Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Title: Blockchain.thy | |
Author: Diego Marmsoler | |
*) | |
section "Blockchain Architectures" | |
theory Blockchain imports Auxiliary DynamicArchitectures.Dynamic_Architecture_Calculus RF_LTL | |
begin | |
subsection "Blockchains" | |
text \<open> | |
A blockchain itself is modeled as a simple list. | |
\<close> | |
type_synonym 'a BC = "'a list" | |
abbreviation max_cond:: "('a BC) set \<Rightarrow> 'a BC \<Rightarrow> bool" | |
where "max_cond B b \<equiv> b \<in> B \<and> (\<forall>b'\<in>B. length b' \<le> length b)" | |
no_syntax | |
"_MAX1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3MAX _./ _)" [0, 10] 10) | |
"_MAX" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3MAX _:_./ _)" [0, 0, 10] 10) | |
"_MAX1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3MAX _./ _)" [0, 10] 10) | |
"_MAX" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3MAX _\<in>_./ _)" [0, 0, 10] 10) | |
definition MAX:: "('a BC) set \<Rightarrow> 'a BC" | |
where "MAX B = (SOME b. max_cond B b)" | |
lemma max_ex: | |
fixes XS::"('a BC) set" | |
assumes "XS \<noteq> {}" | |
and "finite XS" | |
shows "\<exists>xs\<in>XS. (\<forall>ys\<in>XS. length ys \<le> length xs)" | |
proof (rule Finite_Set.finite_ne_induct) | |
show "finite XS" using assms by simp | |
next | |
from assms show "XS \<noteq> {}" by simp | |
next | |
fix x::"'a BC" | |
show "\<exists>xs\<in>{x}. \<forall>ys\<in>{x}. length ys \<le> length xs" by simp | |
next | |
fix zs::"'a BC" and F::"('a BC) set" | |
assume "finite F" and "F \<noteq> {}" and "zs \<notin> F" and "\<exists>xs\<in>F. \<forall>ys\<in>F. length ys \<le> length xs" | |
then obtain xs where "xs\<in>F" and "\<forall>ys\<in>F. length ys \<le> length xs" by auto | |
show "\<exists>xs\<in>insert zs F. \<forall>ys\<in>insert zs F. length ys \<le> length xs" | |
proof (cases) | |
assume "length zs \<ge> length xs" | |
with \<open>\<forall>ys\<in>F. length ys \<le> length xs\<close> show ?thesis by auto | |
next | |
assume "\<not> length zs \<ge> length xs" | |
hence "length zs \<le> length xs" by simp | |
with \<open>xs \<in> F\<close> show ?thesis using \<open>\<forall>ys\<in>F. length ys \<le> length xs\<close> by auto | |
qed | |
qed | |
lemma max_prop: | |
fixes XS::"('a BC) set" | |
assumes "XS \<noteq> {}" | |
and "finite XS" | |
shows "MAX XS \<in> XS" | |
and "\<forall>b'\<in>XS. length b' \<le> length (MAX XS)" | |
proof - | |
from assms have "\<exists>xs\<in>XS. \<forall>ys\<in>XS. length ys \<le> length xs" using max_ex[of XS] by auto | |
with MAX_def[of XS] show "MAX XS \<in> XS" and "\<forall>b'\<in>XS. length b' \<le> length (MAX XS)" | |
using someI_ex[of "\<lambda>b. b \<in> XS \<and> (\<forall>b'\<in>XS. length b' \<le> length b)"] by auto | |
qed | |
lemma max_less: | |
fixes b::"'a BC" and b'::"'a BC" and B::"('a BC) set" | |
assumes "b\<in>B" | |
and "finite B" | |
and "length b > length b'" | |
shows "length (MAX B) > length b'" | |
proof - | |
from assms have "\<exists>xs\<in>B. \<forall>ys\<in>B. length ys \<le> length xs" using max_ex[of B] by auto | |
with MAX_def[of B] have "\<forall>b'\<in>B. length b' \<le> length (MAX B)" | |
using someI_ex[of "\<lambda>b. b \<in> B \<and> (\<forall>b'\<in>B. length b' \<le> length b)"] by auto | |
with \<open>b\<in>B\<close> have "length b \<le> length (MAX B)" by simp | |
with \<open>length b > length b'\<close> show ?thesis by simp | |
qed | |
subsection "Blockchain Architectures" | |
text \<open> | |
In the following we describe the locale for blockchain architectures. | |
\<close> | |
locale Blockchain = dynamic_component cmp active | |
for active :: "'nid \<Rightarrow> cnf \<Rightarrow> bool" ("\<parallel>_\<parallel>\<^bsub>_\<^esub>" [0,110]60) | |
and cmp :: "'nid \<Rightarrow> cnf \<Rightarrow> 'ND" ("\<sigma>\<^bsub>_\<^esub>(_)" [0,110]60) + | |
fixes pin :: "'ND \<Rightarrow> ('nid BC) set" | |
and pout :: "'ND \<Rightarrow> 'nid BC" | |
and bc :: "'ND \<Rightarrow> 'nid BC" | |
and mining :: "'ND \<Rightarrow> bool" | |
and honest :: "'nid \<Rightarrow> bool" | |
and actHn :: "cnf \<Rightarrow> 'nid set" | |
and actDn :: "cnf \<Rightarrow> 'nid set" | |
and PoW:: "trace \<Rightarrow> nat \<Rightarrow> nat" | |
and hmining:: "trace \<Rightarrow> nat \<Rightarrow> bool" | |
and dmining:: "trace \<Rightarrow> nat \<Rightarrow> bool" | |
and cb:: nat | |
defines "actHn k \<equiv> {nid. \<parallel>nid\<parallel>\<^bsub>k\<^esub> \<and> honest nid}" | |
and "actDn k \<equiv> {nid. \<parallel>nid\<parallel>\<^bsub>k\<^esub> \<and> \<not> honest nid}" | |
and "PoW t n \<equiv> (LEAST x. \<forall>nid\<in>actHn (t n). length (bc (\<sigma>\<^bsub>nid\<^esub>(t n))) \<le> x)" | |
and "hmining t \<equiv> (\<lambda>n. \<exists>nid\<in>actHn (t n). mining (\<sigma>\<^bsub>nid\<^esub>(t n)))" | |
and "dmining t \<equiv> (\<lambda>n. \<exists>nid\<in>actDn (t n). mining (\<sigma>\<^bsub>nid\<^esub>(t n)))" | |
assumes consensus: "\<And>nid t t' bc'::('nid BC). \<lbrakk>honest nid\<rbrakk> \<Longrightarrow> eval nid t t' 0 | |
(\<box>\<^sub>b ([\<lambda>nd. bc' = (if (\<exists>b\<in>pin nd. length b > length (bc nd)) then (MAX (pin nd)) else (bc nd))]\<^sub>b | |
\<longrightarrow>\<^sup>b \<circle>\<^sub>b [\<lambda>nd.(\<not> mining nd \<and> bc nd = bc' \<or> mining nd \<and> (\<exists>b. bc nd = bc' @ [b]))]\<^sub>b))" | |
and attacker: "\<And>nid t t' bc'. \<lbrakk>\<not> honest nid\<rbrakk> \<Longrightarrow> eval nid t t' 0 | |
(\<box>\<^sub>b ([\<lambda>nd. bc' = (SOME b. b \<in> (pin nd \<union> {bc nd}))]\<^sub>b \<longrightarrow>\<^sup>b | |
\<circle>\<^sub>b [\<lambda>nd.(\<not> mining nd \<and> prefix (bc nd) bc' \<or> mining nd \<and> (\<exists>b. bc nd = bc' @ [b]))]\<^sub>b))" | |
and forward: "\<And>nid t t'. eval nid t t' 0 (\<box>\<^sub>b [\<lambda>nd. pout nd = bc nd]\<^sub>b)" | |
\<comment> \<open>At each time point a node will forward its blockchain to the network\<close> | |
and init: "\<And>nid t t'. eval nid t t' 0 [\<lambda>nd. bc nd=[]]\<^sub>b" | |
and conn: "\<And>k nid. \<lbrakk>\<parallel>nid\<parallel>\<^bsub>k\<^esub>; honest nid\<rbrakk> | |
\<Longrightarrow> pin (cmp nid k) = (\<Union>nid'\<in>actHn k. {pout (cmp nid' k)})" | |
and act: "\<And>t n::nat. finite {nid::'nid. \<parallel>nid\<parallel>\<^bsub>t n\<^esub>}" | |
and actHn: "\<And>t n::nat. \<exists>nid. honest nid \<and> \<parallel>nid\<parallel>\<^bsub>t n\<^esub> \<and> \<parallel>nid\<parallel>\<^bsub>t (Suc n)\<^esub>" | |
and fair: "\<And>n n'. ccard n n' (dmining t) > cb \<Longrightarrow> ccard n n' (hmining t) > cb" | |
and closed: "\<And>t nid b n::nat. \<lbrakk>\<parallel>nid\<parallel>\<^bsub>t n\<^esub>; b \<in> pin (\<sigma>\<^bsub>nid\<^esub>(t n))\<rbrakk> \<Longrightarrow> \<exists>nid'. \<parallel>nid'\<parallel>\<^bsub>t n\<^esub> \<and> bc (\<sigma>\<^bsub>nid'\<^esub>(t n)) = b" | |
and mine: "\<And>t nid n::nat. \<lbrakk>honest nid; \<parallel>nid\<parallel>\<^bsub>t (Suc n)\<^esub>; mining (\<sigma>\<^bsub>nid\<^esub>(t (Suc n)))\<rbrakk> \<Longrightarrow> \<parallel>nid\<parallel>\<^bsub>t n\<^esub>" | |
begin | |
lemma init_model: | |
assumes "\<not> (\<exists>n'. latestAct_cond nid t n n')" | |
and "\<parallel>nid\<parallel>\<^bsub>t n\<^esub>" | |
shows "bc (\<sigma>\<^bsub>nid\<^esub>t n) = []" | |
proof - | |
from assms(2) have "\<exists>i\<ge>0. \<parallel>nid\<parallel>\<^bsub>t i\<^esub>" by auto | |
with init have "bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>0\<^esub>) = []" using baEA[of 0 nid t] by blast | |
moreover from assms have "n=\<langle>nid \<rightarrow> t\<rangle>\<^bsub>0\<^esub>" using nxtAct_eq by simp | |
ultimately show ?thesis by simp | |
qed | |
lemma fwd_bc: | |
fixes nid and t::"nat \<Rightarrow> cnf" and t'::"nat \<Rightarrow> 'ND" | |
assumes "\<parallel>nid\<parallel>\<^bsub>t n\<^esub>" | |
shows "pout (\<sigma>\<^bsub>nid\<^esub>t n) = bc (\<sigma>\<^bsub>nid\<^esub>t n)" | |
using assms forward globEANow[THEN baEANow[of nid t t' n]] by blast | |
lemma finite_input: | |
fixes t n nid | |
assumes "\<parallel>nid\<parallel>\<^bsub>t n\<^esub>" | |
defines "dep nid' \<equiv> pout (\<sigma>\<^bsub>nid'\<^esub>(t n))" | |
shows "finite (pin (cmp nid (t n)))" | |
proof - | |
have "finite {nid'. \<parallel>nid'\<parallel>\<^bsub>t n\<^esub>}" using act by auto | |
moreover have "pin (cmp nid (t n)) \<subseteq> dep ` {nid'. \<parallel>nid'\<parallel>\<^bsub>t n\<^esub>}" | |
proof | |
fix x assume "x \<in> pin (cmp nid (t n))" | |
show "x \<in> dep ` {nid'. \<parallel>nid'\<parallel>\<^bsub>t n\<^esub>}" | |
proof - | |
from assms obtain nid' where "\<parallel>nid'\<parallel>\<^bsub>t n\<^esub>" and "bc (\<sigma>\<^bsub>nid'\<^esub>(t n)) = x" | |
using closed \<open>x \<in> pin (cmp nid (t n))\<close> by blast | |
hence "pout (\<sigma>\<^bsub>nid'\<^esub>(t n)) = x" using fwd_bc by auto | |
hence "x=dep nid'" using dep_def by simp | |
moreover from \<open>\<parallel>nid'\<parallel>\<^bsub>t n\<^esub>\<close> have "nid' \<in> {nid'. \<parallel>nid'\<parallel>\<^bsub>t n\<^esub>}" by simp | |
ultimately show ?thesis using image_eqI by simp | |
qed | |
qed | |
ultimately show ?thesis using finite_surj by metis | |
qed | |
lemma nempty_input: | |
fixes t n nid | |
assumes "\<parallel>nid\<parallel>\<^bsub>t n\<^esub>" | |
and "honest nid" | |
shows "pin (cmp nid (t n))\<noteq>{}" using conn[of nid "t n"] act assms actHn_def by auto | |
lemma onlyone: | |
assumes "\<exists>n'\<ge>n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>" | |
and "\<exists>n'<n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>" | |
shows "\<exists>!i. \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<le> i \<and> i < \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<parallel>tid\<parallel>\<^bsub>t i\<^esub>" | |
proof | |
show "\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<le> \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> < \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<parallel>tid\<parallel>\<^bsub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" | |
by (metis assms dynamic_component.nxtActI latestAct_prop(1) latestAct_prop(2) less_le_trans order_refl) | |
next | |
fix i | |
show "\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<le> i \<and> i < \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<parallel>tid\<parallel>\<^bsub>t i\<^esub> \<Longrightarrow> i = \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" | |
by (metis latestActless(1) leI le_less_Suc_eq le_less_trans nxtActI order_refl) | |
qed | |
subsubsection "Component Behavior" | |
lemma bhv_hn_ex: | |
fixes t and t'::"nat \<Rightarrow> 'ND" and tid | |
assumes "honest tid" | |
and "\<exists>n'\<ge>n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>" | |
and "\<exists>n'<n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>" | |
and "\<exists>b\<in>pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>). length b > length (bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>))" | |
shows "\<not> mining (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) = | |
Blockchain.MAX (pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) \<or> mining (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> | |
(\<exists>b. bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) = Blockchain.MAX (pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) @ [b])" | |
proof - | |
let ?cond = "\<lambda>nd. MAX (pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) = | |
(if (\<exists>b\<in>pin nd. length b > length (bc nd)) then (MAX (pin nd)) else (bc nd))" | |
let ?check = "\<lambda>nd. \<not> mining nd \<and> bc nd = MAX (pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) \<or> mining nd \<and> | |
(\<exists>b. bc nd = MAX (pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) @ [b])" | |
from \<open>honest tid\<close> have "eval tid t t' 0 (\<box>\<^sub>b([?cond]\<^sub>b \<longrightarrow>\<^sup>b \<circle>\<^sub>b [?check]\<^sub>b))" | |
using consensus[of tid _ _ "MAX (pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>))"] by simp | |
moreover from assms have "\<exists>i\<ge>0. \<parallel>tid\<parallel>\<^bsub>t i\<^esub>" by auto | |
moreover have "\<langle>tid \<Leftarrow> t\<rangle>\<^bsub>0\<^esub> \<le> \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" by simp | |
ultimately have "eval tid t t' \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> ([?cond]\<^sub>b \<longrightarrow>\<^sup>b \<circle>\<^sub>b [?check]\<^sub>b)" | |
using globEA[of 0 tid t t' "([?cond]\<^sub>b \<longrightarrow>\<^sup>b \<circle>\<^sub>b [?check]\<^sub>b)" "\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>"] by fastforce | |
moreover have "eval tid t t' \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> [?cond]\<^sub>b" | |
proof (rule baIA) | |
from \<open>\<exists>n'<n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>\<close> show "\<exists>i\<ge>\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>. \<parallel>tid\<parallel>\<^bsub>t i\<^esub>" using latestAct_prop(1) by blast | |
