>2 \<union> wrap B\<^sub>2) \<union> wrap {u} \<union> {{v} |v. v \<in> V - {u}})" | |
unfolding EQ . | |
\<comment> \<open>Auxiliary information is preserved\<close> | |
have NOTIN: "\<forall>M \<in> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> V - {u}}. u \<notin> M" | |
using invrules(2) assms(2) by blast | |
have "u \<in> U" using assms(2) bpE(3)[OF invrules(1)] by blast | |
then have R: "U - (V - {u}) = U - V \<union> {u}" by blast | |
have L: "\<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> (P\<^sub>2 \<union> wrap B\<^sub>2) \<union> wrap {u}) = \<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> (P\<^sub>2 \<union> wrap B\<^sub>2)) \<union> {u}" | |
unfolding wrap_def using NOTIN by auto | |
have 2: "\<Union> (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> (P\<^sub>2 \<union> wrap B\<^sub>2) \<union> wrap {u}) = U - (V - {u})" | |
unfolding L R using invrules(2) by auto | |
have 3: "{} \<notin> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> (P\<^sub>2 \<union> wrap B\<^sub>2) \<union> wrap {u}" | |
using bpE(2)[OF 1] by simp | |
have 4: "{u} \<notin> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {} \<union> (P\<^sub>2 \<union> wrap B\<^sub>2)" | |
using NOTIN by auto | |
have 5: "(P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {}) \<inter> (P\<^sub>2 \<union> wrap B\<^sub>2 \<union> wrap {u}) = {}" | |
using invrules(5) NOTIN unfolding wrap_def by force | |
from inv\<^sub>1I[OF 1 2 3 4 5] show ?thesis . | |
qed | |
text \<open>From this point onward, we will require a different approach for proving lower bounds. | |
Instead of fixing and assuming the definitions of the \<open>S\<close> and \<open>L\<close> sets, we will introduce | |
the abbreviations \<open>S\<^sub>U\<close> and \<open>L\<^sub>U\<close> for any occurrences of the original \<open>S\<close> and \<open>L\<close> sets. | |
The union of \<open>S\<close> and \<open>L\<close> can be interpreted as \<open>V\<close>. As a result, occurrences of \<open>V \<inter> S\<close> | |
become \<open>(S \<union> L) \<inter> S = S\<close>, and \<open>V \<inter> L\<close> become \<open>(S \<union> L) \<inter> L = L\<close>. | |
Occurrences of these sets will have to be replaced appropriately.\<close> | |
abbreviation S\<^sub>U where | |
"S\<^sub>U \<equiv> {u \<in> U. w u \<le> c / 2}" | |
abbreviation L\<^sub>U where | |
"L\<^sub>U \<equiv> {u \<in> U. c / 2 < w u}" | |
text \<open>As we will remove elements from \<open>S\<close> and \<open>L\<close>, we will only be able to show that they remain | |
subsets of \<open>S\<^sub>U\<close> and \<open>L\<^sub>U\<close> respectively.\<close> | |
abbreviation SL where | |
"SL S L \<equiv> S \<subseteq> S\<^sub>U \<and> L \<subseteq> L\<^sub>U" | |
lemma bp_bins_finite [simp]: | |
assumes "bp P" | |
shows "\<forall>B \<in> P. finite B" | |
using bpE(3)[OF assms] U_Finite by (meson Sup_upper finite_subset) | |
lemma bp_sol_finite [simp]: | |
assumes "bp P" | |
shows "finite P" | |
using bpE(3)[OF assms] U_Finite by (simp add: finite_UnionD) | |
lemma only_one_L_per_bin: | |
assumes "bp P" "B \<in> P" | |
shows "\<forall>x \<in> B. \<forall>y \<in> B. x \<noteq> y \<longrightarrow> x \<notin> L\<^sub>U \<or> y \<notin> L\<^sub>U" | |
proof (rule ccontr, simp) | |
assume "\<exists>x\<in>B. \<exists>y\<in>B. x \<noteq> y \<and> y \<in> U \<and> x \<in> U \<and> real c < w x * 2 \<and> real c < w y * 2" | |
then obtain x y where *: "x \<in> B" "y \<in> B" "x \<noteq> y" "x \<in> L\<^sub>U" "y \<in> L\<^sub>U" by auto | |
then have "c < w x + w y" by force | |
have "finite B" using assms by simp | |
have "y \<in> B - {x}" using *(2,3) by blast | |
have "W B = W (B - {x}) + w x" | |
using *(1) \<open>finite B\<close> by (simp add: sum.remove) | |
also have "... = W (B - {x} - {y}) + w x + w y" | |
using \<open>y \<in> B - {x}\<close> \<open>finite B\<close> by (simp add: sum.remove) | |
finally have *: "W B = W (B - {x} - {y}) + w x + w y" . | |
have "\<forall>u \<in> B. 0 < w u" using bpE(3)[OF assms(1)] assms(2) weight by blast | |
then have "0 \<le> W (B - {x} - {y})" by (smt DiffD1 sum_nonneg) | |
with * have "c < W B" using \<open>c < w x + w y\<close> by simp | |
then show False using bpE(4)[OF assms(1)] assms(2) by fastforce | |
qed | |
lemma L_lower_bound_card: | |
assumes "bp P" | |
shows "card L\<^sub>U \<le> card P" | |
proof - | |
have "\<forall>x \<in> L\<^sub>U. \<exists>B \<in> P. x \<in> B" | |
using bpE(3)[OF assms] by blast | |
then obtain f where f_def: "\<forall>u \<in> L\<^sub>U. u \<in> f u \<and> f u \<in> P" by metis | |
then have "inj_on f L\<^sub>U" | |
unfolding inj_on_def using only_one_L_per_bin[OF assms] by blast | |
then have card_eq: "card L\<^sub>U = card (f ` L\<^sub>U)" by (simp add: card_image) | |
have "f ` L\<^sub>U \<subseteq> P" using f_def by blast | |
moreover have "finite P" using assms by simp | |
ultimately have "card (f ` L\<^sub>U) \<le> card P" by (simp add: card_mono) | |
