Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
section "Vertex Cover" | |
theory Approx_VC_Hoare | |
imports "HOL-Hoare.Hoare_Logic" | |
begin | |
text \<open>The algorithm is classical, the proof is based on and augments the one | |
by Berghammer and M\"uller-Olm \cite{BerghammerM03}.\<close> | |
subsection "Graph" | |
text \<open>A graph is simply a set of edges, where an edge is a 2-element set.\<close> | |
definition vertex_cover :: "'a set set \<Rightarrow> 'a set \<Rightarrow> bool" where | |
"vertex_cover E C = (\<forall>e \<in> E. e \<inter> C \<noteq> {})" | |
abbreviation matching :: "'a set set \<Rightarrow> bool" where | |
"matching M \<equiv> pairwise disjnt M" | |
lemma card_matching_vertex_cover: | |
"\<lbrakk> finite C; matching M; M \<subseteq> E; vertex_cover E C \<rbrakk> \<Longrightarrow> card M \<le> card C" | |
apply(erule card_le_if_inj_on_rel[where r = "\<lambda>e v. v \<in> e"]) | |
apply (meson disjnt_def disjnt_iff vertex_cover_def subsetCE) | |
by (meson disjnt_iff pairwise_def) | |
subsection "The Approximation Algorithm" | |
text \<open>Formulated using a simple(!) predefined Hoare-logic. | |
This leads to a streamlined proof based on standard invariant reasoning. | |
The nondeterministic selection of an element from a set \<open>F\<close> is simulated by @{term "SOME x. x \<in> F"}. | |
The \<open>SOME\<close> operator is built into HOL: @{term "SOME x. P x"} denotes some \<open>x\<close> that satisfies \<open>P\<close> | |
if such an \<open>x\<close> exists; otherwise it denotes an arbitrary element. Note that there is no | |
actual nondeterminism involved: @{term "SOME x. P x"} is some fixed element | |
but in general we don't know which one. Proofs about \<open>SOME\<close> are notoriously tedious. | |
Typically it involves showing first that @{prop "\<exists>x. P x"}. Then @{thm someI_ex} implies | |
@{prop"P (SOME x. P x)"}. There are a number of (more) useful related theorems: | |
just click on @{thm someI_ex} to be taken there.\<close> | |
text \<open>Convenient notation for choosing an arbitrary element from a set:\<close> | |
abbreviation "some A \<equiv> SOME x. x \<in> A" | |
locale Edges = | |
fixes E :: "'a set set" | |
assumes finE: "finite E" | |
assumes edges2: "e \<in> E \<Longrightarrow> card e = 2" | |
begin | |
text \<open>The invariant:\<close> | |
definition "inv_matching C F M = | |
(matching M \<and> M \<subseteq> E \<and> card C \<le> 2 * card M \<and> (\<forall>e \<in> M. \<forall>f \<in> F. e \<inter> f = {}))" | |
definition invar :: "'a set \<Rightarrow> 'a set set \<Rightarrow> bool" where | |
"invar C F = (F \<subseteq> E \<and> vertex_cover (E-F) C \<and> finite C \<and> (\<exists>M. inv_matching C F M))" | |
text \<open>Preservation of the invariant by the loop body:\<close> | |
lemma invar_step: | |
assumes "F \<noteq> {}" "invar C F" | |
shows "invar (C \<union> some F) (F - {e' \<in> F. some F \<inter> e' \<noteq> {}})" | |
proof - | |
from assms(2) obtain M where "F \<subseteq> E" and vc: "vertex_cover (E-F) C" and fC: "finite C" | |
and m: "matching M" "M \<subseteq> E" and card: "card C \<le> 2 * card M" | |
and disj: "\<forall>e \<in> M. \<forall>f \<in> F. e \<inter> f = {}" | |
by (auto simp: invar_def inv_matching_def) | |
let ?e = "SOME e. e \<in> F" | |
have "?e \<in> F" using \<open>F \<noteq> {}\<close> by (simp add: some_in_eq) | |
hence fe': "finite ?e" using \<open>F \<subseteq> E\<close> edges2 by(intro card_ge_0_finite) auto | |
have "?e \<notin> M" using edges2 \<open>?e \<in> F\<close> disj \<open>F \<subseteq> E\<close> by fastforce | |
have card': "card (C \<union> ?e) \<le> 2 * card (insert ?e M)" | |
using \<open>?e \<in> F\<close> \<open>?e \<notin> M\<close> card_Un_le[of C ?e] \<open>F \<subseteq> E\<close> edges2 card finite_subset[OF m(2) finE] | |
by fastforce | |
let ?M = "M \<union> {?e}" | |
have vc': "vertex_cover (E - (F - {e' \<in> F. ?e \<inter> e' \<noteq> {}})) (C \<union> ?e)" | |
using vc by(auto simp: vertex_cover_def) | |
have m': "inv_matching (C \<union> ?e) (F - {e' \<in> F. ?e \<inter> e' \<noteq> {}}) ?M" | |
using m card' \<open>F \<subseteq> E\<close> \<open>?e \<in> F\<close> disj | |
by(auto simp: inv_matching_def Int_commute disjnt_def pairwise_insert) | |
show ?thesis using \<open>F \<subseteq> E\<close> vc' fC fe' m' by(auto simp add: invar_def Let_def) | |
qed | |
lemma approx_vertex_cover: | |
"VARS C F | |
{True} | |
C := {}; | |
F := E; | |
WHILE F \<noteq> {} | |
INV {invar C F} | |
DO C := C \<union> some F; | |