from assms(3) assms(4) show "?cond (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>)" using latestActNxt by simp | |
qed | |
ultimately have "eval tid t t' \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> (\<circle>\<^sub>b [?check]\<^sub>b)" | |
using impE[of tid t t' _ "[?cond]\<^sub>b" "\<circle>\<^sub>b [?check]\<^sub>b"] by simp | |
moreover have "\<exists>i>\<langle>tid \<rightarrow> t\<rangle>\<^bsub>\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>. \<parallel>tid\<parallel>\<^bsub>t i\<^esub>" | |
proof - | |
from assms have "\<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>>\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" using latestActNxtAct by simp | |
with assms(3) have "\<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>>\<langle>tid \<rightarrow> t\<rangle>\<^bsub>\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" using latestActNxt by simp | |
moreover from \<open>\<exists>n'\<ge>n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>\<close> have "\<parallel>tid\<parallel>\<^bsub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" using nxtActI by simp | |
ultimately show ?thesis by auto | |
qed | |
moreover from assms have "\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<le> \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>" | |
using latestActNxtAct by (simp add: order.strict_implies_order) | |
moreover from assms have "\<exists>!i. \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<le> i \<and> i < \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<parallel>tid\<parallel>\<^bsub>t i\<^esub>" | |
using onlyone by simp | |
ultimately have "eval tid t t' \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub> [?check]\<^sub>b" | |
using nxtEA1[of tid t "\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" t' "[?check]\<^sub>b" "\<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>"] by simp | |
moreover from \<open>\<exists>n'\<ge>n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>\<close> have "\<parallel>tid\<parallel>\<^bsub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" using nxtActI by simp | |
ultimately show ?thesis using baEANow[of tid t t' "\<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>" ?check] by simp | |
qed | |
lemma bhv_hn_in: | |
fixes t and t'::"nat \<Rightarrow> 'ND" and tid | |
assumes "honest tid" | |
and "\<exists>n'\<ge>n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>" | |
and "\<exists>n'<n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>" | |
and "\<not> (\<exists>b\<in>pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>). length b > length (bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)))" | |
shows "\<not> mining (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) = bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<or> | |
mining (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> (\<exists>b. bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) = bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) @ [b])" | |
proof - | |
let ?cond = "\<lambda>nd. bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) = (if (\<exists>b\<in>pin nd. length b > length (bc nd)) then (MAX (pin nd)) else (bc nd))" | |
let ?check = "\<lambda>nd. \<not> mining nd \<and> bc nd = bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<or> mining nd \<and> (\<exists>b. bc nd = bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) @ [b])" | |
from \<open>honest tid\<close> have "eval tid t t' 0 ((\<box>\<^sub>b([?cond]\<^sub>b \<longrightarrow>\<^sup>b \<circle>\<^sub>b [?check]\<^sub>b)))" | |
using consensus[of tid _ _ "bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)"] by simp | |
moreover from assms have "\<exists>i\<ge>0. \<parallel>tid\<parallel>\<^bsub>t i\<^esub>" by auto | |
moreover have "\<langle>tid \<Leftarrow> t\<rangle>\<^bsub>0\<^esub> \<le> \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" by simp | |
ultimately have "eval tid t t' \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> ([?cond]\<^sub>b \<longrightarrow>\<^sup>b \<circle>\<^sub>b [?check]\<^sub>b)" | |
using globEA[of 0 tid t t' "[?cond]\<^sub>b \<longrightarrow>\<^sup>b \<circle>\<^sub>b [?check]\<^sub>b" "\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>"] by fastforce | |
moreover have "eval tid t t' \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> [?cond]\<^sub>b" | |
proof (rule baIA) | |
from \<open>\<exists>n'<n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>\<close> show "\<exists>i\<ge>\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>. \<parallel>tid\<parallel>\<^bsub>t i\<^esub>" using latestAct_prop(1) by blast | |
from assms(3) assms(4) show "?cond (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>)" using latestActNxt by simp | |
qed | |
ultimately have "eval tid t t' \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> (\<circle>\<^sub>b [?check]\<^sub>b)" | |
using impE[of tid t t' _ "[?cond]\<^sub>b" "\<circle>\<^sub>b [?check]\<^sub>b"] by simp | |
moreover have "\<exists>i>\<langle>tid \<rightarrow> t\<rangle>\<^bsub>\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>. \<parallel>tid\<parallel>\<^bsub>t i\<^esub>" | |
proof - | |
from assms have "\<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>>\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" using latestActNxtAct by simp | |
with assms(3) have "\<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>>\<langle>tid \<rightarrow> t\<rangle>\<^bsub>\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" using latestActNxt by simp | |
moreover from \<open>\<exists>n'\<ge>n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>\<close> have "\<parallel>tid\<parallel>\<^bsub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" using nxtActI by simp | |
ultimately show ?thesis by auto | |
qed | |
moreover from assms have "\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<le> \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>" | |
using latestActNxtAct by (simp add: order.strict_implies_order) | |
moreover from assms have "\<exists>!i. \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<le> i \<and> i < \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<parallel>tid\<parallel>\<^bsub>t i\<^esub>" | |
using onlyone by simp | |
ultimately have "eval tid t t' \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub> [?check]\<^sub>b" | |
using nxtEA1[of tid t "\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" t' "[?check]\<^sub>b" "\<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>"] by simp | |
moreover from \<open>\<exists>n'\<ge>n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>\<close> have "\<parallel>tid\<parallel>\<^bsub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" using nxtActI by simp | |
ultimately show ?thesis using baEANow[of tid t t' "\<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>" ?check] by simp | |
qed | |
lemma bhv_hn_context: | |
assumes "honest tid" | |
and "\<parallel>tid\<parallel>\<^bsub>t n\<^esub>" | |
and "\<exists>n'<n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>" | |
shows "\<exists>nid'. \<parallel>nid'\<parallel>\<^bsub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub> \<and> (mining (\<sigma>\<^bsub>tid\<^esub>t n) \<and> (\<exists>b. bc (\<sigma>\<^bsub>tid\<^esub>t n) = bc (\<sigma>\<^bsub>nid'\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) @ [b]) \<or> | |
\<not> mining (\<sigma>\<^bsub>tid\<^esub>t n) \<and> bc (\<sigma>\<^bsub>tid\<^esub>t n) = bc (\<sigma>\<^bsub>nid'\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>))" | |
proof cases | |
assume casmp: "\<exists>b\<in>pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>). length b > length (bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>))" | |
moreover from assms(2) have "\<exists>n'\<ge>n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>" by auto | |
moreover from assms(3) have "\<exists>n'<n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>" by auto | |
ultimately have "\<not> mining (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) = Blockchain.MAX (pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) \<or> | |
mining (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> (\<exists>b. bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) = Blockchain.MAX (pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) @ [b])" | |
using assms(1) bhv_hn_ex by auto | |
moreover from assms(2) have "\<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub> = n" using nxtAct_active by simp | |
ultimately have "\<not> mining (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> bc (\<sigma>\<^bsub>tid\<^esub>t n) = Blockchain.MAX (pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) \<or> | |
mining (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> (\<exists>b. bc (\<sigma>\<^bsub>tid\<^esub>t n) = Blockchain.MAX (pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) @ [b])" by simp | |
moreover from assms(2) have "\<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub> = n" using nxtAct_active by simp | |
ultimately have "\<not> mining (\<sigma>\<^bsub>tid\<^esub>t n) \<and> bc (\<sigma>\<^bsub>tid\<^esub>t n) = Blockchain.MAX (pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) \<or> | |
mining (\<sigma>\<^bsub>tid\<^esub>t n) \<and> (\<exists>b. bc (\<sigma>\<^bsub>tid\<^esub>t n) = Blockchain.MAX (pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) @ [b])" by simp | |
moreover have "Blockchain.MAX (pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) \<in> pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)" | |
proof - | |
from \<open>\<exists>n'<n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>\<close> have "\<parallel>tid\<parallel>\<^bsub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" using latestAct_prop(1) by simp | |
hence "finite (pin (\<sigma>\<^bsub>tid\<^esub>(t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)))" using finite_input[of tid t "\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>"] by simp | |
moreover from casmp obtain b where "b \<in> pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)" and "length b > length (bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>))" by auto | |
ultimately show ?thesis using max_prop(1) by auto | |
qed | |
with \<open>\<exists>n'<n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>\<close> obtain nid where "\<parallel>nid\<parallel>\<^bsub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" | |
and "bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) = Blockchain.MAX (pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>))" using | |
closed[of tid t "\<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" "MAX (pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>))"] latestAct_prop(1) by auto | |
ultimately show ?thesis by auto | |
next | |
assume "\<not> (\<exists>b\<in>pin (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>). length b > length (bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)))" | |
moreover from assms(2) have "\<exists>n'\<ge>n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>" by auto | |
moreover from assms(3) have "\<exists>n'<n. \<parallel>tid\<parallel>\<^bsub>t n'\<^esub>" by auto | |
ultimately have "\<not> mining (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) = bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<or> | |
mining (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> (\<exists>b. bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) = bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) @ [b])" | |
using assms(1) bhv_hn_in[of tid n t] by auto | |
moreover from assms(2) have "\<langle>tid \<rightarrow> t\<rangle>\<^bsub>n\<^esub> = n" using nxtAct_active by simp | |
ultimately have "\<not> mining (\<sigma>\<^bsub>tid\<^esub>t n) \<and> bc (\<sigma>\<^bsub>tid\<^esub>t n) = bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<or> | |
mining (\<sigma>\<^bsub>tid\<^esub>t n) \<and> (\<exists>b. bc (\<sigma>\<^bsub>tid\<^esub>t n) = bc (\<sigma>\<^bsub>tid\<^esub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) @ [b])" by simp | |
moreover from \<open>\<exists>n'. latestAct_cond tid t n n'\<close> have "\<parallel>tid\<parallel>\<^bsub>t \<langle>tid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" | |
using latestAct_prop(1) by simp | |
ultimately show ?thesis by auto | |
qed | |
lemma bhv_dn: | |
fixes t and t'::"nat \<Rightarrow> 'ND" and uid | |
assumes "\<not> honest uid" | |
and "\<exists>n'\<ge>n. \<parallel>uid\<parallel>\<^bsub>t n'\<^esub>" | |
and "\<exists>n'<n. \<parallel>uid\<parallel>\<^bsub>t n'\<^esub>" | |
shows "\<not> mining (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> prefix (bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>)) (SOME b. b \<in> pin (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<union> {bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)}) | |