then show ?thesis unfolding card_eq . | |
qed | |
lemma subset_bp_card: | |
assumes "bp P" "M \<subseteq> P" "\<forall>B \<in> M. B \<inter> L\<^sub>U \<noteq> {}" | |
shows "card M \<le> card L\<^sub>U" | |
proof - | |
have "\<forall>B \<in> M. \<exists>u \<in> L\<^sub>U. u \<in> B" using assms(3) by fast | |
then have "\<exists>f. \<forall>B \<in> M. f B \<in> L\<^sub>U \<and> f B \<in> B" by metis | |
then obtain f where f_def: "\<forall>B \<in> M. f B \<in> L\<^sub>U \<and> f B \<in> B" .. | |
have "inj_on f M" | |
proof (rule ccontr) | |
assume "\<not> inj_on f M" | |
then have "\<exists>x \<in> M. \<exists>y \<in> M. x \<noteq> y \<and> f x = f y" unfolding inj_on_def by blast | |
then obtain x y where *: "x \<in> M" "y \<in> M" "x \<noteq> y" "f x = f y" by blast | |
then have "\<exists>u. u \<in> x \<and> u \<in> y" using f_def by metis | |
then have "x \<inter> y \<noteq> {}" by blast | |
moreover have "pairwise disjnt M" using pairwise_subset[OF bpE(1)[OF assms(1)] assms(2)] . | |
ultimately show False using * unfolding pairwise_def disjnt_def by simp | |
qed | |
moreover have "finite L\<^sub>U" using U_Finite by auto | |
moreover have "f ` M \<subseteq> L\<^sub>U" using f_def by blast | |
ultimately show ?thesis using card_inj_on_le by blast | |
qed | |
lemma L_bins_lower_bound_card: | |
assumes "bp P" "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 (S \<union> L)" "\<forall>B \<in> P\<^sub>1 \<union> wrap B\<^sub>1. B \<inter> L\<^sub>U \<noteq> {}" | |
and SL_def: "SL S L" | |
shows "card (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> {{v} |v. v \<in> L}) \<le> card P" | |
proof - | |
note invrules = inv\<^sub>1E[OF assms(2)] | |
have "\<forall>B \<in> {{v} |v. v \<in> L}. B \<inter> L\<^sub>U \<noteq> {}" using SL_def by blast | |
with assms(3) have | |
"P\<^sub>1 \<union> wrap B\<^sub>1 \<union> {{v} |v. v \<in> L} \<subseteq> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> S \<union> L}" | |
"\<forall>B \<in> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> {{v} |v. v \<in> L}. B \<inter> L\<^sub>U \<noteq> {}" by blast+ | |
from subset_bp_card[OF invrules(1) this] show ?thesis | |
using L_lower_bound_card[OF assms(1)] by linarith | |
qed | |
lemma sum_Un_eq_sum_sum: | |
assumes "bp P" | |
shows "(\<Sum>u \<in> U. w u) = (\<Sum>B \<in> P. W B)" | |
proof - | |
have FINITE: "\<forall>B \<in> P. finite B" using assms by simp | |
have DISJNT: "\<forall>A \<in> P. \<forall>B \<in> P. A \<noteq> B \<longrightarrow> A \<inter> B = {}" | |
using bpE(1)[OF assms] unfolding pairwise_def disjnt_def . | |
have "(\<Sum>u \<in> (\<Union>P). w u) = (\<Sum>B \<in> P. W B)" | |
using sum.Union_disjoint[OF FINITE DISJNT] by auto | |
then show ?thesis unfolding bpE(3)[OF assms] . | |
qed | |
lemma sum_lower_bound_card: | |
assumes "bp P" | |
shows "(\<Sum>u \<in> U. w u) \<le> c * card P" | |
proof - | |
have *: "\<forall>B \<in> P. 0 < W B \<and> W B \<le> c" | |
using bpE(2-4)[OF assms] weight by (metis UnionI assms bp_bins_finite sum_pos) | |
have "(\<Sum>u \<in> U. w u) = (\<Sum>B \<in> P. W B)" | |
using sum_Un_eq_sum_sum[OF assms] . | |
also have "... \<le> (\<Sum>B \<in> P. c)" using sum_mono * by fastforce | |
also have "... = c * card P" by simp | |
finally show ?thesis . | |
qed | |
lemma bp_NE: | |
assumes "bp P" | |
shows "P \<noteq> {}" | |
using U_NE bpE(3)[OF assms] by blast | |
lemma sum_Un_ge: | |
fixes f :: "_ \<Rightarrow> real" | |
assumes "finite M" "finite N" "\<forall>B \<in> M \<union> N. 0 < f B" | |
shows "sum f M \<le> sum f (M \<union> N)" | |
proof - | |
have "0 \<le> sum f N - sum f (M \<inter> N)" | |
using assms by (smt DiffD1 inf.cobounded2 UnCI sum_mono2) | |
then have "sum f M \<le> sum f M + sum f N - sum f (M \<inter> N)" | |
by simp | |
also have "... = sum f (M \<union> N)" | |
using sum_Un[OF assms(1,2), symmetric] . | |
finally show ?thesis . | |
qed | |
definition bij_exists :: "'a set set \<Rightarrow> 'a set \<Rightarrow> bool" where | |
"bij_exists P V = (\<exists>f. bij_betw f P V \<and> (\<forall>B \<in> P. W B + w (f B) > c))" | |
lemma P\<^sub>1_lower_bound_card: | |
assumes "bp P" "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 (S \<union> L)" "bij_exists P\<^sub>1 (\<Union>(P\<^sub>2 \<union> wrap B\<^sub>2))" | |
shows "card P\<^sub>1 + 1 \<le> card P" | |
proof (cases \<open>P\<^sub>1 = {}\<close>) | |
case True | |
have "finite P" using assms(1) by simp | |
then have "1 \<le> card P" using bp_NE[OF assms(1)] | |
by (metis Nat.add_0_right Suc_diff_1 Suc_le_mono card_gt_0_iff le0 mult_Suc_right nat_mult_1) | |
then show ?thesis unfolding True by simp | |
next | |
note invrules = inv\<^sub>1E[OF assms(2)] | |
case False | |
obtain f where f_def: "bij_betw f P\<^sub>1 (\<Union>(P\<^sub>2 \<union> wrap B\<^sub>2))" "\<forall>B \<in> P\<^sub>1. W B + w (f B) > c" | |
using assms(3) unfolding bij_exists_def by blast | |