F := F - {e' \<in> F. some F \<inter> e' \<noteq> {}} | |
OD | |
{vertex_cover E C \<and> (\<forall>C'. finite C' \<and> vertex_cover E C' \<longrightarrow> card C \<le> 2 * card C')}" | |
proof (vcg, goal_cases) | |
case (1 C F) | |
have "inv_matching {} E {}" by (auto simp add: inv_matching_def) | |
with 1 show ?case by (auto simp add: invar_def vertex_cover_def) | |
next | |
case (2 C F) | |
thus ?case using invar_step[of F C] by(auto simp: Let_def) | |
next | |
case (3 C F) | |
then obtain M :: "'a set set" where | |
post: "vertex_cover E C" "matching M" "M \<subseteq> E" "card C \<le> 2 * card M" | |
by(auto simp: invar_def inv_matching_def) | |
have opt: "card C \<le> 2 * card C'" if C': "finite C'" "vertex_cover E C'" for C' | |
proof - | |
note post(4) | |
also have "2 * card M \<le> 2 * card C'" | |
using card_matching_vertex_cover[OF C'(1) post(2,3) C'(2)] by simp | |
finally show "card C \<le> 2 * card C'" . | |
qed | |
show ?case using post(1) opt by auto | |
qed | |
end (* locale Graph *) | |
subsection "Version for Hypergraphs" | |
text \<open>Almost the same. We assume that the degree of every edge is bounded.\<close> | |
locale Bounded_Hypergraph = | |
fixes E :: "'a set set" | |
fixes k :: nat | |
assumes finE: "finite E" | |
assumes edge_bnd: "e \<in> E \<Longrightarrow> finite e \<and> card e \<le> k" | |
assumes E1: "{} \<notin> E" | |
begin | |
definition "inv_matching C F M = | |
(matching M \<and> M \<subseteq> E \<and> card C \<le> k * card M \<and> (\<forall>e \<in> M. \<forall>f \<in> F. e \<inter> f = {}))" | |
definition invar :: "'a set \<Rightarrow> 'a set set \<Rightarrow> bool" where | |
"invar C F = (F \<subseteq> E \<and> vertex_cover (E-F) C \<and> finite C \<and> (\<exists>M. inv_matching C F M))" | |
lemma invar_step: | |
assumes "F \<noteq> {}" "invar C F" | |
shows "invar (C \<union> some F) (F - {e' \<in> F. some F \<inter> e' \<noteq> {}})" | |
proof - | |
from assms(2) obtain M where "F \<subseteq> E" and vc: "vertex_cover (E-F) C" and fC: "finite C" | |
and m: "matching M" "M \<subseteq> E" and card: "card C \<le> k * card M" | |
and disj: "\<forall>e \<in> M. \<forall>f \<in> F. e \<inter> f = {}" | |
by (auto simp: invar_def inv_matching_def) | |
let ?e = "SOME e. e \<in> F" | |
have "?e \<in> F" using \<open>F \<noteq> {}\<close> by (simp add: some_in_eq) | |
hence fe': "finite ?e" using \<open>F \<subseteq> E\<close> assms(2) edge_bnd by blast | |
have "?e \<notin> M" using E1 \<open>?e \<in> F\<close> disj \<open>F \<subseteq> E\<close> by fastforce | |
have card': "card (C \<union> ?e) \<le> k * card (insert ?e M)" | |
using \<open>?e \<in> F\<close> \<open>?e \<notin> M\<close> card_Un_le[of C ?e] \<open>F \<subseteq> E\<close> edge_bnd card finite_subset[OF m(2) finE] | |
by fastforce | |
let ?M = "M \<union> {?e}" | |
have vc': "vertex_cover (E - (F - {e' \<in> F. ?e \<inter> e' \<noteq> {}})) (C \<union> ?e)" | |
using vc by(auto simp: vertex_cover_def) | |
have m': "inv_matching (C \<union> ?e) (F - {e' \<in> F. ?e \<inter> e' \<noteq> {}}) ?M" | |
using m card' \<open>F \<subseteq> E\<close> \<open>?e \<in> F\<close> disj | |
by(auto simp: inv_matching_def Int_commute disjnt_def pairwise_insert) | |
show ?thesis using \<open>F \<subseteq> E\<close> vc' fC fe' m' by(auto simp add: invar_def Let_def) | |
qed | |
lemma approx_vertex_cover_bnd: | |
"VARS C F | |
{True} | |
C := {}; | |
F := E; | |
WHILE F \<noteq> {} | |
INV {invar C F} | |
DO C := C \<union> some F; | |
F := F - {e' \<in> F. some F \<inter> e' \<noteq> {}} | |
OD | |
{vertex_cover E C \<and> (\<forall>C'. finite C' \<and> vertex_cover E C' \<longrightarrow> card C \<le> k * card C')}" | |
proof (vcg, goal_cases) | |
case (1 C F) | |
have "inv_matching {} E {}" by (auto simp add: inv_matching_def) | |
with 1 show ?case by (auto simp add: invar_def vertex_cover_def) | |
next | |
case (2 C F) | |
thus ?case using invar_step[of F C] by(auto simp: Let_def) | |
next | |
case (3 C F) | |
then obtain M :: "'a set set" where | |
post: "vertex_cover E C" "matching M" "M \<subseteq> E" "card C \<le> k * card M" | |
by(auto simp: invar_def inv_matching_def) | |
have opt: "card C \<le> k * card C'" if C': "finite C'" "vertex_cover E C'" for C' | |
proof - | |
note post(4) | |
also have "k * card M \<le> k * card C'" | |
using card_matching_vertex_cover[OF C'(1) post(2,3) C'(2)] by simp | |
finally show "card C \<le> k * card C'" . | |
qed | |
show ?case using post(1) opt by auto | |
qed | |
end (* locale Bounded_Hypergraph *) | |
end | |