\<or> mining (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> (\<exists>b. bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) = (SOME b. b \<in> pin (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<union> {bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)}) @ [b])" | |
proof - | |
let ?cond = "\<lambda>nd. (SOME b. b \<in> (pin (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<union> {bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)})) = (SOME b. b \<in> pin nd \<union> {bc nd})" | |
let ?check = "\<lambda>nd. \<not> mining nd \<and> prefix (bc nd) (SOME b. b \<in> pin (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<union> {bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)}) | |
\<or> mining nd \<and> (\<exists>b. bc nd = (SOME b. b \<in> pin (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<union> {bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)}) @ [b])" | |
from \<open>\<not> honest uid\<close> have "eval uid t t' 0 ((\<box>\<^sub>b([?cond]\<^sub>b \<longrightarrow>\<^sup>b \<circle>\<^sub>b [?check]\<^sub>b)))" | |
using attacker[of uid _ _ "(SOME b. b \<in> pin (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<union> {bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)})"] | |
by simp | |
moreover from assms have "\<exists>i\<ge>0. \<parallel>uid\<parallel>\<^bsub>t i\<^esub>" by auto | |
moreover have "\<langle>uid \<Leftarrow> t\<rangle>\<^bsub>0\<^esub> \<le> \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" by simp | |
ultimately have "eval uid t t' \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> ([?cond]\<^sub>b \<longrightarrow>\<^sup>b \<circle>\<^sub>b[?check]\<^sub>b)" | |
using globEA[of 0 uid t t' "([?cond]\<^sub>b \<longrightarrow>\<^sup>b \<circle>\<^sub>b[?check]\<^sub>b)" "\<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>"] by fastforce | |
moreover have "eval uid t t' \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> [?cond]\<^sub>b" | |
proof (rule baIA) | |
from \<open>\<exists>n'<n. \<parallel>uid\<parallel>\<^bsub>t n'\<^esub>\<close> show "\<exists>i\<ge>\<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>. \<parallel>uid\<parallel>\<^bsub>t i\<^esub>" using latestAct_prop(1) by blast | |
with assms(3) show "?cond (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<rightarrow> t\<rangle>\<^bsub>\<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>)" using latestActNxt by simp | |
qed | |
ultimately have "eval uid t t' \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> (\<circle>\<^sub>b [?check]\<^sub>b)" | |
using impE[of uid t t' _ "[?cond]\<^sub>b" "\<circle>\<^sub>b [?check]\<^sub>b"] by simp | |
moreover have "\<exists>i>\<langle>uid \<rightarrow> t\<rangle>\<^bsub>\<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>. \<parallel>uid\<parallel>\<^bsub>t i\<^esub>" | |
proof - | |
from assms have "\<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>>\<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" using latestActNxtAct by simp | |
with assms(3) have "\<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>>\<langle>uid \<rightarrow> t\<rangle>\<^bsub>\<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" using latestActNxt by simp | |
moreover from \<open>\<exists>n'\<ge>n. \<parallel>uid\<parallel>\<^bsub>t n'\<^esub>\<close> have "\<parallel>uid\<parallel>\<^bsub>t \<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" using nxtActI by simp | |
ultimately show ?thesis by auto | |
qed | |
moreover from assms have "\<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<le> \<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>" | |
using latestActNxtAct by (simp add: order.strict_implies_order) | |
moreover from assms have "\<exists>!i. \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<le> i \<and> i < \<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<parallel>uid\<parallel>\<^bsub>t i\<^esub>" | |
using onlyone by simp | |
ultimately have "eval uid t t' \<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub> [?check]\<^sub>b" | |
using nxtEA1[of uid t "\<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" t' "[?check]\<^sub>b" "\<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>"] by simp | |
moreover from \<open>\<exists>n'\<ge>n. \<parallel>uid\<parallel>\<^bsub>t n'\<^esub>\<close> have "\<parallel>uid\<parallel>\<^bsub>t \<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" using nxtActI by simp | |
ultimately show ?thesis using baEANow[of uid t t' "\<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>" ?check] by simp | |
qed | |
lemma bhv_dn_context: | |
assumes "\<not> honest uid" | |
and "\<parallel>uid\<parallel>\<^bsub>t n\<^esub>" | |
and "\<exists>n'<n. \<parallel>uid\<parallel>\<^bsub>t n'\<^esub>" | |
shows "\<exists>nid'. \<parallel>nid'\<parallel>\<^bsub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub> \<and> (mining (\<sigma>\<^bsub>uid\<^esub>t n) \<and> (\<exists>b. prefix (bc (\<sigma>\<^bsub>uid\<^esub>t n)) (bc (\<sigma>\<^bsub>nid'\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) @ [b])) | |
\<or> \<not> mining (\<sigma>\<^bsub>uid\<^esub>t n) \<and> prefix (bc (\<sigma>\<^bsub>uid\<^esub>t n)) (bc (\<sigma>\<^bsub>nid'\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)))" | |
proof - | |
let ?bc="SOME b. b \<in> pin (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<union> {bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)}" | |
have bc_ex: "?bc \<in> pin (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<or> ?bc \<in> {bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)}" | |
proof - | |
have "\<exists>b. b\<in> pin (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<union> {bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)}" by auto | |
hence "?bc \<in> pin (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<union> {bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)}" using someI_ex by simp | |
thus ?thesis by auto | |
qed | |
from assms(2) have "\<exists>n'\<ge>n. \<parallel>uid\<parallel>\<^bsub>t n'\<^esub>" by auto | |
moreover from assms(3) have "\<exists>n'<n. \<parallel>uid\<parallel>\<^bsub>t n'\<^esub>" by auto | |
ultimately have "\<not> mining (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> prefix (bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>)) ?bc \<or> | |
mining (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> (\<exists>b. bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) = ?bc @ [b])" | |
using bhv_dn[of uid n t] assms(1) by simp | |
moreover from assms(2) have "\<langle>uid \<rightarrow> t\<rangle>\<^bsub>n\<^esub> = n" using nxtAct_active by simp | |
ultimately have casmp: "\<not> mining (\<sigma>\<^bsub>uid\<^esub>t n) \<and> prefix (bc (\<sigma>\<^bsub>uid\<^esub>t n)) ?bc \<or> | |
mining (\<sigma>\<^bsub>uid\<^esub>t n) \<and> (\<exists>b. bc (\<sigma>\<^bsub>uid\<^esub>t n) = ?bc @ [b])" by simp | |
from bc_ex have "?bc \<in> pin (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<or> ?bc \<in> {bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)}" . | |
thus ?thesis | |
proof | |
assume "?bc \<in> pin (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)" | |
moreover from \<open>\<exists>n'<n. \<parallel>uid\<parallel>\<^bsub>t n'\<^esub>\<close> have "\<parallel>uid\<parallel>\<^bsub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" using latestAct_prop(1) by simp | |
ultimately obtain nid where "\<parallel>nid\<parallel>\<^bsub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" and "bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) = ?bc" | |
using closed by blast | |
with casmp have "\<not> mining (\<sigma>\<^bsub>uid\<^esub>t n) \<and> prefix (bc (\<sigma>\<^bsub>uid\<^esub>t n)) (bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) \<or> | |
mining (\<sigma>\<^bsub>uid\<^esub>t n) \<and> (\<exists>b. bc (\<sigma>\<^bsub>uid\<^esub>t n) = (bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) @ [b])" by simp | |
with \<open>\<parallel>nid\<parallel>\<^bsub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>\<close> show ?thesis by auto | |
next | |
assume "?bc \<in> {bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)}" | |
hence "?bc = bc (\<sigma>\<^bsub>uid\<^esub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)" by simp | |
moreover from \<open>\<exists>n'. latestAct_cond uid t n n'\<close> have "\<parallel>uid\<parallel>\<^bsub>t \<langle>uid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" | |
using latestAct_prop(1) by simp | |
ultimately show ?thesis using casmp by auto | |
qed | |
qed | |
subsubsection "Maximal Honest Blockchains" | |
abbreviation mbc_cond:: "trace \<Rightarrow> nat \<Rightarrow> 'nid \<Rightarrow> bool" | |
where "mbc_cond t n nid \<equiv> nid\<in>actHn (t n) \<and> (\<forall>nid'\<in>actHn (t n). length (bc (\<sigma>\<^bsub>nid'\<^esub>(t n))) \<le> length (bc (\<sigma>\<^bsub>nid\<^esub>(t n))))" | |
lemma mbc_ex: | |
fixes t n | |
shows "\<exists>x. mbc_cond t n x" | |
proof - | |
let ?ALL="{b. \<exists>nid\<in>actHn (t n). b = bc (\<sigma>\<^bsub>nid\<^esub>(t n))}" | |
have "MAX ?ALL \<in> ?ALL" | |
proof (rule max_prop) | |
from actHn have "actHn (t n) \<noteq> {}" using actHn_def by blast | |
thus "?ALL\<noteq>{}" by auto | |
from act have "finite (actHn (t n))" using actHn_def by simp | |
thus "finite ?ALL" by simp | |
qed | |
then obtain nid where "nid \<in> actHn (t n) \<and> bc (\<sigma>\<^bsub>nid\<^esub>(t n)) = MAX ?ALL" by auto | |
moreover have "\<forall>nid'\<in>actHn (t n). length (bc (\<sigma>\<^bsub>nid'\<^esub>(t n))) \<le> length (MAX ?ALL)" | |
proof | |
fix nid | |
assume "nid \<in> actHn (t n)" | |
hence "bc (\<sigma>\<^bsub>nid\<^esub>(t n)) \<in> ?ALL" by auto | |
moreover have "\<forall>b'\<in>?ALL. length b' \<le> length (MAX ?ALL)" | |
proof (rule max_prop) | |
from \<open>bc (\<sigma>\<^bsub>nid\<^esub>(t n)) \<in> ?ALL\<close> show "?ALL\<noteq>{}" by auto | |
from act have "finite (actHn (t n))" using actHn_def by simp | |
thus "finite ?ALL" by simp | |
qed | |
ultimately show "length (bc (\<sigma>\<^bsub>nid\<^esub>t n)) \<le> length (Blockchain.MAX {b. \<exists>nid\<in>actHn (t n). b = bc (\<sigma>\<^bsub>nid\<^esub>t n)})" by simp | |
qed | |
ultimately show ?thesis by auto | |
qed | |
definition MBC:: "trace \<Rightarrow> nat \<Rightarrow> 'nid" | |
where "MBC t n = (SOME b. mbc_cond t n b)" | |
lemma mbc_prop[simp]: | |
shows "mbc_cond t n (MBC t n)" | |
using someI_ex[OF mbc_ex] MBC_def by simp | |
subsubsection "Honest Proof of Work" | |
text \<open> | |
An important construction is the maximal proof of work available in the honest community. | |
The construction was already introduces in the locale itself since it was used to express some of the locale assumptions. | |
\<close> | |
abbreviation pow_cond:: "trace \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" | |
where "pow_cond t n n' \<equiv> \<forall>nid\<in>actHn (t n). length (bc (\<sigma>\<^bsub>nid\<^esub>(t n))) \<le> n'" | |
lemma pow_ex: | |
fixes t n | |
shows "pow_cond t n (length (bc (\<sigma>\<^bsub>MBC t n\<^esub>(t n))))" | |
and "\<forall>x'. pow_cond t n x' \<longrightarrow> x'\<ge>length (bc (\<sigma>\<^bsub>MBC t n\<^esub>(t n)))" | |
using mbc_prop by auto | |
lemma pow_prop: | |
"pow_cond t n (PoW t n)" | |
proof - | |
from pow_ex have "pow_cond t n (LEAST x. pow_cond t n x)" using LeastI_ex[of "pow_cond t n"] by blast | |
thus ?thesis using PoW_def by simp | |
qed | |
lemma pow_eq: | |
fixes n | |
assumes "\<exists>tid\<in>actHn (t n). length (bc (\<sigma>\<^bsub>tid\<^esub>(t n))) = x" | |
and "\<forall>tid\<in>actHn (t n). length (bc (\<sigma>\<^bsub>tid\<^esub>(t n))) \<le> x" | |
shows "PoW t n = x" | |
proof - | |
have "(LEAST x. pow_cond t n x) = x" | |
proof (rule Least_equality) | |
from assms(2) show "\<forall>nid\<in>actHn (t n). length (bc (\<sigma>\<^bsub>nid\<^esub>t n)) \<le> x" by simp | |
next | |
fix y | |
assume "\<forall>nid\<in>actHn (t n). length (bc (\<sigma>\<^bsub>nid\<^esub>t n)) \<le> y" | |
thus "x \<le> y" using assms(1) by auto | |
qed | |
with PoW_def show ?thesis by simp | |
qed | |
lemma pow_mbc: | |
shows "length (bc (\<sigma>\<^bsub>MBC t n\<^esub>t n)) = PoW t n" | |
by (metis mbc_prop pow_eq) | |
lemma pow_less: | |
fixes t n nid | |
assumes "pow_cond t n x" | |
shows "PoW t n \<le> x" | |
proof - | |
from pow_ex assms have "(LEAST x. pow_cond t n x) \<le> x" using Least_le[of "pow_cond t n"] by blast | |
thus ?thesis using PoW_def by simp | |
qed | |
lemma pow_le_max: | |
assumes "honest tid" | |
and "\<parallel>tid\<parallel>\<^bsub>t n\<^esub>" | |
shows "PoW t n \<le> length (MAX (pin (\<sigma>\<^bsub>tid\<^esub>t n)))" | |
proof - | |
from mbc_prop have "honest (MBC t n)" and "\<parallel>MBC t n\<parallel>\<^bsub>t n\<^esub>" using actHn_def by auto | |
hence "pout (\<sigma>\<^bsub>MBC t n\<^esub>t n) = bc (\<sigma>\<^bsub>MBC t n\<^esub>t n)" | |
using forward globEANow[THEN baEANow[of "MBC t n" t t' n "\<lambda>nd. pout nd = bc nd"]] by auto | |