have FINITE: "finite P\<^sub>1" "finite (P\<^sub>2 \<union> wrap B\<^sub>2)" "finite (P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2)" "finite (wrap B\<^sub>1 \<union> {{v} |v. v \<in> S \<union> L})" | |
using inv\<^sub>1E(1)[OF assms(2)] bp_sol_finite by blast+ | |
have F: "\<forall>B \<in> P\<^sub>2 \<union> wrap B\<^sub>2. finite B" using invrules(1) by simp | |
have D: "\<forall>A \<in> P\<^sub>2 \<union> wrap B\<^sub>2. \<forall>B \<in> P\<^sub>2 \<union> wrap B\<^sub>2. A \<noteq> B \<longrightarrow> A \<inter> B = {}" | |
using bpE(1)[OF invrules(1)] unfolding pairwise_def disjnt_def by auto | |
have sum_eq: "W (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2)) = (\<Sum>B \<in> P\<^sub>2 \<union> wrap B\<^sub>2. W B)" | |
using sum.Union_disjoint[OF F D] by auto | |
have "\<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> S \<union> L}. 0 < W B" | |
using bpE(2,3)[OF invrules(1)] weight by (metis (no_types, lifting) UnionI bp_bins_finite invrules(1) sum_pos) | |
then have "(\<Sum>B \<in> P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2. W B) \<le> (\<Sum>B \<in> P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> (wrap B\<^sub>1 \<union> {{v} |v. v \<in> S \<union> L}). W B)" | |
using sum_Un_ge[OF FINITE(3,4), of W] by blast | |
also have "... = (\<Sum>B \<in> P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> S \<union> L}. W B)" by (smt Un_assoc Un_commute) | |
also have "... = W U" using sum_Un_eq_sum_sum[OF invrules(1), symmetric] . | |
finally have *: "(\<Sum>B \<in> P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2. W B) \<le> W U" . | |
have DISJNT: "P\<^sub>1 \<inter> (P\<^sub>2 \<union> wrap B\<^sub>2) = {}" using invrules(5) by blast | |
\<comment> \<open>This part of the proof is based on the proof on page 72 of the article @{cite BerghammerR03}.\<close> | |
have "c * card P\<^sub>1 = (\<Sum>B \<in> P\<^sub>1. c)" by simp | |
also have "... < (\<Sum>B \<in> P\<^sub>1. W B + w (f B))" | |
using f_def(2) sum_strict_mono[OF FINITE(1) False] by fastforce | |
also have "... = (\<Sum>B \<in> P\<^sub>1. W B) + (\<Sum>B \<in> P\<^sub>1. w (f B))" | |
by (simp add: Groups_Big.comm_monoid_add_class.sum.distrib) | |
also have "... = (\<Sum>B \<in> P\<^sub>1. W B) + W (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))" unfolding sum.reindex_bij_betw[OF f_def(1), of w] .. | |
also have "... = (\<Sum>B \<in> P\<^sub>1. W B) + (\<Sum>B \<in> P\<^sub>2 \<union> wrap B\<^sub>2. W B)" unfolding sum_eq .. | |
also have "... = (\<Sum>B \<in> P\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2. W B)" using sum.union_disjoint[OF FINITE(1,2) DISJNT, of W] by (simp add: Un_assoc) | |
also have "... \<le> (\<Sum>u \<in> U. w u)" using * . | |
also have "... \<le> c * card P" using sum_lower_bound_card[OF assms(1)] . | |
finally show ?thesis by (meson discrete nat_mult_less_cancel_disj of_nat_less_imp_less) | |
qed | |
lemma P\<^sub>1_B\<^sub>1_lower_bound_card: | |
assumes "bp P" "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 (S \<union> L)" "bij_exists P\<^sub>1 (\<Union>(P\<^sub>2 \<union> wrap B\<^sub>2))" | |
shows "card (P\<^sub>1 \<union> wrap B\<^sub>1) \<le> card P" | |
proof - | |
have "card (P\<^sub>1 \<union> wrap B\<^sub>1) \<le> card P\<^sub>1 + card (wrap B\<^sub>1)" | |
using card_Un_le by blast | |
also have "... \<le> card P\<^sub>1 + 1" using wrap_card by simp | |
also have "... \<le> card P" using P\<^sub>1_lower_bound_card[OF assms] . | |
finally show ?thesis . | |
qed | |
lemma P\<^sub>2_B\<^sub>2_lower_bound_P\<^sub>1: | |
assumes "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 (S \<union> L)" "2 * card P\<^sub>2 \<le> card (\<Union>P\<^sub>2)" "bij_exists P\<^sub>1 (\<Union>(P\<^sub>2 \<union> wrap B\<^sub>2))" | |
shows "2 * card (P\<^sub>2 \<union> wrap B\<^sub>2) \<le> card P\<^sub>1 + 1" | |
proof - | |
note invrules = inv\<^sub>1E[OF assms(1)] and bprules = bpE[OF invrules(1)] | |
have "pairwise disjnt (P\<^sub>2 \<union> wrap B\<^sub>2)" | |
using bprules(1) pairwise_subset by blast | |
moreover have "B\<^sub>2 \<notin> P\<^sub>2" using invrules(4) by simp | |
ultimately have DISJNT: "\<Union>P\<^sub>2 \<inter> B\<^sub>2 = {}" | |
by (auto, metis (no_types, opaque_lifting) sup_bot.right_neutral Un_insert_right disjnt_iff mk_disjoint_insert pairwise_insert wrap_Un) | |
have "finite (\<Union>P\<^sub>2)" using U_Finite bprules(3) by auto | |
have "finite B\<^sub>2" using bp_bins_finite[OF invrules(1)] wrap_not_empty by blast | |
have "finite P\<^sub>2" "finite (wrap B\<^sub>2)" using bp_sol_finite[OF invrules(1)] by blast+ | |
have DISJNT2: "P\<^sub>2 \<inter> wrap B\<^sub>2 = {}" unfolding wrap_def using \<open>B\<^sub>2 \<notin> P\<^sub>2\<close> by auto | |
have "card (wrap B\<^sub>2) \<le> card B\<^sub>2" | |
proof (cases \<open>B\<^sub>2 = {}\<close>) | |
case False | |
then have "1 \<le> card B\<^sub>2" by (simp add: leI \<open>finite B\<^sub>2\<close>) | |
then show ?thesis using wrap_card[of B\<^sub>2] by linarith | |
qed simp | |