with assms \<open>\<parallel>MBC t n\<parallel>\<^bsub>t n\<^esub>\<close> \<open>honest (MBC t n)\<close> have "bc (\<sigma>\<^bsub>MBC t n\<^esub>t n) \<in> pin (\<sigma>\<^bsub>tid\<^esub>t n)" | |
using conn actHn_def by auto | |
moreover from assms (2) have "finite (pin (\<sigma>\<^bsub>tid\<^esub>t n))" using finite_input[of tid t n] by simp | |
ultimately have "length (bc (\<sigma>\<^bsub>MBC t n\<^esub>t n)) \<le> length (MAX (pin (\<sigma>\<^bsub>tid\<^esub>t n)))" | |
using max_prop(2) by auto | |
with pow_mbc show ?thesis by simp | |
qed | |
lemma pow_ge_lgth: | |
assumes "honest tid" | |
and "\<parallel>tid\<parallel>\<^bsub>t n\<^esub>" | |
shows "length (bc (\<sigma>\<^bsub>tid\<^esub>t n)) \<le> PoW t n" | |
proof - | |
from assms have "tid \<in> actHn (t n)" using actHn_def by simp | |
thus ?thesis using pow_prop by simp | |
qed | |
lemma pow_le_lgth: | |
assumes "honest tid" | |
and "\<parallel>tid\<parallel>\<^bsub>t n\<^esub>" | |
and "\<not>(\<exists>b\<in>pin (\<sigma>\<^bsub>tid\<^esub>t n). length b > length (bc (\<sigma>\<^bsub>tid\<^esub>t n)))" | |
shows "length (bc (\<sigma>\<^bsub>tid\<^esub>t n)) \<ge> PoW t n" | |
proof - | |
from assms (3) have "\<forall>b\<in>pin (\<sigma>\<^bsub>tid\<^esub>t n). length b \<le> length (bc (\<sigma>\<^bsub>tid\<^esub>t n))" by auto | |
moreover from assms nempty_input[of tid t n] finite_input[of tid t n] | |
have "MAX (pin (\<sigma>\<^bsub>tid\<^esub>t n)) \<in> pin (\<sigma>\<^bsub>tid\<^esub>t n)" using max_prop(1)[of "pin (\<sigma>\<^bsub>tid\<^esub>t n)"] by simp | |
ultimately have "length (MAX (pin (\<sigma>\<^bsub>tid\<^esub>t n))) \<le> length (bc (\<sigma>\<^bsub>tid\<^esub>t n))" by simp | |
moreover from assms have "PoW t n \<le> length (MAX (pin (\<sigma>\<^bsub>tid\<^esub>t n)))" using pow_le_max by simp | |
ultimately show ?thesis by simp | |
qed | |
lemma pow_mono: | |
shows "n'\<ge>n \<Longrightarrow> PoW t n' \<ge> PoW t n" | |
proof (induction n' rule: dec_induct) | |
case base | |
then show ?case by simp | |
next | |
case (step n') | |
hence "PoW t n \<le> PoW t n'" by simp | |
moreover have "PoW t (Suc n') \<ge> PoW t n'" | |
proof - | |
from actHn obtain tid where "honest tid" and "\<parallel>tid\<parallel>\<^bsub>t n'\<^esub>" and "\<parallel>tid\<parallel>\<^bsub>t (Suc n')\<^esub>" by auto | |
show ?thesis | |
proof cases | |
assume "\<exists>b\<in>pin (\<sigma>\<^bsub>tid\<^esub>t n'). length b > length (bc (\<sigma>\<^bsub>tid\<^esub>t n'))" | |
moreover from \<open>\<parallel>tid\<parallel>\<^bsub>t (Suc n')\<^esub>\<close> have "\<langle>tid \<rightarrow> t\<rangle>\<^bsub>Suc n'\<^esub> = Suc n'" | |
using nxtAct_active by simp | |
moreover from \<open>\<parallel>tid\<parallel>\<^bsub>t n'\<^esub>\<close> have "\<langle>tid \<leftarrow> t\<rangle>\<^bsub>Suc n'\<^esub> = n'" | |
using latestAct_prop(2) latestActless le_less_Suc_eq by blast | |
moreover from \<open>\<parallel>tid\<parallel>\<^bsub>t n'\<^esub>\<close> have "\<exists>n''<Suc n'. \<parallel>tid\<parallel>\<^bsub>t n''\<^esub>" by blast | |
moreover from \<open>\<parallel>tid\<parallel>\<^bsub>t (Suc n')\<^esub>\<close> have "\<exists>n''\<ge>Suc n'. \<parallel>tid\<parallel>\<^bsub>t n''\<^esub>" by auto | |
ultimately have "bc (\<sigma>\<^bsub>tid\<^esub>t (Suc n')) = Blockchain.MAX (pin (\<sigma>\<^bsub>tid\<^esub>t n')) \<or> | |
(\<exists>b. bc (\<sigma>\<^bsub>tid\<^esub>t (Suc n')) = Blockchain.MAX (pin (\<sigma>\<^bsub>tid\<^esub>t n')) @ b)" | |
using \<open>honest tid\<close> bhv_hn_ex[of tid "Suc n'" t] by auto | |
hence "length (bc (\<sigma>\<^bsub>tid\<^esub>t (Suc n'))) \<ge> length (Blockchain.MAX (pin (\<sigma>\<^bsub>tid\<^esub>t n')))" by auto | |
moreover from \<open>honest tid\<close> \<open>\<parallel>tid\<parallel>\<^bsub>t n'\<^esub>\<close> | |
have "length (Blockchain.MAX (pin (\<sigma>\<^bsub>tid\<^esub>t n'))) \<ge> PoW t n'" using pow_le_max by simp | |
ultimately have "PoW t n' \<le> length (bc (\<sigma>\<^bsub>tid\<^esub>t (Suc n')))" by simp | |
moreover from \<open>honest tid\<close> \<open>\<parallel>tid\<parallel>\<^bsub>t (Suc n')\<^esub>\<close> | |
have "length (bc (\<sigma>\<^bsub>tid\<^esub>t (Suc n'))) \<le> PoW t (Suc n')" using pow_ge_lgth by simp | |
ultimately show ?thesis by simp | |
next | |
assume asmp: "\<not>(\<exists>b\<in>pin (\<sigma>\<^bsub>tid\<^esub>t n'). length b > length (bc (\<sigma>\<^bsub>tid\<^esub>t n')))" | |
moreover from \<open>\<parallel>tid\<parallel>\<^bsub>t (Suc n')\<^esub>\<close> have "\<langle>tid \<rightarrow> t\<rangle>\<^bsub>Suc n'\<^esub> = Suc n'" | |
using nxtAct_active by simp | |
moreover from \<open>\<parallel>tid\<parallel>\<^bsub>t n'\<^esub>\<close> have "\<langle>tid \<leftarrow> t\<rangle>\<^bsub>Suc n'\<^esub> = n'" | |
using latestAct_prop(2) latestActless le_less_Suc_eq by blast | |
moreover from \<open>\<parallel>tid\<parallel>\<^bsub>t n'\<^esub>\<close> have "\<exists>n''<Suc n'. \<parallel>tid\<parallel>\<^bsub>t n''\<^esub>" by blast | |
moreover from \<open>\<parallel>tid\<parallel>\<^bsub>t (Suc n')\<^esub>\<close> have "\<exists>n''\<ge>Suc n'. \<parallel>tid\<parallel>\<^bsub>t n''\<^esub>" by auto | |
ultimately have "bc (\<sigma>\<^bsub>tid\<^esub>t (Suc n')) = bc (\<sigma>\<^bsub>tid\<^esub>t n') \<or> | |
(\<exists>b. bc (\<sigma>\<^bsub>tid\<^esub>t (Suc n')) = bc (\<sigma>\<^bsub>tid\<^esub>t n') @ b)" | |
using \<open>honest tid\<close> bhv_hn_in[of tid "Suc n'" t] by auto | |
hence "length (bc (\<sigma>\<^bsub>tid\<^esub>t (Suc n'))) \<ge> length (bc (\<sigma>\<^bsub>tid\<^esub>t n'))" by auto | |
moreover from \<open>honest tid\<close> \<open>\<parallel>tid\<parallel>\<^bsub>t n'\<^esub>\<close> asmp have "length (bc (\<sigma>\<^bsub>tid\<^esub>t n')) \<ge> PoW t n'" | |
using pow_le_lgth by simp | |
moreover from \<open>honest tid\<close> \<open>\<parallel>tid\<parallel>\<^bsub>t (Suc n')\<^esub>\<close> | |
have "length (bc (\<sigma>\<^bsub>tid\<^esub>t (Suc n'))) \<le> PoW t (Suc n')" using pow_ge_lgth by simp | |
ultimately show ?thesis by simp | |
qed | |
qed | |
ultimately show ?case by auto | |
qed | |
lemma pow_equals: | |
assumes "PoW t n = PoW t n'" | |
and "n'\<ge>n" | |
and "n''\<ge>n" | |
and "n''\<le>n'" | |
shows "PoW t n = PoW t n''" by (metis pow_mono assms(1) assms(3) assms(4) eq_iff) | |
lemma pow_mining_suc: | |
assumes "hmining t (Suc n)" | |
shows "PoW t n < PoW t (Suc n)" | |
proof - | |
from assms obtain nid where "nid\<in>actHn (t (Suc n))" and "mining (\<sigma>\<^bsub>nid\<^esub>(t (Suc n)))" | |
using hmining_def by auto | |
show ?thesis | |
proof cases | |
assume asmp: "(\<exists>b\<in>pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>Suc n\<^esub>). length b > length (bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>Suc n\<^esub>)))" | |
moreover from \<open>nid\<in>actHn (t (Suc n))\<close> have "honest nid" and "\<parallel>nid\<parallel>\<^bsub>t (Suc n)\<^esub>" | |
using actHn_def by auto | |
moreover from \<open>honest nid\<close> \<open>mining (\<sigma>\<^bsub>nid\<^esub>(t (Suc n)))\<close> \<open>\<parallel>nid\<parallel>\<^bsub>t (Suc n)\<^esub>\<close> have "\<parallel>nid\<parallel>\<^bsub>t n\<^esub>" | |
using mine by simp | |
hence "\<exists>n'. latestAct_cond nid t (Suc n) n'" by auto | |
ultimately have "\<not> mining (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>Suc n\<^esub>) \<and> bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>Suc n\<^esub>) = MAX (pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>Suc n\<^esub>)) \<or> | |
mining (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>Suc n\<^esub>) \<and> (\<exists>b. bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>Suc n\<^esub>) = MAX (pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>Suc n\<^esub>)) @ [b])" using bhv_hn_ex[of nid "Suc n"] by auto | |
moreover from \<open>\<parallel>nid\<parallel>\<^bsub>t (Suc n)\<^esub>\<close> have "\<langle>nid \<rightarrow> t\<rangle>\<^bsub>Suc n\<^esub> = Suc n" using nxtAct_active by simp | |
moreover have "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>Suc n\<^esub> = n" | |
proof (rule latestActEq) | |
from \<open>\<parallel>nid\<parallel>\<^bsub>t n\<^esub>\<close> show "\<parallel>nid\<parallel>\<^bsub>t n\<^esub>" by simp | |
show "\<not> (\<exists>n''>n. n'' < Suc n \<and> \<parallel>nid\<parallel>\<^bsub>t n\<^esub>)" by simp | |
show "n < Suc n" by simp | |
qed | |
hence "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>Suc n\<^esub> = n" using latestAct_def by simp | |
ultimately have "\<not> mining (\<sigma>\<^bsub>nid\<^esub>t (Suc n)) \<and> bc (\<sigma>\<^bsub>nid\<^esub>t (Suc n)) = MAX (pin (\<sigma>\<^bsub>nid\<^esub>t n)) \<or> | |
mining (\<sigma>\<^bsub>nid\<^esub>t (Suc n)) \<and> (\<exists>b. bc (\<sigma>\<^bsub>nid\<^esub>t (Suc n)) = MAX (pin (\<sigma>\<^bsub>nid\<^esub>t n)) @ [b])" by simp | |
with \<open>mining (\<sigma>\<^bsub>nid\<^esub>(t (Suc n)))\<close> | |
have "\<exists>b. bc (\<sigma>\<^bsub>nid\<^esub>t (Suc n)) = MAX (pin (\<sigma>\<^bsub>nid\<^esub>t n)) @ [b]" by auto | |
moreover from \<open>honest nid\<close> \<open>\<parallel>nid\<parallel>\<^bsub>t (Suc n)\<^esub>\<close> have "length (bc (\<sigma>\<^bsub>nid\<^esub>t (Suc n))) \<le> PoW t (Suc n)" | |
using pow_ge_lgth[of nid t "Suc n"] by simp | |
ultimately have "length (MAX (pin (\<sigma>\<^bsub>nid\<^esub>t n))) < PoW t (Suc n)" by auto | |
moreover from \<open>honest nid\<close> \<open>\<parallel>nid\<parallel>\<^bsub>t n\<^esub>\<close> have "length (MAX (pin (\<sigma>\<^bsub>nid\<^esub>t n))) \<ge> PoW t n" | |
using pow_le_max by simp | |
ultimately show ?thesis by simp | |
next | |
assume asmp: "\<not> (\<exists>b\<in>pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>Suc n\<^esub>). length b > length (bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>Suc n\<^esub>)))" | |
moreover from \<open>nid\<in>actHn (t (Suc n))\<close> have "honest nid" and "\<parallel>nid\<parallel>\<^bsub>t (Suc n)\<^esub>" | |
using actHn_def by auto | |
moreover from \<open>honest nid\<close> \<open>mining (\<sigma>\<^bsub>nid\<^esub>(t (Suc n)))\<close> \<open>\<parallel>nid\<parallel>\<^bsub>t (Suc n)\<^esub>\<close> have "\<parallel>nid\<parallel>\<^bsub>t n\<^esub>" | |
using mine by simp | |
hence "\<exists>n'. latestAct_cond nid t (Suc n) n'" by auto | |
ultimately have "\<not> mining (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>Suc n\<^esub>) \<and> bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>Suc n\<^esub>) = bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>Suc n\<^esub>) \<or> | |
mining (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>Suc n\<^esub>) \<and> (\<exists>b. bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>Suc n\<^esub>) = bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>Suc n\<^esub>) @ [b])" | |
using bhv_hn_in[of nid "Suc n"] by auto | |
moreover from \<open>\<parallel>nid\<parallel>\<^bsub>t (Suc n)\<^esub>\<close> have "\<langle>nid \<rightarrow> t\<rangle>\<^bsub>Suc n\<^esub> = Suc n" using nxtAct_active by simp | |
moreover have "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>Suc n\<^esub> = n" | |
proof (rule latestActEq) | |
from \<open>\<parallel>nid\<parallel>\<^bsub>t n\<^esub>\<close> show "\<parallel>nid\<parallel>\<^bsub>t n\<^esub>" by simp | |
show "\<not> (\<exists>n''>n. n'' < Suc n \<and> \<parallel>nid\<parallel>\<^bsub>t n\<^esub>)" by simp | |
show "n < Suc n" by simp | |
qed | |
hence "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>Suc n\<^esub> = n" using latestAct_def by simp | |
ultimately have "\<not> mining (\<sigma>\<^bsub>nid\<^esub>t (Suc n)) \<and> bc (\<sigma>\<^bsub>nid\<^esub>t (Suc n)) = bc (\<sigma>\<^bsub>nid\<^esub>t n) \<or> | |
mining (\<sigma>\<^bsub>nid\<^esub>t (Suc n)) \<and> (\<exists>b. bc (\<sigma>\<^bsub>nid\<^esub>t (Suc n)) = bc (\<sigma>\<^bsub>nid\<^esub>t n) @ [b])" by simp | |
with \<open>mining (\<sigma>\<^bsub>nid\<^esub>(t (Suc n)))\<close> have "\<exists>b. bc (\<sigma>\<^bsub>nid\<^esub>t (Suc n)) = bc (\<sigma>\<^bsub>nid\<^esub>t n) @ [b]" by simp | |
moreover from \<open>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>Suc n\<^esub> = n\<close> | |
have "\<not> (\<exists>b\<in>pin (\<sigma>\<^bsub>nid\<^esub>t n). length (bc (\<sigma>\<^bsub>nid\<^esub>t n)) < length b)" | |
using asmp by simp | |
with \<open>honest nid\<close> \<open>\<parallel>nid\<parallel>\<^bsub>t n\<^esub>\<close> have "length (bc (\<sigma>\<^bsub>nid\<^esub>t n)) \<ge> PoW t n" | |
using pow_le_lgth[of nid t n] by simp | |
moreover from \<open>honest nid\<close> \<open>\<parallel>nid\<parallel>\<^bsub>t (Suc n)\<^esub>\<close> have "length (bc (\<sigma>\<^bsub>nid\<^esub>t (Suc n))) \<le> PoW t (Suc n)" | |
using pow_ge_lgth[of nid t "Suc n"] by simp | |
ultimately show ?thesis by auto | |
qed | |
qed | |
subsubsection "History" | |
text \<open> | |
In the following we introduce an operator which extracts the development of a blockchain up to a time point @{term n}. | |
\<close> | |
abbreviation "his_prop t n nid n' nid' x \<equiv> | |