\<comment> \<open>This part of the proof is based on the proof on page 73 of the article @{cite BerghammerR03}.\<close> | |
from assms(2) have "2 * card P\<^sub>2 + 2 * card (wrap B\<^sub>2) \<le> card (\<Union>P\<^sub>2) + card (wrap B\<^sub>2) + 1" | |
using wrap_card[of B\<^sub>2] by linarith | |
then have "2 * (card P\<^sub>2 + card (wrap B\<^sub>2)) \<le> card (\<Union>P\<^sub>2) + card B\<^sub>2 + 1" | |
using \<open>card (wrap B\<^sub>2) \<le> card B\<^sub>2\<close> by simp | |
then have "2 * (card (P\<^sub>2 \<union> wrap B\<^sub>2)) \<le> card (\<Union>P\<^sub>2 \<union> B\<^sub>2) + 1" | |
using card_Un_disjoint[OF \<open>finite (\<Union>P\<^sub>2)\<close> \<open>finite B\<^sub>2\<close> DISJNT] | |
and card_Un_disjoint[OF \<open>finite P\<^sub>2\<close> \<open>finite (wrap B\<^sub>2)\<close> DISJNT2] by argo | |
then have "2 * (card (P\<^sub>2 \<union> wrap B\<^sub>2)) \<le> card (\<Union>(P\<^sub>2 \<union> wrap B\<^sub>2)) + 1" | |
by (cases \<open>B\<^sub>2 = {}\<close>) (auto simp: Un_commute) | |
then show "2 * (card (P\<^sub>2 \<union> wrap B\<^sub>2)) \<le> card P\<^sub>1 + 1" | |
using assms(3) bij_betw_same_card unfolding bij_exists_def by metis | |
qed | |
text \<open>We add \<open>SL S L\<close> to \<open>inv\<^sub>2\<close> to ensure that the \<open>S\<close> and \<open>L\<close> sets only contain objects with correct weights.\<close> | |
definition inv\<^sub>2 :: "'a set set \<Rightarrow> 'a set set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | |
"inv\<^sub>2 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L \<longleftrightarrow> inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 (S \<union> L) \<comment> \<open>\<open>inv\<^sub>1\<close> holds for the partial solution\<close> | |
\<and> (L \<noteq> {} \<longrightarrow> (\<forall>B \<in> P\<^sub>1 \<union> wrap B\<^sub>1. B \<inter> L\<^sub>U \<noteq> {})) \<comment> \<open>If there are still large objects left, then every bin of the first partial solution must contain a large object\<close> | |
\<and> bij_exists P\<^sub>1 (\<Union>(P\<^sub>2 \<union> wrap B\<^sub>2)) \<comment> \<open>There exists a bijective function between the bins of the first partial solution and the objects of the second one\<close> | |
\<and> (2 * card P\<^sub>2 \<le> card (\<Union>P\<^sub>2)) \<comment> \<open>There are at most twice as many bins in \<open>P\<^sub>2\<close> as there are objects in \<open>P\<^sub>2\<close>\<close> | |
\<and> SL S L \<comment> \<open>\<open>S\<close> and \<open>L\<close> are subsets of \<open>S\<^sub>U\<close> and \<open>L\<^sub>U\<close>\<close>" | |
lemma inv\<^sub>2E: | |
assumes "inv\<^sub>2 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L" | |
shows "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 (S \<union> L)" | |
and "L \<noteq> {} \<Longrightarrow> \<forall>B \<in> P\<^sub>1 \<union> wrap B\<^sub>1. B \<inter> L\<^sub>U \<noteq> {}" | |
and "bij_exists P\<^sub>1 (\<Union>(P\<^sub>2 \<union> wrap B\<^sub>2))" | |
and "2 * card P\<^sub>2 \<le> card (\<Union>P\<^sub>2)" | |
and "SL S L" | |
using assms unfolding inv\<^sub>2_def by blast+ | |
lemma inv\<^sub>2I: | |
assumes "inv\<^sub>1 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 (S \<union> L)" | |
and "L \<noteq> {} \<Longrightarrow> \<forall>B \<in> P\<^sub>1 \<union> wrap B\<^sub>1. B \<inter> L\<^sub>U \<noteq> {}" | |
and "bij_exists P\<^sub>1 (\<Union>(P\<^sub>2 \<union> wrap B\<^sub>2))" | |
and "2 * card P\<^sub>2 \<le> card (\<Union>P\<^sub>2)" | |
and "SL S L" | |
shows "inv\<^sub>2 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L" | |
using assms unfolding inv\<^sub>2_def by blast | |
lemma bin_packing_lower_bound_card: | |
assumes "S = {}" "inv\<^sub>2 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L" "bp P" | |
shows "card (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> S \<union> L}) \<le> 3 / 2 * card P" | |
proof (cases \<open>L = {}\<close>) | |
note invrules = inv\<^sub>2E[OF assms(2)] | |
case True | |
then have "card (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> S \<union> L}) | |
= card (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2)" using assms(1) by simp | |
also have "... \<le> card (P\<^sub>1 \<union> wrap B\<^sub>1) + card (P\<^sub>2 \<union> wrap B\<^sub>2)" | |
using card_Un_le[of \<open>P\<^sub>1 \<union> wrap B\<^sub>1\<close>] by (simp add: Un_assoc) | |
also have "... \<le> card P + card (P\<^sub>2 \<union> wrap B\<^sub>2)" | |
using P\<^sub>1_B\<^sub>1_lower_bound_card[OF assms(3) invrules(1,3)] by simp | |
also have "... \<le> card P + card P / 2" | |
using P\<^sub>2_B\<^sub>2_lower_bound_P\<^sub>1[OF invrules(1,4,3)] | |
and P\<^sub>1_lower_bound_card[OF assms(3) invrules(1,3)] by linarith | |
finally show ?thesis by linarith | |
next | |
note invrules = inv\<^sub>2E[OF assms(2)] | |
case False | |
have "card (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> S \<union> L}) | |
= card (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> {{v} |v. v \<in> L} \<union> P\<^sub>2 \<union> wrap B\<^sub>2)" | |
using assms(1) by (simp add: Un_commute Un_assoc) | |
also have "... \<le> card (P\<^sub>1 \<union> wrap B\<^sub>1 \<union> {{v} |v. v \<in> L}) + card (P\<^sub>2 \<union> wrap B\<^sub>2)" | |
using card_Un_le[of \<open>P\<^sub>1 \<union> wrap B\<^sub>1 \<union> {{v} |v. v \<in> L}\<close>] by (simp add: Un_assoc) | |
also have "... \<le> card P + card (P\<^sub>2 \<union> wrap B\<^sub>2)" | |
using L_bins_lower_bound_card[OF assms(3) invrules(1) invrules(2)[OF False] invrules(5)] by linarith | |
also have "... \<le> card P + card P / 2" | |
using P\<^sub>2_B\<^sub>2_lower_bound_P\<^sub>1[OF invrules(1,4,3)] | |
and P\<^sub>1_lower_bound_card[OF assms(3) invrules(1,3)] by linarith | |
finally show ?thesis by linarith | |
qed | |
definition inv\<^sub>3 :: "'a set set \<Rightarrow> 'a set set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | |
"inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L \<longleftrightarrow> inv\<^sub>2 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L \<and> B\<^sub>2 \<subseteq> S\<^sub>U" | |
lemma inv\<^sub>3E: | |
assumes "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L" | |
shows "inv\<^sub>2 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L" and "B\<^sub>2 \<subseteq> S\<^sub>U" | |
using assms unfolding inv\<^sub>3_def by blast+ | |
lemma inv\<^sub>3I: | |
assumes "inv\<^sub>2 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L" and "B\<^sub>2 \<subseteq> S\<^sub>U" | |
shows "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L" | |
using assms unfolding inv\<^sub>3_def by blast | |
lemma loop_init: | |
"inv\<^sub>3 {} {} {} {} S\<^sub>U L\<^sub>U" | |
proof - | |
have "S\<^sub>U \<union> L\<^sub>U = U" by auto | |
then have *: "inv\<^sub>1 {} {} {} {} (S\<^sub>U \<union> L\<^sub>U)" | |
unfolding bp_def partition_on_def pairwise_def wrap_def inv\<^sub>1_def | |
using weight by auto | |
have "bij_exists {} (\<Union> ({} \<union> wrap {}))" | |
using bij_betwI' unfolding bij_exists_def by fastforce | |
from inv\<^sub>2I[OF * _ this] have "inv\<^sub>2 {} {} {} {} S\<^sub>U L\<^sub>U" by auto | |
from inv\<^sub>3I[OF this] show ?thesis by blast | |
qed | |
lemma loop_stepA: | |
assumes "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L" "B\<^sub>1 = {}" "L = {}" "u \<in> S" | |
shows "inv\<^sub>3 P\<^sub>1 P\<^sub>2 {u} B\<^sub>2 (S - {u}) L" | |
proof - | |
note invrules = inv\<^sub>2E[OF inv\<^sub>3E(1)[OF assms(1)]] | |
have WEIGHT: "W B\<^sub>1 + w u \<le> c" using invrules(5) assms(2,4) by fastforce | |
from assms(4) have "u \<in> S \<union> L" by blast | |
from inv\<^sub>1_stepA[OF invrules(1) this WEIGHT] assms(2,3) have 1: "inv\<^sub>1 P\<^sub>1 P\<^sub>2 {u} B\<^sub>2 (S - {u} \<union> L)" by simp | |
have 2: "L \<noteq> {} \<Longrightarrow> \<forall>B\<in>P\<^sub>1 \<union> wrap {u}. B \<inter> L\<^sub>U \<noteq> {}" using assms(3) by blast | |
from inv\<^sub>2I[OF 1 2] invrules have "inv\<^sub>2 P\<^sub>1 P\<^sub>2 {u} B\<^sub>2 (S - {u}) L" by blast | |
from inv\<^sub>3I[OF this] show ?thesis using inv\<^sub>3E(2)[OF assms(1)] . | |
qed | |
lemma loop_stepB: | |
assumes "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L" "B\<^sub>1 = {}" "u \<in> L" | |
shows "inv\<^sub>3 P\<^sub>1 P\<^sub>2 {u} B\<^sub>2 S (L - {u})" | |
proof - | |
note invrules = inv\<^sub>2E[OF inv\<^sub>3E(1)[OF assms(1)]] | |
have WEIGHT: "W B\<^sub>1 + w u \<le> c" using weight invrules(5) assms(2,3) by fastforce | |
\<comment> \<open>This observation follows from the fact that the \<open>S\<close> and \<open>L\<close> sets have to be disjoint from each other, | |
and allows us to reuse our proofs of the preservation of \<open>inv\<^sub>1\<close> by simply replacing \<open>V\<close> with \<open>S \<union> L\<close>\<close> | |
have *: "S \<union> L - {u} = S \<union> (L - {u})" using invrules(5) assms(3) by force | |
from assms(3) have "u \<in> S \<union> L" by blast | |
from inv\<^sub>1_stepA[OF invrules(1) this WEIGHT] assms(2) * have 1: "inv\<^sub>1 P\<^sub>1 P\<^sub>2 {u} B\<^sub>2 (S \<union> (L - {u}))" by simp | |
have "\<forall>B\<in>P\<^sub>1. B \<inter> L\<^sub>U \<noteq> {}" "{u} \<inter> L\<^sub>U \<noteq> {}" using assms(3) invrules(2,5) by blast+ | |
then have 2: "L \<noteq> {} \<Longrightarrow> \<forall>B\<in>P\<^sub>1 \<union> wrap {u}. B \<inter> L\<^sub>U \<noteq> {}" | |
using assms(3) by (metis (full_types) Un_iff empty_iff insert_iff wrap_not_empty) | |
from inv\<^sub>2I[OF 1 2] invrules have "inv\<^sub>2 P\<^sub>1 P\<^sub>2 {u} B\<^sub>2 S (L - {u})" by blast | |
from inv\<^sub>3I[OF this] show ?thesis using inv\<^sub>3E(2)[OF assms(1)] . | |
qed | |
lemma loop_stepC: | |
assumes "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L" "B\<^sub>1 \<noteq> {}" "u \<in> S" "W B\<^sub>1 + w(u) \<le> c" | |
shows "inv\<^sub>3 P\<^sub>1 P\<^sub>2 (B\<^sub>1 \<union> {u}) B\<^sub>2 (S - {u}) L" | |