(\<exists>n. latestAct_cond nid' t n' n) \<and> \<parallel>snd x\<parallel>\<^bsub>t (fst x)\<^esub> \<and> fst x = \<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub> \<and> | |
(prefix (bc (\<sigma>\<^bsub>nid'\<^esub>(t n'))) (bc (\<sigma>\<^bsub>snd x\<^esub>(t (fst x)))) \<or> | |
(\<exists>b. bc (\<sigma>\<^bsub>nid'\<^esub>(t n')) = (bc (\<sigma>\<^bsub>snd x\<^esub>(t (fst x)))) @ [b] \<and> mining (\<sigma>\<^bsub>nid'\<^esub>(t n'))))" | |
inductive_set | |
his:: "trace \<Rightarrow> nat \<Rightarrow> 'nid \<Rightarrow> (nat \<times> 'nid) set" | |
for t::trace and n::nat and nid::'nid | |
where "\<lbrakk>\<parallel>nid\<parallel>\<^bsub>t n\<^esub>\<rbrakk> \<Longrightarrow> (n,nid) \<in> his t n nid" | |
| "\<lbrakk>(n',nid') \<in> his t n nid; \<exists>x. his_prop t n nid n' nid' x\<rbrakk> \<Longrightarrow> (SOME x. his_prop t n nid n' nid' x) \<in> his t n nid" | |
lemma his_act: | |
assumes "(n',nid') \<in> his t n nid" | |
shows "\<parallel>nid'\<parallel>\<^bsub>t n'\<^esub>" | |
using assms | |
proof (rule his.cases) | |
assume "(n', nid') = (n, nid)" and "\<parallel>nid\<parallel>\<^bsub>t n\<^esub>" | |
thus "\<parallel>nid'\<parallel>\<^bsub>t n'\<^esub>" by simp | |
next | |
fix n'' nid'' assume asmp: "(n', nid') = (SOME x. his_prop t n nid n'' nid'' x)" | |
and "(n'', nid'') \<in> his t n nid" and "\<exists>x. his_prop t n nid n'' nid'' x" | |
hence "his_prop t n nid n'' nid'' (SOME x. his_prop t n nid n'' nid'' x)" | |
using someI_ex[of "\<lambda>x. his_prop t n nid n'' nid'' x"] by auto | |
hence "\<parallel>snd (SOME x. his_prop t n nid n'' nid'' x)\<parallel>\<^bsub>t (fst (SOME x. his_prop t n nid n'' nid'' x))\<^esub>" | |
by blast | |
moreover from asmp have "fst (SOME x. his_prop t n nid n'' nid'' x) = fst (n', nid')" by simp | |
moreover from asmp have "snd (SOME x. his_prop t n nid n'' nid'' x) = snd (n', nid')" by simp | |
ultimately show ?thesis by simp | |
qed | |
text \<open> | |
In addition we also introduce an operator to obtain the predecessor of a blockchains development. | |
\<close> | |
definition "hisPred" | |
where "hisPred t n nid n' \<equiv> (GREATEST n''. \<exists>nid'. (n'',nid')\<in> his t n nid \<and> n'' < n')" | |
lemma hisPrev_prop: | |
assumes "\<exists>n''<n'. \<exists>nid'. (n'',nid')\<in> his t n nid" | |
shows "hisPred t n nid n' < n'" and "\<exists>nid'. (hisPred t n nid n',nid')\<in> his t n nid" | |
proof - | |
from assms obtain n'' where "\<exists>nid'. (n'',nid')\<in> his t n nid \<and> n''<n'" by auto | |
moreover from \<open>\<exists>nid'. (n'',nid')\<in> his t n nid \<and> n''<n'\<close> | |
have "\<exists>i'\<le>n'. (\<exists>nid'. (i', nid') \<in> his t n nid \<and> i' < n') \<and> (\<forall>n'a. (\<exists>nid'. (n'a, nid') \<in> his t n nid \<and> n'a < n') \<longrightarrow> n'a \<le> i')" | |
using boundedGreatest[of "\<lambda>n''. \<exists>nid'. (n'',nid')\<in> his t n nid \<and> n'' < n'" n'' n'] by simp | |
then obtain i' where "\<forall>n'a. (\<exists>nid'. (n'a, nid') \<in> his t n nid \<and> n'a < n') \<longrightarrow> n'a \<le> i'" by auto | |
ultimately show "hisPred t n nid n' < n'" and "\<exists>nid'. (hisPred t n nid n',nid')\<in> his t n nid" | |
using GreatestI_nat[of "\<lambda>n''. \<exists>nid'. (n'',nid')\<in> his t n nid \<and> n'' < n'" n'' i'] hisPred_def by auto | |
qed | |
lemma hisPrev_nex_less: | |
assumes "\<exists>n''<n'. \<exists>nid'. (n'',nid')\<in> his t n nid" | |
shows "\<not>(\<exists>x\<in>his t n nid. fst x < n' \<and> fst x>hisPred t n nid n')" | |
proof (rule ccontr) | |
assume "\<not>\<not>(\<exists>x\<in>his t n nid. fst x < n' \<and> fst x>hisPred t n nid n')" | |
then obtain n'' nid'' where "(n'',nid'')\<in>his t n nid" and "n''< n'" and "n''>hisPred t n nid n'" by auto | |
moreover have "n''\<le>hisPred t n nid n'" | |
proof - | |
from \<open>(n'',nid'')\<in>his t n nid\<close> \<open>n''< n'\<close> have "\<exists>nid'. (n'',nid')\<in> his t n nid \<and> n''<n'" by auto | |
moreover from \<open>\<exists>nid'. (n'',nid')\<in> his t n nid \<and> n''<n'\<close> have "\<exists>i'\<le>n'. (\<exists>nid'. (i', nid') \<in> his t n nid \<and> i' < n') \<and> (\<forall>n'a. (\<exists>nid'. (n'a, nid') \<in> his t n nid \<and> n'a < n') \<longrightarrow> n'a \<le> i')" | |
using boundedGreatest[of "\<lambda>n''. \<exists>nid'. (n'',nid')\<in> his t n nid \<and> n'' < n'" n'' n'] by simp | |
then obtain i' where "\<forall>n'a. (\<exists>nid'. (n'a, nid') \<in> his t n nid \<and> n'a < n') \<longrightarrow> n'a \<le> i'" by auto | |
ultimately show ?thesis using Greatest_le_nat[of "\<lambda>n''. \<exists>nid'. (n'',nid')\<in> his t n nid \<and> n'' < n'" n'' i'] hisPred_def by simp | |
qed | |
ultimately show False by simp | |
qed | |
lemma his_le: | |
assumes "x \<in> his t n nid" | |
shows "fst x\<le>n" | |
using assms | |
proof (induction rule: his.induct) | |
case 1 | |
then show ?case by simp | |
next | |
case (2 n' nid') | |
moreover have "fst (SOME x. his_prop t n nid n' nid' x) \<le> n'" | |
proof - | |
from "2.hyps" have "\<exists>x. his_prop t n nid n' nid' x" by simp | |
hence "his_prop t n nid n' nid' (SOME x. his_prop t n nid n' nid' x)" | |
using someI_ex[of "\<lambda>x. his_prop t n nid n' nid' x"] by auto | |
hence "fst (SOME x. his_prop t n nid n' nid' x) = \<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub>" by force | |
moreover from \<open>his_prop t n nid n' nid' (SOME x. his_prop t n nid n' nid' x)\<close> | |
have "\<exists>n. latestAct_cond nid' t n' n" by simp | |
ultimately show ?thesis using latestAct_prop(2)[of n' nid' t] by simp | |
qed | |
ultimately show ?case by simp | |
qed | |
lemma his_determ_base: | |
shows "(n, nid') \<in> his t n nid \<Longrightarrow> nid'=nid" | |
proof (rule his.cases) | |
assume "(n, nid') = (n, nid)" | |
thus ?thesis by simp | |
next | |
fix n' nid'a | |
assume "(n, nid') \<in> his t n nid" and "(n, nid') = (SOME x. his_prop t n nid n' nid'a x)" | |
and "(n', nid'a) \<in> his t n nid" and "\<exists>x. his_prop t n nid n' nid'a x" | |
hence "his_prop t n nid n' nid'a (SOME x. his_prop t n nid n' nid'a x)" | |
using someI_ex[of "\<lambda>x. his_prop t n nid n' nid'a x"] by auto | |
hence "fst (SOME x. his_prop t n nid n' nid'a x) = \<langle>nid'a \<leftarrow> t\<rangle>\<^bsub>n'\<^esub>" by force | |
moreover from \<open>his_prop t n nid n' nid'a (SOME x. his_prop t n nid n' nid'a x)\<close> | |
have "\<exists>n. latestAct_cond nid'a t n' n" by simp | |
ultimately have "fst (SOME x. his_prop t n nid n' nid'a x) < n'" | |
using latestAct_prop(2)[of n' nid'a t] by simp | |
with \<open>(n, nid') = (SOME x. his_prop t n nid n' nid'a x)\<close> have "fst (n, nid')<n'" by simp | |
hence "n<n'" by simp | |
moreover from \<open>(n', nid'a) \<in> his t n nid\<close> have "n'\<le>n" using his_le by auto | |
ultimately show "nid' = nid" by simp | |
qed | |
lemma hisPrev_same: | |
assumes "\<exists>n'<n''. \<exists>nid'. (n',nid')\<in> his t n nid" | |
and "\<exists>n''<n'. \<exists>nid'. (n'',nid')\<in> his t n nid" | |
and "(n',nid')\<in> his t n nid" | |
and "(n'',nid'')\<in> his t n nid" | |
and "hisPred t n nid n'=hisPred t n nid n''" | |
shows "n'=n''" | |
proof (rule ccontr) | |
assume "\<not> n'=n''" | |
hence "n'>n'' \<or> n'<n''" by auto | |
thus False | |
proof | |
assume "n'<n''" | |
hence "fst (n',nid')<n''" by simp | |
moreover from assms(2) have "hisPred t n nid n'<n'" using hisPrev_prop(1) by simp | |
with assms have "hisPred t n nid n''<n'" by simp | |
hence "hisPred t n nid n''<fst (n',nid')" by simp | |
ultimately show False using hisPrev_nex_less[of n'' t n nid] assms by auto | |
next (*Symmetric*) | |
assume "n'>n''" | |
hence "fst (n'',nid')<n'" by simp | |
moreover from assms(1) have "hisPred t n nid n''<n''" using hisPrev_prop(1) by simp | |
with assms have "hisPred t n nid n'<n''" by simp | |
hence "hisPred t n nid n'<fst (n'',nid')" by simp | |
ultimately show False using hisPrev_nex_less[of n' t n nid] assms by auto | |
qed | |
qed | |
lemma his_determ_ext: | |
shows "n'\<le>n \<Longrightarrow> (\<exists>nid'. (n',nid')\<in>his t n nid) \<Longrightarrow> (\<exists>!nid'. (n',nid')\<in>his t n nid) \<and> | |
((\<exists>n''<n'. \<exists>nid'. (n'',nid')\<in> his t n nid) \<longrightarrow> (\<exists>x. his_prop t n nid n' (THE nid'. (n',nid')\<in>his t n nid) x) \<and> | |
(hisPred t n nid n', (SOME nid'. (hisPred t n nid n', nid') \<in> his t n nid)) = (SOME x. his_prop t n nid n' (THE nid'. (n',nid')\<in>his t n nid) x))" | |
proof (induction n' rule: my_induct) | |
case base | |
then obtain nid' where "(n, nid') \<in> his t n nid" by auto | |
hence "\<exists>!nid'. (n, nid') \<in> his t n nid" | |
proof | |
fix nid'' assume "(n, nid'') \<in> his t n nid" | |
with his_determ_base have "nid''=nid" by simp | |
moreover from \<open>(n, nid') \<in> his t n nid\<close> have "nid'=nid" using his_determ_base by simp | |
ultimately show "nid'' = nid'" by simp | |
qed | |
moreover have "(\<exists>n''<n. \<exists>nid'. (n'',nid')\<in> his t n nid) \<longrightarrow> (\<exists>x. his_prop t n nid n (THE nid'. (n,nid')\<in>his t n nid) x) \<and> (hisPred t n nid n, (SOME nid'. (hisPred t n nid n, nid') \<in> his t n nid)) = (SOME x. his_prop t n nid n (THE nid'. (n,nid')\<in>his t n nid) x)" | |
proof | |
assume "\<exists>n''<n. \<exists>nid'. (n'',nid')\<in> his t n nid" | |
hence "\<exists>nid'. (hisPred t n nid n, nid')\<in> his t n nid" using hisPrev_prop(2) by simp | |
hence "(hisPred t n nid n, (SOME nid'. (hisPred t n nid n, nid') \<in> his t n nid)) \<in> his t n nid" | |
using someI_ex[of "\<lambda>nid'. (hisPred t n nid n, nid') \<in> his t n nid"] by simp | |
thus "(\<exists>x. his_prop t n nid n (THE nid'. (n,nid')\<in>his t n nid) x) \<and> | |
(hisPred t n nid n, (SOME nid'. (hisPred t n nid n, nid') \<in> his t n nid)) = (SOME x. his_prop t n nid n (THE nid'. (n,nid')\<in>his t n nid) x)" | |
proof (rule his.cases) | |
assume "(hisPred t n nid n, SOME nid'. (hisPred t n nid n, nid') \<in> his t n nid) = (n, nid)" | |
hence "hisPred t n nid n=n" by simp | |
with \<open>\<exists>n''<n. \<exists>nid'. (n'',nid')\<in> his t n nid\<close> show ?thesis using hisPrev_prop(1)[of n t n nid] by force | |
next | |
fix n'' nid'' assume asmp: "(hisPred t n nid n, SOME nid'. (hisPred t n nid n, nid') \<in> his t n nid) = (SOME x. his_prop t n nid n'' nid'' x)" | |
and "(n'', nid'') \<in> his t n nid" and "\<exists>x. his_prop t n nid n'' nid'' x" | |
moreover have "n''=n" | |
proof (rule antisym) | |
show "n''\<ge>n" | |
proof (rule ccontr) | |
assume "(\<not>n''\<ge>n)" | |
hence "n''<n" by simp | |
moreover have "n''>hisPred t n nid n" | |
proof - | |
let ?x="\<lambda>x. his_prop t n nid n'' nid'' x" | |
from \<open>\<exists>x. his_prop t n nid n'' nid'' x\<close> have "his_prop t n nid n'' nid'' (SOME x. ?x x)" | |
using someI_ex[of ?x] by auto | |
hence "n''>fst (SOME x. ?x x)" using latestAct_prop(2)[of n'' nid'' t] by force | |
moreover from asmp have "fst (hisPred t n nid n, SOME nid'. (hisPred t n nid n, nid') \<in> his t n nid) = fst (SOME x. ?x x)" by simp | |
ultimately show ?thesis by simp | |
qed | |
moreover from \<open>\<exists>n''<n. \<exists>nid'. (n'',nid')\<in> his t n nid\<close> | |
have "\<not>(\<exists>x\<in>his t n nid. fst x < n \<and> fst x > hisPred t n nid n)" | |
using hisPrev_nex_less by simp | |
ultimately show False using \<open>(n'', nid'') \<in> his t n nid\<close> by auto | |
qed | |
next | |
from \<open>(n'', nid'') \<in> his t n nid\<close> show "n'' \<le> n" using his_le by auto | |
qed | |
ultimately have "(hisPred t n nid n, SOME nid'. (hisPred t n nid n, nid') \<in> his t n nid) = (SOME x. his_prop t n nid n nid'' x)" by simp | |
moreover from \<open>n''=n\<close> \<open>(n'', nid'') \<in> his t n nid\<close> have "(n, nid'') \<in> his t n nid" by simp | |
with \<open>\<exists>!nid'. (n,nid') \<in> his t n nid\<close> have "nid''=(THE nid'. (n,nid')\<in>his t n nid)" | |
using the1_equality[of "\<lambda>nid'. (n, nid') \<in> his t n nid"] by simp | |
moreover from \<open>\<exists>x. his_prop t n nid n'' nid'' x\<close> \<open>n''=n\<close> \<open>nid''=(THE nid'. (n,nid')\<in>his t n nid)\<close> | |
have "\<exists>x. his_prop t n nid n (THE nid'. (n,nid')\<in>his t n nid) x" by simp | |
ultimately show ?thesis by simp | |
qed | |
qed | |
ultimately show ?case by simp | |
next | |
case (step n') | |
then obtain nid' where "(n', nid') \<in> his t n nid" by auto | |
hence "\<exists>!nid'. (n', nid') \<in> his t n nid" | |
proof (rule his.cases) | |
assume "(n', nid') = (n, nid)" | |
hence "n'=n" by simp | |
with step.hyps show ?thesis by simp | |
next | |
fix n'''' nid'''' | |
assume "(n'''', nid'''') \<in> his t n nid" | |
and n'nid': "(n', nid') = (SOME x. his_prop t n nid n'''' nid'''' x)" | |
and "(n'''', nid'''') \<in> his t n nid" and "\<exists>x. his_prop t n nid n'''' nid'''' x" | |
from \<open>(n', nid') \<in> his t n nid\<close> show ?thesis | |
proof | |
fix nid'' assume "(n', nid'') \<in> his t n nid" | |
thus "nid'' = nid'" | |