proof - | |
note invrules = inv\<^sub>2E[OF inv\<^sub>3E(1)[OF assms(1)]] | |
\<comment> \<open>Same approach, but removing \<open>{u}\<close> from \<open>S\<close> instead of \<open>L\<close>\<close> | |
have *: "S \<union> L - {u} = (S - {u}) \<union> L" using invrules(5) assms(3) by force | |
from assms(3) have "u \<in> S \<union> L" by blast | |
from inv\<^sub>1_stepA[OF invrules(1) this assms(4)] * have 1: "inv\<^sub>1 P\<^sub>1 P\<^sub>2 (B\<^sub>1 \<union> {u}) B\<^sub>2 (S - {u} \<union> L)" by simp | |
have "L \<noteq> {} \<Longrightarrow> \<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1. B \<inter> L\<^sub>U \<noteq> {}" using invrules(2) by blast | |
then have 2: "L \<noteq> {} \<Longrightarrow> \<forall>B\<in>P\<^sub>1 \<union> wrap (B\<^sub>1 \<union> {u}). B \<inter> L\<^sub>U \<noteq> {}" | |
by (smt Int_insert_left Un_empty_right Un_iff Un_insert_right assms(2) insert_not_empty singletonD singletonI wrap_def) | |
from inv\<^sub>2I[OF 1 2] invrules have "inv\<^sub>2 P\<^sub>1 P\<^sub>2 (B\<^sub>1 \<union> {u}) B\<^sub>2 (S - {u}) L" by blast | |
from inv\<^sub>3I[OF this] show ?thesis using inv\<^sub>3E(2)[OF assms(1)] . | |
qed | |
lemma loop_stepD: | |
assumes "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L" "B\<^sub>1 \<noteq> {}" "u \<in> S" "W B\<^sub>1 + w(u) > c" "W B\<^sub>2 + w(u) \<le> c" | |
shows "inv\<^sub>3 (P\<^sub>1 \<union> wrap B\<^sub>1) P\<^sub>2 {} (B\<^sub>2 \<union> {u}) (S - {u}) L" | |
proof - | |
note invrules = inv\<^sub>2E[OF inv\<^sub>3E(1)[OF assms(1)]] | |
have *: "S \<union> L - {u} = (S - {u}) \<union> L" using invrules(5) assms(3) by force | |
from assms(3) have "u \<in> S \<union> L" by blast | |
from inv\<^sub>1_stepB[OF invrules(1) this assms(5)] * have 1: "inv\<^sub>1 (P\<^sub>1 \<union> wrap B\<^sub>1) P\<^sub>2 {} (B\<^sub>2 \<union> {u}) (S - {u} \<union> L)" by simp | |
have 2: "L \<noteq> {} \<Longrightarrow> \<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {}. B \<inter> L\<^sub>U \<noteq> {}" | |
using invrules(2) unfolding wrap_empty by blast | |
from invrules(3) obtain f where f_def: "bij_betw f P\<^sub>1 (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))" "\<forall>B\<in>P\<^sub>1. c < W B + w (f B)" unfolding bij_exists_def by blast | |
have "B\<^sub>1 \<notin> P\<^sub>1" using inv\<^sub>1E(3)[OF invrules(1)] by blast | |
have "u \<notin> (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))" using inv\<^sub>1E(2)[OF invrules(1)] assms(3) by blast | |
then have "(\<Union> (P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u}))) = (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{u}}))" | |
by (metis Sup_empty Un_assoc Union_Un_distrib ccpo_Sup_singleton wrap_empty wrap_not_empty) | |
also have "... = (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2)) \<union> {u}" by simp | |
finally have UN: "(\<Union> (P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u}))) = (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2)) \<union> {u}" . | |
have "wrap B\<^sub>1 = {B\<^sub>1}" using wrap_not_empty[of B\<^sub>1] assms(2) by simp | |
let ?f = "f (B\<^sub>1 := u)" | |
have BIJ: "bij_betw ?f (P\<^sub>1 \<union> wrap B\<^sub>1) (\<Union> (P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u})))" | |
unfolding wrap_empty \<open>wrap B\<^sub>1 = {B\<^sub>1}\<close> UN using f_def(1) \<open>B\<^sub>1 \<notin> P\<^sub>1\<close> \<open>u \<notin> (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))\<close> | |
by (metis (no_types, lifting) bij_betw_cong fun_upd_other fun_upd_same notIn_Un_bij_betw3) | |
have "c < W B\<^sub>1 + w (?f B\<^sub>1)" using assms(4) by simp | |
then have "(\<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1. c < W B + w (?f B))" | |
unfolding \<open>wrap B\<^sub>1 = {B\<^sub>1}\<close> using f_def(2) by simp | |
with BIJ have "bij_betw ?f (P\<^sub>1 \<union> wrap B\<^sub>1) (\<Union> (P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u}))) | |
\<and> (\<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1. c < W B + w (?f B))" by blast | |
then have 3: "bij_exists (P\<^sub>1 \<union> wrap B\<^sub>1) (\<Union> (P\<^sub>2 \<union> wrap (B\<^sub>2 \<union> {u})))" | |
unfolding bij_exists_def by blast | |
from inv\<^sub>2I[OF 1 2 3] have "inv\<^sub>2 (P\<^sub>1 \<union> wrap B\<^sub>1) P\<^sub>2 {} (B\<^sub>2 \<union> {u}) (S - {u}) L" using invrules(4,5) by blast | |
from inv\<^sub>3I[OF this] show ?thesis using inv\<^sub>3E(2)[OF assms(1)] assms(3) invrules(5) by blast | |
qed | |
lemma B\<^sub>2_at_least_two_objects: | |
assumes "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L" "u \<in> S" "W B\<^sub>2 + w(u) > c" | |
shows "2 \<le> card B\<^sub>2" | |
proof (rule ccontr, simp add: not_le) | |
have FINITE: "finite B\<^sub>2" using inv\<^sub>1E(1)[OF inv\<^sub>2E(1)[OF inv\<^sub>3E(1)[OF assms(1)]]] | |
by (metis (no_types, lifting) Finite_Set.finite.simps U_Finite Union_Un_distrib bpE(3) ccpo_Sup_singleton finite_Un wrap_not_empty) | |