proof (rule his.cases) | |
assume "(n', nid'') = (n, nid)" | |
hence "n'=n" by simp | |
with step.hyps show ?thesis by simp | |
next | |
fix n''' nid''' | |
assume "(n''', nid''') \<in> his t n nid" | |
and n'nid'': "(n', nid'') = (SOME x. his_prop t n nid n''' nid''' x)" | |
and "(n''', nid''') \<in> his t n nid" and "\<exists>x. his_prop t n nid n''' nid''' x" | |
moreover have "n'''=n''''" | |
proof - | |
have "hisPred t n nid n''' = n'" | |
proof - | |
from n'nid'' \<open>\<exists>x. his_prop t n nid n''' nid''' x\<close> | |
have "his_prop t n nid n''' nid''' (n',nid'')" | |
using someI_ex[of "\<lambda>x. his_prop t n nid n''' nid''' x"] by auto | |
hence "n'''>n'" using latestAct_prop(2) by simp | |
moreover from \<open>(n''', nid''') \<in> his t n nid\<close> have "n'''\<le> n" using his_le by auto | |
moreover from \<open>(n''', nid''') \<in> his t n nid\<close> | |
have "\<exists>nid'. (n''', nid') \<in> his t n nid" by auto | |
ultimately have "(\<exists>n'<n'''. \<exists>nid'. (n',nid')\<in> his t n nid) \<longrightarrow> (\<exists>!nid'. (n''',nid') \<in> his t n nid) \<and> (hisPred t n nid n''', (SOME nid'. (hisPred t n nid n''', nid') \<in> his t n nid)) = (SOME x. his_prop t n nid n''' (THE nid'. (n''',nid')\<in>his t n nid) x)" using step.IH by auto | |
with \<open>n'''>n'\<close> \<open>(n', nid') \<in> his t n nid\<close> have "\<exists>!nid'. (n''',nid') \<in> his t n nid" and "(hisPred t n nid n''', (SOME nid'. (hisPred t n nid n''', nid') \<in> his t n nid)) = (SOME x. his_prop t n nid n''' (THE nid'. (n''',nid')\<in>his t n nid) x)" by auto | |
moreover from \<open>\<exists>!nid'. (n''',nid') \<in> his t n nid\<close> \<open>(n''', nid''') \<in> his t n nid\<close> have "nid'''=(THE nid'. (n''',nid')\<in>his t n nid)" using the1_equality[of "\<lambda>nid'. (n''', nid') \<in> his t n nid"] by simp | |
ultimately have "(hisPred t n nid n''', (SOME nid'. (hisPred t n nid n''', nid') \<in> his t n nid)) = (SOME x. his_prop t n nid n''' nid''' x)" by simp | |
with n'nid'' have "(n', nid'') = (hisPred t n nid n''', (SOME nid'. (hisPred t n nid n''', nid') \<in> his t n nid))" by simp | |
thus ?thesis by simp | |
qed | |
moreover have "hisPred t n nid n'''' = n'" (*Symmetric*) | |
proof - | |
from n'nid' \<open>\<exists>x. his_prop t n nid n'''' nid'''' x\<close> have "his_prop t n nid n'''' nid'''' (n',nid')" | |
using someI_ex[of "\<lambda>x. his_prop t n nid n'''' nid'''' x"] by auto | |
hence "n''''>n'" using latestAct_prop(2) by simp | |
moreover from \<open>(n'''', nid'''') \<in> his t n nid\<close> have "n''''\<le> n" using his_le by auto | |
moreover from \<open>(n'''', nid'''') \<in> his t n nid\<close> | |
have "\<exists>nid'. (n'''', nid') \<in> his t n nid" by auto | |
ultimately have "(\<exists>n'<n''''. \<exists>nid'. (n',nid')\<in> his t n nid) \<longrightarrow> (\<exists>!nid'. (n'''',nid') \<in> his t n nid) \<and> (hisPred t n nid n'''', (SOME nid'. (hisPred t n nid n'''', nid') \<in> his t n nid)) = (SOME x. his_prop t n nid n'''' (THE nid'. (n'''',nid')\<in>his t n nid) x)" using step.IH by auto | |
with \<open>n''''>n'\<close> \<open>(n', nid') \<in> his t n nid\<close> have "\<exists>!nid'. (n'''',nid') \<in> his t n nid" and "(hisPred t n nid n'''', (SOME nid'. (hisPred t n nid n'''', nid') \<in> his t n nid)) = (SOME x. his_prop t n nid n'''' (THE nid'. (n'''',nid')\<in>his t n nid) x)" by auto | |
moreover from \<open>\<exists>!nid'. (n'''',nid') \<in> his t n nid\<close> \<open>(n'''', nid'''') \<in> his t n nid\<close> have "nid''''=(THE nid'. (n'''',nid')\<in>his t n nid)" using the1_equality[of "\<lambda>nid'. (n'''', nid') \<in> his t n nid"] by simp | |
ultimately have "(hisPred t n nid n'''', (SOME nid'. (hisPred t n nid n'''', nid') \<in> his t n nid)) = (SOME x. his_prop t n nid n'''' nid'''' x)" by simp | |
with n'nid' have "(n', nid') = (hisPred t n nid n'''', (SOME nid'. (hisPred t n nid n'''', nid') \<in> his t n nid))" by simp | |
thus ?thesis by simp | |
qed | |
ultimately have "hisPred t n nid n'''=hisPred t n nid n''''" .. | |
moreover have "\<exists>n'<n'''. \<exists>nid'. (n',nid')\<in> his t n nid" | |
proof - | |
from n'nid'' \<open>\<exists>x. his_prop t n nid n''' nid''' x\<close> have "his_prop t n nid n''' nid''' (n',nid'')" | |
using someI_ex[of "\<lambda>x. his_prop t n nid n''' nid''' x"] by auto | |
hence "n'''>n'" using latestAct_prop(2) by simp | |
with \<open>(n', nid') \<in> his t n nid\<close> show ?thesis by auto | |
qed | |
moreover have "\<exists>n'<n''''. \<exists>nid'. (n',nid')\<in> his t n nid" | |
proof - | |
from n'nid' \<open>\<exists>x. his_prop t n nid n'''' nid'''' x\<close> have "his_prop t n nid n'''' nid'''' (n',nid')" | |
using someI_ex[of "\<lambda>x. his_prop t n nid n'''' nid'''' x"] by auto | |
hence "n''''>n'" using latestAct_prop(2) by simp | |
with \<open>(n', nid') \<in> his t n nid\<close> show ?thesis by auto | |
qed | |
ultimately show ?thesis | |
using hisPrev_same \<open>(n''', nid''') \<in> his t n nid\<close> \<open>(n'''', nid'''') \<in> his t n nid\<close> | |
by blast | |
qed | |
moreover have "nid'''=nid''''" | |
proof - | |
from n'nid'' \<open>\<exists>x. his_prop t n nid n''' nid''' x\<close> | |
have "his_prop t n nid n''' nid''' (n',nid'')" | |
using someI_ex[of "\<lambda>x. his_prop t n nid n''' nid''' x"] by auto | |
hence "n'''>n'" using latestAct_prop(2) by simp | |
moreover from \<open>(n''', nid''') \<in> his t n nid\<close> have "n'''\<le> n" using his_le by auto | |
moreover from \<open>(n''', nid''') \<in> his t n nid\<close> | |
have "\<exists>nid'. (n''', nid') \<in> his t n nid" by auto | |
ultimately have "\<exists>!nid'. (n''', nid') \<in> his t n nid" using step.IH by auto | |
with \<open>(n''', nid''') \<in> his t n nid\<close> \<open>(n'''', nid'''') \<in> his t n nid\<close> \<open>n'''=n''''\<close> | |
show ?thesis by auto | |
qed | |
ultimately have "(n', nid') = (n', nid'')" using n'nid' by simp | |
thus "nid'' = nid'" by simp | |
qed | |
qed | |
qed | |
moreover have "(\<exists>n''<n'. \<exists>nid'. (n'',nid')\<in> his t n nid) \<longrightarrow> (\<exists>x. his_prop t n nid n' (THE nid'. (n',nid')\<in>his t n nid) x) \<and> (hisPred t n nid n', (SOME nid'. (hisPred t n nid n', nid') \<in> his t n nid)) = (SOME x. his_prop t n nid n' (THE nid'. (n',nid')\<in>his t n nid) x)" | |
proof | |
assume "\<exists>n''<n'. \<exists>nid'. (n'',nid')\<in> his t n nid" | |
hence "\<exists>nid'. (hisPred t n nid n', nid')\<in> his t n nid" using hisPrev_prop(2) by simp | |
hence "(hisPred t n nid n', (SOME nid'. (hisPred t n nid n', nid') \<in> his t n nid)) \<in> his t n nid" | |
using someI_ex[of "\<lambda>nid'. (hisPred t n nid n', nid') \<in> his t n nid"] by simp | |
thus "(\<exists>x. his_prop t n nid n' (THE nid'. (n',nid')\<in>his t n nid) x) \<and> (hisPred t n nid n', (SOME nid'. (hisPred t n nid n', nid') \<in> his t n nid)) = (SOME x. his_prop t n nid n' (THE nid'. (n',nid')\<in>his t n nid) x)" | |
proof (rule his.cases) | |
assume "(hisPred t n nid n', SOME nid'. (hisPred t n nid n', nid') \<in> his t n nid) = (n, nid)" | |
hence "hisPred t n nid n'=n" by simp | |
moreover from \<open>\<exists>n''<n'. \<exists>nid'. (n'',nid')\<in> his t n nid\<close> have "hisPred t n nid n'<n'" | |
using hisPrev_prop(1)[of n'] by force | |
ultimately show ?thesis using step.hyps by simp | |
next | |
fix n'' nid'' assume asmp: "(hisPred t n nid n', SOME nid'. (hisPred t n nid n', nid') \<in> his t n nid) = (SOME x. his_prop t n nid n'' nid'' x)" | |
and "(n'', nid'') \<in> his t n nid" and "\<exists>x. his_prop t n nid n'' nid'' x" | |
moreover have "n''=n'" | |
proof (rule antisym) | |
show "n''\<ge>n'" | |
proof (rule ccontr) | |
assume "(\<not>n''\<ge>n')" | |
hence "n''<n'" by simp | |
moreover have "n''>hisPred t n nid n'" | |
proof - | |
let ?x="\<lambda>x. his_prop t n nid n'' nid'' x" | |
from \<open>\<exists>x. his_prop t n nid n'' nid'' x\<close> have "his_prop t n nid n'' nid'' (SOME x. ?x x)" | |
using someI_ex[of ?x] by auto | |
hence "n''>fst (SOME x. ?x x)" using latestAct_prop(2)[of n'' nid'' t] by force | |
moreover from asmp have "fst (hisPred t n nid n', SOME nid'. (hisPred t n nid n', nid') \<in> his t n nid) = fst (SOME x. ?x x)" by simp | |
ultimately show ?thesis by simp | |
qed | |
moreover from \<open>\<exists>n''<n'. \<exists>nid'. (n'',nid')\<in> his t n nid\<close> | |
have "\<not>(\<exists>x\<in>his t n nid. fst x < n' \<and> fst x > hisPred t n nid n')" | |
using hisPrev_nex_less by simp | |
ultimately show False using \<open>(n'', nid'') \<in> his t n nid\<close> by auto | |
qed | |
next | |
show "n'\<ge>n''" | |
proof (rule ccontr) | |
assume "(\<not>n'\<ge>n'')" | |
hence "n'<n''" by simp | |
moreover from \<open>(n'', nid'') \<in> his t n nid\<close> have "n''\<le> n" using his_le by auto | |
moreover from \<open>(n'', nid'') \<in> his t n nid\<close> have "\<exists>nid'. (n'', nid') \<in> his t n nid" by auto | |
ultimately have "(\<exists>n'<n''. \<exists>nid'. (n',nid')\<in> his t n nid) \<longrightarrow> (\<exists>!nid'. (n'',nid') \<in> his t n nid) \<and> (hisPred t n nid n'', (SOME nid'. (hisPred t n nid n'', nid') \<in> his t n nid)) = (SOME x. his_prop t n nid n'' (THE nid'. (n'',nid')\<in>his t n nid) x)" using step.IH by auto | |
with \<open>n'<n''\<close> \<open>(n', nid') \<in> his t n nid\<close> have "\<exists>!nid'. (n'',nid') \<in> his t n nid" and "(hisPred t n nid n'', (SOME nid'. (hisPred t n nid n'', nid') \<in> his t n nid)) = (SOME x. his_prop t n nid n'' (THE nid'. (n'',nid')\<in>his t n nid) x)" by auto | |
moreover from \<open>\<exists>!nid'. (n'',nid') \<in> his t n nid\<close> \<open>(n'', nid'') \<in> his t n nid\<close> | |
have "nid'' = (THE nid'. (n'',nid')\<in>his t n nid)" | |
using the1_equality[of "\<lambda>nid'. (n'', nid') \<in> his t n nid"] by simp | |
ultimately have "(hisPred t n nid n'', (SOME nid'. (hisPred t n nid n'', nid') \<in> his t n nid)) = (SOME x. his_prop t n nid n'' nid'' x)" by simp | |
with asmp have "(hisPred t n nid n', SOME nid'. (hisPred t n nid n', nid') \<in> his t n nid)=(hisPred t n nid n'', SOME nid'. (hisPred t n nid n'', nid') \<in> his t n nid)" by simp | |
hence "hisPred t n nid n' = hisPred t n nid n''" by simp | |
with \<open>\<exists>n''<n'. \<exists>nid'. (n'', nid') \<in> his t n nid\<close> \<open>n'<n''\<close> \<open>(n', nid') \<in> his t n nid\<close> \<open>(n'', nid'') \<in> his t n nid\<close> \<open>(n', nid') \<in> his t n nid\<close> have "n'=n''" using hisPrev_same by blast | |
with \<open>n'<n''\<close> show False by simp | |
qed | |
qed | |
ultimately have "(hisPred t n nid n', SOME nid'. (hisPred t n nid n', nid') \<in> his t n nid) = (SOME x. his_prop t n nid n' nid'' x)" by simp | |
moreover from \<open>(n'', nid'') \<in> his t n nid\<close> \<open>n''=n'\<close> have "(n', nid'') \<in> his t n nid" by simp | |
with \<open>\<exists>!nid'. (n',nid') \<in> his t n nid\<close> have "nid''=(THE nid'. (n',nid')\<in>his t n nid)" | |
using the1_equality[of "\<lambda>nid'. (n', nid') \<in> his t n nid"] by simp | |
moreover from \<open>\<exists>x. his_prop t n nid n'' nid'' x\<close> \<open>n''=n'\<close> \<open>nid''=(THE nid'. (n',nid')\<in>his t n nid)\<close> | |
have "\<exists>x. his_prop t n nid n' (THE nid'. (n',nid')\<in>his t n nid) x" by simp | |
ultimately show ?thesis by simp | |
qed | |
qed | |
ultimately show ?case by simp | |
qed | |
corollary his_determ_ex: | |
assumes "(n',nid')\<in>his t n nid" | |
shows "\<exists>!nid'. (n',nid')\<in>his t n nid" | |
using assms his_le his_determ_ext[of n' n t nid] by force | |
corollary his_determ: | |
assumes "(n',nid')\<in>his t n nid" | |
and "(n',nid'')\<in>his t n nid" | |
shows "nid'=nid''" using assms his_le his_determ_ext[of n' n t nid] by force | |
corollary his_determ_the: | |
assumes "(n',nid')\<in>his t n nid" | |
shows "(THE nid'. (n', nid')\<in>his t n nid) = nid'" | |
using assms his_determ theI'[of "\<lambda>nid'. (n', nid')\<in>his t n nid"] his_determ_ex by simp | |
subsubsection "Blockchain Development" | |
definition devBC::"trace \<Rightarrow> nat \<Rightarrow> 'nid \<Rightarrow> nat \<Rightarrow> 'nid option" | |
where "devBC t n nid n' \<equiv> | |
(if (\<exists>nid'. (n', nid')\<in> his t n nid) then (Some (THE nid'. (n', nid')\<in>his t n nid)) | |
else Option.None)" | |
lemma devBC_some[simp]: assumes "\<parallel>nid\<parallel>\<^bsub>t n\<^esub>" shows "devBC t n nid n = Some nid" | |
proof - | |
from assms have "(n, nid)\<in> his t n nid" using his.intros(1) by simp | |
hence "devBC t n nid n = (Some (THE nid'. (n, nid')\<in>his t n nid))" using devBC_def by auto | |
moreover have "(THE nid'. (n, nid')\<in>his t n nid) = nid" | |
proof | |
from \<open>(n, nid)\<in> his t n nid\<close> show "(n, nid)\<in> his t n nid" . | |
next | |
fix nid' assume "(n, nid') \<in> his t n nid" | |
thus "nid' = nid" using his_determ_base by simp | |
qed | |
ultimately show ?thesis by simp | |
qed | |
lemma devBC_act: assumes "\<not> Option.is_none (devBC t n nid n')" shows "\<parallel>the (devBC t n nid n')\<parallel>\<^bsub>t n'\<^esub>" | |
proof - | |
from assms have "\<not> devBC t n nid n'=Option.None" by (metis is_none_simps(1)) | |
then obtain nid' where "(n', nid')\<in> his t n nid" and "devBC t n nid n' = (Some (THE nid'. (n', nid')\<in>his t n nid))" | |
using devBC_def[of t n nid] by metis | |
hence "nid'= (THE nid'. (n', nid')\<in>his t n nid)" using his_determ_the by simp | |
with \<open>devBC t n nid n' = (Some (THE nid'. (n', nid')\<in>his t n nid))\<close> have "the (devBC t n nid n') = nid'" by simp | |
with \<open>(n', nid')\<in> his t n nid\<close> show ?thesis using his_act by simp | |
qed | |
lemma his_ex: | |
assumes "\<not>Option.is_none (devBC t n nid n')" | |
shows "\<exists>nid'. (n',nid')\<in>his t n nid" | |
proof (rule ccontr) | |
assume "\<not>(\<exists>nid'. (n',nid')\<in>his t n nid)" | |
with devBC_def have "Option.is_none (devBC t n nid n')" by simp | |
with assms show False by simp | |
qed | |
lemma devExt_nopt_leq: | |
assumes "\<not>Option.is_none (devBC t n nid n')" | |
shows "n'\<le>n" | |
proof - | |
from assms have "\<exists>nid'. (n',nid')\<in>his t n nid" using his_ex by simp | |
then obtain nid' where "(n',nid')\<in>his t n nid" by auto | |
with his_le[of "(n',nid')"] show ?thesis by simp | |
qed | |
text \<open> | |
An extended version of the development in which deactivations are filled with the last value. | |
\<close> | |
function devExt::"trace \<Rightarrow> nat \<Rightarrow> 'nid \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'nid BC" | |
where "\<lbrakk>\<exists>n'<n\<^sub>s. \<not>Option.is_none (devBC t n nid n'); Option.is_none (devBC t n nid n\<^sub>s)\<rbrakk> \<Longrightarrow> devExt t n nid n\<^sub>s 0 = bc (\<sigma>\<^bsub>the (devBC t n nid (GREATEST n'. n'<n\<^sub>s \<and> \<not>Option.is_none (devBC t n nid n')))\<^esub>(t (GREATEST n'. n'<n\<^sub>s \<and> \<not>Option.is_none (devBC t n nid n'))))" | |
| "\<lbrakk>\<not> (\<exists>n'<n\<^sub>s. \<not>Option.is_none (devBC t n nid n')); Option.is_none (devBC t n nid n\<^sub>s)\<rbrakk> \<Longrightarrow> devExt t n nid n\<^sub>s 0 = []" | |
| "\<not> Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> devExt t n nid n\<^sub>s 0 = bc (\<sigma>\<^bsub>the (devBC t n nid n\<^sub>s)\<^esub>(t n\<^sub>s))" | |
| "\<not> Option.is_none (devBC t n nid (n\<^sub>s + Suc n')) \<Longrightarrow> devExt t n nid n\<^sub>s (Suc n') = bc (\<sigma>\<^bsub>the (devBC t n nid (n\<^sub>s + Suc n'))\<^esub>(t (n\<^sub>s + Suc n')))" | |
| "Option.is_none (devBC t n nid (n\<^sub>s + Suc n')) \<Longrightarrow> devExt t n nid n\<^sub>s (Suc n') = devExt t n nid n\<^sub>s n'" | |
proof - | |
show "\<And>n\<^sub>s t n nid n\<^sub>s' ta na nida. | |
\<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t n nid n') \<Longrightarrow> | |
Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> | |
\<exists>n'<n\<^sub>s'. \<not> Option.is_none (devBC ta na nida n') \<Longrightarrow> | |
Option.is_none (devBC ta na nida n\<^sub>s') \<Longrightarrow> | |
(t, n, nid, n\<^sub>s, 0) = (ta, na, nida, n\<^sub>s', 0) \<Longrightarrow> | |
bc (\<sigma>\<^bsub>the (devBC t n nid (GREATEST n'. n' < n\<^sub>s \<and> \<not> Option.is_none (devBC t n nid n')))\<^esub>t (GREATEST n'. n' < n\<^sub>s \<and> \<not> Option.is_none (devBC t n nid n'))) = | |
bc (\<sigma>\<^bsub>the (devBC ta na nida | |
(GREATEST n'. n' < n\<^sub>s' \<and> \<not> Option.is_none (devBC ta na nida n')))\<^esub>ta (GREATEST n'. n' < n\<^sub>s' \<and> \<not> Option.is_none (devBC ta na nida n')))" by auto | |
show "\<And>n\<^sub>s t n nid n\<^sub>s' ta na nida. | |
\<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t n nid n') \<Longrightarrow> | |
Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> | |
\<not> (\<exists>n'<n\<^sub>s'. \<not> Option.is_none (devBC ta na nida n')) \<Longrightarrow> | |
Option.is_none (devBC ta na nida n\<^sub>s') \<Longrightarrow> | |
(t, n, nid, n\<^sub>s, 0) = (ta, na, nida, n\<^sub>s', 0) \<Longrightarrow> | |
bc (\<sigma>\<^bsub>the (devBC t n nid (GREATEST n'. n' < n\<^sub>s \<and> \<not> Option.is_none (devBC t n nid n')))\<^esub>t (GREATEST n'. n' < n\<^sub>s \<and> \<not> Option.is_none (devBC t n nid n'))) = []" by auto | |
show "\<And>n\<^sub>s t n nid ta na nida n\<^sub>s'. | |
\<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t n nid n') \<Longrightarrow> | |
Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> | |
\<not> Option.is_none (devBC ta na nida n\<^sub>s') \<Longrightarrow> | |
(t, n, nid, n\<^sub>s, 0) = (ta, na, nida, n\<^sub>s', 0) \<Longrightarrow> | |
bc (\<sigma>\<^bsub>the (devBC t n nid (GREATEST n'. n' < n\<^sub>s \<and> \<not> Option.is_none (devBC t n nid n')))\<^esub>t (GREATEST n'. n' < n\<^sub>s \<and> \<not> Option.is_none (devBC t n nid n'))) = | |
bc (\<sigma>\<^bsub>the (devBC ta na nida n\<^sub>s')\<^esub>ta n\<^sub>s')" by auto | |
show "\<And>n\<^sub>s t n nid ta na nida n\<^sub>s' n'. | |
\<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t n nid n') \<Longrightarrow> | |
Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> | |
\<not> Option.is_none (devBC ta na nida (n\<^sub>s' + Suc n')) \<Longrightarrow> | |
(t, n, nid, n\<^sub>s, 0) = (ta, na, nida, n\<^sub>s', Suc n') \<Longrightarrow> | |
bc (\<sigma>\<^bsub>the (devBC t n nid (GREATEST n'. n' < n\<^sub>s \<and> \<not> Option.is_none (devBC t n nid n')))\<^esub>t (GREATEST n'. n' < n\<^sub>s \<and> \<not> Option.is_none (devBC t n nid n'))) = | |
bc (\<sigma>\<^bsub>the (devBC ta na nida (n\<^sub>s' + Suc n'))\<^esub>ta (n\<^sub>s' + Suc n'))" by auto | |
show "\<And>n\<^sub>s t n nid ta na nida n\<^sub>s' n'. | |
\<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t n nid n') \<Longrightarrow> | |
Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> | |
Option.is_none (devBC ta na nida (n\<^sub>s' + Suc n')) \<Longrightarrow> | |
(t, n, nid, n\<^sub>s, 0) = (ta, na, nida, n\<^sub>s', Suc n') \<Longrightarrow> | |
bc (\<sigma>\<^bsub>the (devBC t n nid (GREATEST n'. n' < n\<^sub>s \<and> \<not> Option.is_none (devBC t n nid n')))\<^esub>t (GREATEST n'. n' < n\<^sub>s \<and> \<not> Option.is_none (devBC t n nid n'))) = | |
devExt_sumC (ta, na, nida, n\<^sub>s', n')" by auto | |
show"\<And>n\<^sub>s t n nid n\<^sub>s' ta na nida. | |
\<not> (\<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t n nid n')) \<Longrightarrow> | |
Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> | |
\<not> (\<exists>n'<n\<^sub>s'. \<not> Option.is_none (devBC ta na nida n')) \<Longrightarrow> | |
Option.is_none (devBC ta na nida n\<^sub>s') \<Longrightarrow> (t, n, nid, n\<^sub>s, 0) = (ta, na, nida, n\<^sub>s', 0) \<Longrightarrow> [] = []" by auto | |
show "\<And>n\<^sub>s t n nid ta na nida n\<^sub>s'. | |
\<not> (\<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t n nid n')) \<Longrightarrow> | |
Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> | |
\<not> Option.is_none (devBC ta na nida n\<^sub>s') \<Longrightarrow> (t, n, nid, n\<^sub>s, 0) = (ta, na, nida, n\<^sub>s', 0) \<Longrightarrow> [] = bc (\<sigma>\<^bsub>the (devBC ta na nida n\<^sub>s')\<^esub>ta n\<^sub>s')" by auto | |
show "\<And>n\<^sub>s t n nid ta na nida n\<^sub>s' n'. | |
\<not> (\<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t n nid n')) \<Longrightarrow> | |
Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> | |
\<not> Option.is_none (devBC ta na nida (n\<^sub>s' + Suc n')) \<Longrightarrow> | |
(t, n, nid, n\<^sub>s, 0) = (ta, na, nida, n\<^sub>s', Suc n') \<Longrightarrow> [] = bc (\<sigma>\<^bsub>the (devBC ta na nida (n\<^sub>s' + Suc n'))\<^esub>ta (n\<^sub>s' + Suc n'))" by auto | |
show "\<And>n\<^sub>s t n nid ta na nida n\<^sub>s' n'. | |
\<not> (\<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t n nid n')) \<Longrightarrow> | |
Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> | |
Option.is_none (devBC ta na nida (n\<^sub>s' + Suc n')) \<Longrightarrow> (t, n, nid, n\<^sub>s, 0) = (ta, na, nida, n\<^sub>s', Suc n') \<Longrightarrow> [] = devExt_sumC (ta, na, nida, n\<^sub>s', n')" by auto | |
show "\<And>t n nid n\<^sub>s ta na nida n\<^sub>s'. | |
\<not> Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> | |
\<not> Option.is_none (devBC ta na nida n\<^sub>s') \<Longrightarrow> | |
(t, n, nid, n\<^sub>s, 0) = (ta, na, nida, n\<^sub>s', 0) \<Longrightarrow> bc (\<sigma>\<^bsub>the (devBC t n nid n\<^sub>s)\<^esub>t n\<^sub>s) = bc (\<sigma>\<^bsub>the (devBC ta na nida n\<^sub>s')\<^esub>ta n\<^sub>s')" by auto | |
show "\<And>t n nid n\<^sub>s ta na nida n\<^sub>s' n'. | |
\<not> Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> | |
\<not> Option.is_none (devBC ta na nida (n\<^sub>s' + Suc n')) \<Longrightarrow> | |
(t, n, nid, n\<^sub>s, 0) = (ta, na, nida, n\<^sub>s', Suc n') \<Longrightarrow> bc (\<sigma>\<^bsub>the (devBC t n nid n\<^sub>s)\<^esub>t n\<^sub>s) = bc (\<sigma>\<^bsub>the (devBC ta na nida (n\<^sub>s' + Suc n'))\<^esub>ta (n\<^sub>s' + Suc n'))" by auto | |
show "\<And>t n nid n\<^sub>s ta na nida n\<^sub>s' n'. | |
\<not> Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> | |
Option.is_none (devBC ta na nida (n\<^sub>s' + Suc n')) \<Longrightarrow> | |
(t, n, nid, n\<^sub>s, 0) = (ta, na, nida, n\<^sub>s', Suc n') \<Longrightarrow> bc (\<sigma>\<^bsub>the (devBC t n nid n\<^sub>s)\<^esub>t n\<^sub>s) = devExt_sumC (ta, na, nida, n\<^sub>s', n')" by auto | |
show "\<And>t n nid n\<^sub>s n' ta na nida n\<^sub>s' n'a. | |
\<not> Option.is_none (devBC t n nid (n\<^sub>s + Suc n')) \<Longrightarrow> | |
\<not> Option.is_none (devBC ta na nida (n\<^sub>s' + Suc n'a)) \<Longrightarrow> | |
(t, n, nid, n\<^sub>s, Suc n') = (ta, na, nida, n\<^sub>s', Suc n'a) \<Longrightarrow> | |
bc (\<sigma>\<^bsub>the (devBC t n nid (n\<^sub>s + Suc n'))\<^esub>t (n\<^sub>s + Suc n')) = bc (\<sigma>\<^bsub>the (devBC ta na nida (n\<^sub>s' + Suc n'a))\<^esub>ta (n\<^sub>s' + Suc n'a))" by auto | |
show "\<And>t n nid n\<^sub>s n' ta na nida n\<^sub>s' n'a. | |
\<not> Option.is_none (devBC t n nid (n\<^sub>s + Suc n')) \<Longrightarrow> | |
Option.is_none (devBC ta na nida (n\<^sub>s' + Suc n'a)) \<Longrightarrow> | |
(t, n, nid, n\<^sub>s, Suc n') = (ta, na, nida, n\<^sub>s', Suc n'a) \<Longrightarrow> bc (\<sigma>\<^bsub>the (devBC t n nid (n\<^sub>s + Suc n'))\<^esub>t (n\<^sub>s + Suc n')) = devExt_sumC (ta, na, nida, n\<^sub>s', n'a)" by auto | |
show "\<And>t n nid n\<^sub>s n' ta na nida n\<^sub>s' n'a. | |
Option.is_none (devBC t n nid (n\<^sub>s + Suc n')) \<Longrightarrow> | |
Option.is_none (devBC ta na nida (n\<^sub>s' + Suc n'a)) \<Longrightarrow> | |
(t, n, nid, n\<^sub>s, Suc n') = (ta, na, nida, n\<^sub>s', Suc n'a) \<Longrightarrow> devExt_sumC (t, n, nid, n\<^sub>s, n') = devExt_sumC (ta, na, nida, n\<^sub>s', n'a)" by auto | |
show "\<And>P x. (\<And>n\<^sub>s t n nid. \<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t n nid n') \<Longrightarrow> Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> x = (t, n, nid, n\<^sub>s, 0) \<Longrightarrow> P) \<Longrightarrow> | |
(\<And>n\<^sub>s t n nid. \<not> (\<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t n nid n')) \<Longrightarrow> Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> x = (t, n, nid, n\<^sub>s, 0) \<Longrightarrow> P) \<Longrightarrow> | |
(\<And>t n nid n\<^sub>s. \<not> Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> x = (t, n, nid, n\<^sub>s, 0) \<Longrightarrow> P) \<Longrightarrow> | |
(\<And>t n nid n\<^sub>s n'. \<not> Option.is_none (devBC t n nid (n\<^sub>s + Suc n')) \<Longrightarrow> x = (t, n, nid, n\<^sub>s, Suc n') \<Longrightarrow> P) \<Longrightarrow> | |
(\<And>t n nid n\<^sub>s n'. Option.is_none (devBC t n nid (n\<^sub>s + Suc n')) \<Longrightarrow> x = (t, n, nid, n\<^sub>s, Suc n') \<Longrightarrow> P) \<Longrightarrow> P" | |
proof - | |
fix P::bool and x::"trace \<times>nat\<times>'nid\<times>nat\<times>nat" | |
assume a1:"(\<And>n\<^sub>s t n nid. \<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t n nid n') \<Longrightarrow> Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> x = (t, n, nid, n\<^sub>s, 0) \<Longrightarrow> P)" and | |
a2:"(\<And>n\<^sub>s t n nid. \<not> (\<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t n nid n')) \<Longrightarrow> Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> x = (t, n, nid, n\<^sub>s, 0) \<Longrightarrow> P)" and | |
a3:"(\<And>t n nid n\<^sub>s. \<not> Option.is_none (devBC t n nid n\<^sub>s) \<Longrightarrow> x = (t, n, nid, n\<^sub>s, 0) \<Longrightarrow> P)" and | |
a4:"(\<And>t n nid n\<^sub>s n'. \<not> Option.is_none (devBC t n nid (n\<^sub>s + Suc n')) \<Longrightarrow> x = (t, n, nid, n\<^sub>s, Suc n') \<Longrightarrow> P)" and | |
a5:"(\<And>t n nid n\<^sub>s n'. Option.is_none (devBC t n nid (n\<^sub>s + Suc n')) \<Longrightarrow> x = (t, n, nid, n\<^sub>s, Suc n') \<Longrightarrow> P)" | |
show P | |
proof (cases x) | |
case (fields t n nid n\<^sub>s n') | |
then show ?thesis | |
proof (cases n') | |
case 0 | |
then show ?thesis | |
proof cases | |