assume "card B\<^sub>2 < 2" | |
then consider (0) "card B\<^sub>2 = 0" | (1) "card B\<^sub>2 = 1" by linarith | |
then show False proof cases | |
case 0 then have "B\<^sub>2 = {}" using FINITE by simp | |
then show ?thesis using assms(2,3) inv\<^sub>2E(5)[OF inv\<^sub>3E(1)[OF assms(1)]] by force | |
next | |
case 1 then obtain v where "B\<^sub>2 = {v}" | |
using card_1_singletonE by auto | |
with inv\<^sub>3E(2)[OF assms(1)] have "2 * w v \<le> c" using inv\<^sub>2E(5)[OF inv\<^sub>3E(1)[OF assms(1)]] by simp | |
moreover from \<open>B\<^sub>2 = {v}\<close> have "W B\<^sub>2 = w v" by simp | |
ultimately show ?thesis using assms(2,3) inv\<^sub>2E(5)[OF inv\<^sub>3E(1)[OF assms(1)]] by force | |
qed | |
qed | |
lemma loop_stepE: | |
assumes "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L" "B\<^sub>1 \<noteq> {}" "u \<in> S" "W B\<^sub>1 + w(u) > c" "W B\<^sub>2 + w(u) > c" | |
shows "inv\<^sub>3 (P\<^sub>1 \<union> wrap B\<^sub>1) (P\<^sub>2 \<union> wrap B\<^sub>2) {} {u} (S - {u}) L" | |
proof - | |
note invrules = inv\<^sub>2E[OF inv\<^sub>3E(1)[OF assms(1)]] | |
have *: "S \<union> L - {u} = (S - {u}) \<union> L" using invrules(5) assms(3) by force | |
from assms(3) have "u \<in> S \<union> L" by blast | |
from inv\<^sub>1_stepC[OF invrules(1) this] * have 1: "inv\<^sub>1 (P\<^sub>1 \<union> wrap B\<^sub>1) (P\<^sub>2 \<union> wrap B\<^sub>2) {} {u} (S - {u} \<union> L)" by simp | |
have 2: "L \<noteq> {} \<Longrightarrow> \<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1 \<union> wrap {}. B \<inter> L\<^sub>U \<noteq> {}" | |
using invrules(2) unfolding wrap_empty by blast | |
from invrules(3) obtain f where f_def: "bij_betw f P\<^sub>1 (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))" "\<forall>B\<in>P\<^sub>1. c < W B + w (f B)" unfolding bij_exists_def by blast | |
have "B\<^sub>1 \<notin> P\<^sub>1" using inv\<^sub>1E(3)[OF invrules(1)] by blast | |
have "u \<notin> (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))" using inv\<^sub>1E(2)[OF invrules(1)] assms(3) by blast | |
have "(\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2 \<union> wrap {u})) = (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{u}}))" unfolding wrap_def by simp | |
also have "... = (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2)) \<union> {u}" by simp | |
finally have UN: "(\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2 \<union> wrap {u})) = (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2)) \<union> {u}" . | |
have "wrap B\<^sub>1 = {B\<^sub>1}" using wrap_not_empty[of B\<^sub>1] assms(2) by simp | |
let ?f = "f (B\<^sub>1 := u)" | |
have BIJ: "bij_betw ?f (P\<^sub>1 \<union> wrap B\<^sub>1) (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2 \<union> wrap {u}))" | |
unfolding wrap_empty \<open>wrap B\<^sub>1 = {B\<^sub>1}\<close> UN using f_def(1) \<open>B\<^sub>1 \<notin> P\<^sub>1\<close> \<open>u \<notin> (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))\<close> | |
by (metis (no_types, lifting) bij_betw_cong fun_upd_other fun_upd_same notIn_Un_bij_betw3) | |
have "c < W B\<^sub>1 + w (?f B\<^sub>1)" using assms(4) by simp | |
then have "(\<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1. c < W B + w (?f B))" | |
unfolding \<open>wrap B\<^sub>1 = {B\<^sub>1}\<close> using f_def(2) by simp | |
with BIJ have "bij_betw ?f (P\<^sub>1 \<union> wrap B\<^sub>1) (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2 \<union> wrap {u})) | |
\<and> (\<forall>B\<in>P\<^sub>1 \<union> wrap B\<^sub>1. c < W B + w (?f B))" by blast | |
then have 3: "bij_exists (P\<^sub>1 \<union> wrap B\<^sub>1) (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2 \<union> wrap {u}))" | |
unfolding bij_exists_def by blast | |
have 4: "2 * card (P\<^sub>2 \<union> wrap B\<^sub>2) \<le> card (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))" | |
proof - | |
note bprules = bpE[OF inv\<^sub>1E(1)[OF invrules(1)]] | |
have "pairwise disjnt (P\<^sub>2 \<union> wrap B\<^sub>2)" | |
using bprules(1) pairwise_subset by blast | |
moreover have "B\<^sub>2 \<notin> P\<^sub>2" using inv\<^sub>1E(4)[OF invrules(1)] by simp | |
ultimately have DISJNT: "\<Union>P\<^sub>2 \<inter> B\<^sub>2 = {}" | |
by (auto, metis (no_types, opaque_lifting) sup_bot.right_neutral Un_insert_right disjnt_iff mk_disjoint_insert pairwise_insert wrap_Un) | |
have "finite (\<Union>P\<^sub>2)" using U_Finite bprules(3) by auto | |
have "finite B\<^sub>2" using inv\<^sub>1E(1)[OF invrules(1)] bp_bins_finite wrap_not_empty by blast | |
have "2 * card (P\<^sub>2 \<union> wrap B\<^sub>2) \<le> 2 * (card P\<^sub>2 + card (wrap B\<^sub>2))" | |
using card_Un_le[of P\<^sub>2 \<open>wrap B\<^sub>2\<close>] by simp | |
also have "... \<le> 2 * card P\<^sub>2 + 2" using wrap_card by auto | |
also have "... \<le> card (\<Union> P\<^sub>2) + 2" using invrules(4) by simp | |
also have "... \<le> card (\<Union> P\<^sub>2) + card B\<^sub>2" using B\<^sub>2_at_least_two_objects[OF assms(1,3,5)] by simp | |
also have "... = card (\<Union> (P\<^sub>2 \<union> {B\<^sub>2}))" using DISJNT card_Un_disjoint[OF \<open>finite (\<Union>P\<^sub>2)\<close> \<open>finite B\<^sub>2\<close>] by (simp add: Un_commute) | |
also have "... = card (\<Union> (P\<^sub>2 \<union> wrap B\<^sub>2))" by (cases \<open>B\<^sub>2 = {}\<close>) auto | |
finally show ?thesis . | |
qed | |
from inv\<^sub>2I[OF 1 2 3 4] have "inv\<^sub>2 (P\<^sub>1 \<union> wrap B\<^sub>1) (P\<^sub>2 \<union> wrap B\<^sub>2) {} {u} (S - {u}) L" | |
using invrules(5) by blast | |
from inv\<^sub>3I[OF this] show ?thesis using assms(3) invrules(5) by blast | |
qed | |
text \<open>The bin packing algorithm as it is proposed on page 78 of the article @{cite BerghammerR03}. | |
\<open>P\<close> will not only be a correct solution of the bin packing problem, but the amount of bins | |
will be a lower bound for \<open>3 / 2\<close> of the amount of bins of any correct solution \<open>Q\<close>, and thus | |
guarantee an approximation factor of \<open>3 / 2\<close> for the optimum.\<close> | |
lemma bp_approx: | |
"VARS P P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V S L u | |
{True} | |
S := {}; L:= {}; V := U; | |
WHILE V \<noteq> {} INV {V \<subseteq> U \<and> S = {u \<in> U - V. w(u) \<le> c / 2} \<and> L = {u \<in> U - V. c / 2 < w(u)}} DO | |
u := (SOME u. u \<in> V); | |
IF w(u) \<le> c / 2 | |
THEN S := S \<union> {u} | |
ELSE L := L \<union> {u} FI; | |
V := V - {u} | |
OD; | |
P\<^sub>1 := {}; P\<^sub>2 := {}; B\<^sub>1 := {}; B\<^sub>2 := {}; | |
WHILE S \<noteq> {} INV {inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L} DO | |
IF B\<^sub>1 \<noteq> {} | |
THEN u := (SOME u. u \<in> S); S := S - {u} | |
ELSE IF L \<noteq> {} | |
THEN u := (SOME u. u \<in> L); L := L - {u} | |
ELSE u := (SOME u. u \<in> S); S := S - {u} FI FI; | |
IF W(B\<^sub>1) + w(u) \<le> c | |
THEN B\<^sub>1 := B\<^sub>1 \<union> {u} | |
ELSE IF W(B\<^sub>2) + w(u) \<le> c | |
THEN B\<^sub>2 := B\<^sub>2 \<union> {u} | |
ELSE P\<^sub>2 := P\<^sub>2 \<union> wrap B\<^sub>2; B\<^sub>2 := {u} FI; | |
P\<^sub>1 := P\<^sub>1 \<union> wrap B\<^sub>1; B\<^sub>1 := {} FI | |
OD; | |
P := P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2; V := L; | |
WHILE V \<noteq> {} | |
INV {S = {} \<and> inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L \<and> V \<subseteq> L \<and> P = P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v}|v. v \<in> L - V}} DO | |
u := (SOME u. u \<in> V); P := P \<union> {{u}}; V := V - {u} | |
OD | |
{bp P \<and> (\<forall>Q. bp Q \<longrightarrow> card P \<le> 3 / 2 * card Q)}" | |
proof (vcg, goal_cases) | |
case (1 P P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V S L u) | |
then show ?case by blast | |
next | |
case (2 P P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V S L u) | |
then show ?case by (auto simp: some_in_eq) | |
next | |
case (3 P P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V S L u) | |
then show ?case using loop_init by force | |
next | |
case (4 P P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V S L u) | |
then have INV: "inv\<^sub>3 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L" .. | |
let ?s = "SOME u. u \<in> S" | |
let ?l = "SOME u. u \<in> L" | |
note SL_def = inv\<^sub>2E(5)[OF inv\<^sub>3E(1)[OF INV]] | |
have LIN: "L \<noteq> {} \<Longrightarrow> ?l \<in> L" using some_in_eq by metis | |
then have LWEIGHT: "L \<noteq> {} \<Longrightarrow> w ?l \<le> c" using weight SL_def by blast | |
from 4 have "S \<noteq> {}" .. | |
then have IN: "?s \<in> S" using some_in_eq by metis | |
then have "w ?s \<le> c" using SL_def by auto | |
then show ?case | |
using LWEIGHT loop_stepA[OF INV _ _ IN] loop_stepB[OF INV _ LIN] loop_stepC[OF INV _ IN] | |
and loop_stepD[OF INV _ IN] loop_stepE[OF INV _ IN] by (cases \<open>B\<^sub>1 = {}\<close>, cases \<open>L = {}\<close>) auto | |
next | |
case (5 P P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V S L u) | |
then show ?case by blast | |
next | |
case (6 P P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V S L u) | |
then have *: "(SOME u. u \<in> V) \<in> V" "(SOME u. u \<in> V) \<in> L" by (auto simp add: some_in_eq) | |
then have "P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> L - (V - {SOME u. u \<in> V})} | |
= P\<^sub>1 \<union> wrap B\<^sub>1 \<union> P\<^sub>2 \<union> wrap B\<^sub>2 \<union> {{v} |v. v \<in> L - V \<union> {SOME u. u \<in> V}}" | |
by blast | |
with 6 * show ?case by blast | |
next | |
case (7 P P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 V S L u) | |
then have *: "inv\<^sub>2 P\<^sub>1 P\<^sub>2 B\<^sub>1 B\<^sub>2 S L" | |
using inv\<^sub>3E(1) by blast | |
from inv\<^sub>1E(1)[OF inv\<^sub>2E(1)[OF *]] 7 | |
have "bp P" by fastforce | |
with bin_packing_lower_bound_card[OF _ *] 7 | |
show ?case by fastforce | |
qed | |
end (* BinPacking_Complete *) | |
end (* Theory *) |