assume "Option.is_none (devBC t n nid n\<^sub>s)" | |
thus ?thesis | |
proof cases | |
assume "\<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t n nid n')" | |
with \<open>x = (t, n , nid, n\<^sub>s, n')\<close> \<open>Option.is_none (devBC t n nid n\<^sub>s)\<close> \<open>n'=0\<close> show ?thesis using a1 by simp | |
next | |
assume "\<not> (\<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t n nid n'))" | |
with \<open>x = (t, n , nid, n\<^sub>s, n')\<close> \<open>Option.is_none (devBC t n nid n\<^sub>s)\<close> \<open>n'=0\<close> show ?thesis using a2 by simp | |
qed | |
next | |
assume "\<not> Option.is_none (devBC t n nid n\<^sub>s)" | |
with \<open>x = (t, n , nid, n\<^sub>s, n')\<close> \<open>n'=0\<close> show ?thesis using a3 by simp | |
qed | |
next | |
case (Suc n'') | |
then show ?thesis | |
proof cases | |
assume "Option.is_none (devBC t n nid (n\<^sub>s + Suc n''))" | |
with \<open>x = (t, n , nid, n\<^sub>s, n')\<close> \<open>n'=Suc n''\<close> show ?thesis using a5[of t n nid n\<^sub>s n''] by simp | |
next | |
assume "\<not> Option.is_none (devBC t n nid (n\<^sub>s + Suc n''))" | |
with \<open>x = (t, n , nid, n\<^sub>s, n')\<close> \<open>n'=Suc n''\<close> show ?thesis using a4[of t n nid n\<^sub>s n''] by simp | |
qed | |
qed | |
qed | |
qed | |
qed | |
termination by lexicographic_order | |
lemma devExt_same: | |
assumes "\<forall>n'''>n'. n'''\<le>n'' \<longrightarrow> Option.is_none (devBC t n nid n''')" | |
and "n'\<ge>n\<^sub>s" | |
and "n'''\<le>n''" | |
shows "n'''\<ge>n'\<Longrightarrow>devExt t n nid n\<^sub>s (n'''-n\<^sub>s) = devExt t n nid n\<^sub>s (n'-n\<^sub>s)" | |
proof (induction n''' rule: dec_induct) | |
case base | |
then show ?case by simp | |
next | |
case (step n'''') | |
hence "Suc n''''>n'" by simp | |
moreover from step.hyps assms(3) have "Suc n''''\<le>n''" by simp | |
ultimately have "Option.is_none (devBC t n nid (Suc n''''))" using assms(1) by simp | |
moreover from assms(2) step.hyps have "n''''\<ge>n\<^sub>s" by simp | |
hence "Suc n'''' = n\<^sub>s + Suc (n''''-n\<^sub>s)" by simp | |
ultimately have "Option.is_none (devBC t n nid (n\<^sub>s + Suc (n''''-n\<^sub>s)))" by metis | |
hence "devExt t n nid n\<^sub>s (Suc (n''''-n\<^sub>s)) = devExt t n nid n\<^sub>s (n''''-n\<^sub>s)" by simp | |
moreover from \<open>n''''\<ge>n\<^sub>s\<close> have "Suc (n''''-n\<^sub>s) = Suc n''''-n\<^sub>s" by simp | |
ultimately have "devExt t n nid n\<^sub>s (Suc n''''-n\<^sub>s) = devExt t n nid n\<^sub>s (n''''-n\<^sub>s)" by simp | |
with step.IH show ?case by simp | |
qed | |
lemma devExt_bc[simp]: | |
assumes "\<not> Option.is_none (devBC t n nid (n'+n''))" | |
shows "devExt t n nid n' n'' = bc (\<sigma>\<^bsub>the (devBC t n nid (n'+n''))\<^esub>(t (n'+n'')))" | |
proof (cases n'') | |
case 0 | |
with assms show ?thesis by simp | |
next | |
case (Suc nat) | |
with assms show ?thesis by simp | |
qed | |
lemma devExt_greatest: | |
assumes "\<exists>n'''<n'+n''. \<not> Option.is_none (devBC t n nid n''')" | |
and "Option.is_none (devBC t n nid (n'+n''))" and "\<not> n''=0" | |
shows "devExt t n nid n' n'' = bc (\<sigma>\<^bsub>the (devBC t n nid (GREATEST n'''. n'''<(n'+n'') \<and> \<not>Option.is_none (devBC t n nid n''')))\<^esub>(t (GREATEST n'''. n'''<(n'+n'') \<and> \<not>Option.is_none (devBC t n nid n'''))))" | |
proof - | |
let ?P="\<lambda>n'''. n'''<(n'+n'') \<and> \<not>Option.is_none (devBC t n nid n''')" | |
let ?G="GREATEST n'''. ?P n'''" | |
have "\<forall>n'''>n'+n''. \<not> ?P n'''" by simp | |
with \<open>\<exists>n'''<n'+n''. \<not> Option.is_none (devBC t n nid n''')\<close> have "\<exists>n'''. ?P n''' \<and> (\<forall>n''''. ?P n'''' \<longrightarrow> n''''\<le>n''')" using boundedGreatest[of ?P] by blast | |
hence "?P ?G" using GreatestI_ex_nat[of ?P] by auto | |
hence "\<not>Option.is_none (devBC t n nid ?G)" by simp | |
show ?thesis | |
proof cases | |
assume "?G>n'" | |
hence "?G-n'+n' = ?G" by simp | |
with \<open>\<not>Option.is_none (devBC t n nid ?G)\<close> have "\<not>Option.is_none (devBC t n nid (?G-n'+n'))" by simp | |
moreover from \<open>?G>n'\<close> have "?G-n'\<noteq>0" by auto | |
hence "\<exists>nat. Suc nat = ?G - n'" by presburger | |
then obtain nat where "Suc nat = ?G-n'" by auto | |
ultimately have "\<not>Option.is_none (devBC t n nid (n'+Suc nat))" by simp | |
hence "devExt t n nid n' (Suc nat) = bc (\<sigma>\<^bsub>the (devBC t n nid (n' + Suc nat))\<^esub>t (n' + Suc nat))" by simp | |
with \<open>Suc nat = ?G - n'\<close> have "devExt t n nid n' (?G - n') = bc (\<sigma>\<^bsub>the (devBC t n nid (?G-n'+n'))\<^esub>(t (?G-n'+n')))" by simp | |
with \<open>?G-n'+n' = ?G\<close> have "devExt t n nid n' (?G - n') = bc (\<sigma>\<^bsub>the (devBC t n nid ?G)\<^esub>(t ?G))" by simp | |
moreover have "devExt t n nid n' (n' + n'' - n') = devExt t n nid n' (?G - n')" | |
proof - | |
from \<open>\<exists>n'''. ?P n''' \<and> (\<forall>n''''. ?P n'''' \<longrightarrow> n''''\<le>n''')\<close> have "\<forall>n'''. ?P n''' \<longrightarrow> n'''\<le>?G" | |
using Greatest_le_nat[of ?P] by blast | |
hence "\<forall>n'''>?G. n'''<n'+n'' \<longrightarrow> Option.is_none (devBC t n nid n''')" by auto | |
with \<open>Option.is_none (devBC t n nid (n'+n''))\<close> | |
have "\<forall>n'''>?G. n'''\<le>n'+n'' \<longrightarrow> Option.is_none (devBC t n nid n''')" by auto | |
moreover from \<open>?P ?G\<close> have "?G\<le>n'+n''" by simp | |
moreover from \<open>?G>n'\<close> have "?G\<ge>n'" by simp | |
ultimately show ?thesis using \<open>?G>n'\<close> devExt_same[of ?G "n'+n''" t n nid n' "n'+n''"] by blast | |
qed | |
ultimately show ?thesis by simp | |
next | |
assume "\<not>?G>n'" | |
thus ?thesis | |
proof cases | |
assume "?G=n'" | |
with \<open>\<not>Option.is_none (devBC t n nid ?G)\<close> have "\<not> Option.is_none (devBC t n nid n')" by simp | |
with \<open>\<not>Option.is_none (devBC t n nid ?G)\<close> have "devExt t n nid n' 0 = bc (\<sigma>\<^bsub>the (devBC t n nid n')\<^esub>(t n'))" by simp | |
moreover have "devExt t n nid n' n'' = devExt t n nid n' 0" | |
proof - | |
from \<open>\<exists>n'''. ?P n''' \<and> (\<forall>n''''. ?P n'''' \<longrightarrow> n''''\<le>n''')\<close> have "\<forall>n'''>?G. ?P n''' \<longrightarrow> n'''\<le>?G" | |
using Greatest_le_nat[of ?P] by blast | |
with \<open>?G=n'\<close> have "\<forall>n'''>n'. n''' < n' + n'' \<longrightarrow> Option.is_none (devBC t n nid n''')" by simp | |
with \<open>Option.is_none (devBC t n nid (n'+n''))\<close> | |
have "\<forall>n'''>n'. n'''\<le>n'+n'' \<longrightarrow> Option.is_none (devBC t n nid n''')" by auto | |
moreover from \<open>\<not> n''=0\<close> have "n'<n'+n''" by simp | |
ultimately show ?thesis using devExt_same[of n' "n'+n''" t n nid n' "n'+n''"] by simp | |
qed | |
ultimately show ?thesis using \<open>?G=n'\<close> by simp | |
next | |
assume "\<not>?G=n'" | |
with \<open>\<not>?G>n'\<close> have "?G<n'" by simp | |
hence "devExt t n nid n' n'' = devExt t n nid n' 0" | |
proof - | |
from \<open>\<exists>n'''. ?P n''' \<and> (\<forall>n''''. ?P n'''' \<longrightarrow> n''''\<le>n''')\<close> have "\<forall>n'''>?G. ?P n''' \<longrightarrow> n'''\<le>?G" | |
using Greatest_le_nat[of ?P] by blast | |
with \<open>\<not>?G>n'\<close> have "\<forall>n'''>n'. n'''<n'+n'' \<longrightarrow> Option.is_none (devBC t n nid n''')" by auto | |
with \<open>Option.is_none (devBC t n nid (n'+n''))\<close> | |
have "\<forall>n'''>n'. n'''\<le>n'+n'' \<longrightarrow> Option.is_none (devBC t n nid n''')" by auto | |
moreover from \<open>?P ?G\<close> have "?G<n'+n''" by simp | |
moreover from \<open>\<not> n''=0\<close> have "n'<n'+n''" by simp | |
ultimately show ?thesis using devExt_same[of n' "n'+n''" t n nid n' "n'+n''"] by simp | |
qed | |
moreover have "devExt t n nid n' 0 = bc (\<sigma>\<^bsub>the (devBC t n nid (GREATEST n'''. n'''<n' \<and> \<not>Option.is_none (devBC t n nid n''')))\<^esub>(t (GREATEST n'''. n'''<n' \<and> \<not>Option.is_none (devBC t n nid n'''))))" | |
proof - | |
from \<open>\<not> n''=0\<close> have "n'<n'+n''" by simp | |
moreover from \<open>\<exists>n'''. ?P n''' \<and> (\<forall>n''''. ?P n'''' \<longrightarrow> n''''\<le>n''')\<close> have "\<forall>n'''>?G. ?P n''' \<longrightarrow> n'''\<le>?G" using Greatest_le_nat[of ?P] by blast | |
ultimately have "Option.is_none (devBC t n nid n')" using \<open>?G<n'\<close> by simp | |
moreover from \<open>\<forall>n'''>?G. ?P n''' \<longrightarrow> n'''\<le>?G\<close> \<open>?G<n'\<close> \<open>n'<n'+n''\<close> have "\<forall>n'''\<ge>n'. n'''<n'+n'' \<longrightarrow> Option.is_none (devBC t n nid n''')" by auto | |
have "\<exists>n'''<n'. \<not> Option.is_none (devBC t n nid n''')" | |
proof - | |
from \<open>\<exists>n'''<n'+n''. \<not> Option.is_none (devBC t n nid n''')\<close> obtain n''' | |
where "n'''<n'+n''" and "\<not> Option.is_none (devBC t n nid n''')" by auto | |
moreover have "n'''<n'" | |
proof (rule ccontr) | |
assume "\<not>n'''<n'" | |
hence "n'''\<ge>n'" by simp | |
with \<open>\<forall>n'''\<ge>n'. n'''<n'+n'' \<longrightarrow> Option.is_none (devBC t n nid n''')\<close> \<open>n'''<n'+n''\<close> | |
\<open>\<not> Option.is_none (devBC t n nid n''')\<close> show False by simp | |
qed | |
ultimately show ?thesis by auto | |
qed | |
ultimately show ?thesis by simp | |
qed | |
moreover have "(GREATEST n'''. n'''<n' \<and> \<not>Option.is_none (devBC t n nid n''')) = ?G" | |
proof(rule Greatest_equality) | |
from \<open>?P ?G\<close> have "?G < n'+n''" and "\<not>Option.is_none (devBC t n nid ?G)" by auto | |
with \<open>?G<n'\<close> show "?G < n' \<and> \<not> Option.is_none (devBC t n nid ?G)" by simp | |
next | |
fix y assume "y < n' \<and> \<not> Option.is_none (devBC t n nid y)" | |
moreover from \<open>\<exists>n'''. ?P n''' \<and> (\<forall>n''''. ?P n'''' \<longrightarrow> n''''\<le>n''')\<close> | |
have "\<forall>n'''. ?P n''' \<longrightarrow> n'''\<le>?G" using Greatest_le_nat[of ?P] by blast | |
ultimately show "y \<le> ?G" by simp | |
qed | |
ultimately show ?thesis by simp | |
qed | |
qed | |
qed | |
lemma devExt_shift: "devExt t n nid (n'+n'') 0 = devExt t n nid n' n''" | |
proof (cases) | |
assume "n''=0" | |
thus ?thesis by simp | |
next | |
assume "\<not> (n''=0)" | |
thus ?thesis | |
proof (cases) | |
assume "Option.is_none (devBC t n nid (n'+n''))" | |
thus ?thesis | |
proof cases | |
assume "\<exists>n'''<n'+n''. \<not> Option.is_none (devBC t n nid n''')" | |
with \<open>Option.is_none (devBC t n nid (n'+n''))\<close> have "devExt t n nid (n'+n'') 0 = bc (\<sigma>\<^bsub>the (devBC t n nid (GREATEST n'''. n'''<(n'+n'') \<and> \<not>Option.is_none (devBC t n nid n''')))\<^esub>(t (GREATEST n'''. n'''<(n'+n'') \<and> \<not>Option.is_none (devBC t n nid n'''))))" by simp | |
moreover from \<open>\<not> (n''=0)\<close> \<open>Option.is_none (devBC t n nid (n'+n''))\<close> \<open>\<exists>n'''<n'+n''. \<not> Option.is_none (devBC t n nid n''')\<close> have "devExt t n nid n' n'' = bc (\<sigma>\<^bsub>the (devBC t n nid (GREATEST n'''. n'''<(n'+n'') \<and> \<not>Option.is_none (devBC t n nid n''')))\<^esub>(t (GREATEST n'''. n'''<(n'+n'') \<and> \<not>Option.is_none (devBC t n nid n'''))))" using devExt_greatest by simp | |
ultimately show ?thesis by simp | |
next | |
assume "\<not> (\<exists>n'''<n'+n''. \<not> Option.is_none (devBC t n nid n'''))" | |
with \<open>Option.is_none (devBC t n nid (n'+n''))\<close> have "devExt t n nid (n'+n'') 0=[]" by simp | |
moreover have "devExt t n nid n' n''=[]" | |
proof - | |
from \<open>\<not> (\<exists>n'''<n'+n''. \<not> Option.is_none (devBC t n nid n'''))\<close> \<open>n''\<noteq>0\<close> | |
have "Option.is_none (devBC t n nid n')" by simp | |
moreover from \<open>\<not> (\<exists>n'''<n'+n''. \<not> Option.is_none (devBC t n nid n'''))\<close> | |
have "\<not> (\<exists>n'''<n'. \<not> Option.is_none (devBC t n nid n'''))" by simp | |
ultimately have "devExt t n nid n' 0=[]" by simp | |
moreover have "devExt t n nid n' n''=devExt t n nid n' 0" | |
proof - | |
from \<open>\<not> (\<exists>n'''<n'+n''. \<not> Option.is_none (devBC t n nid n'''))\<close> | |
have "\<forall>n'''>n'. n''' < n' + n'' \<longrightarrow> Option.is_none (devBC t n nid n''')" by simp | |
with \<open>Option.is_none (devBC t n nid (n'+n''))\<close> | |
have "\<forall>n'''>n'. n'''\<le>n'+n'' \<longrightarrow> Option.is_none (devBC t n nid n''')" by auto | |
moreover from \<open>\<not> n''=0\<close> have "n'<n'+n''" by simp | |
ultimately show ?thesis using devExt_same[of n' "n'+n''" t n nid n' "n'+n''"] by simp | |
qed | |
ultimately show ?thesis by simp | |
qed | |
ultimately show ?thesis by simp | |
qed | |
next | |
assume "\<not> Option.is_none (devBC t n nid (n'+n''))" | |
hence "devExt t n nid (n'+n'') 0 = bc (\<sigma>\<^bsub>the (devBC t n nid (n'+n''))\<^esub>(t (n'+n'')))" by simp | |
moreover from \<open>\<not> Option.is_none (devBC t n nid (n'+n''))\<close> | |
have "devExt t n nid n' n'' = bc (\<sigma>\<^bsub>the (devBC t n nid (n'+n''))\<^esub>(t (n'+n'')))" by simp | |
ultimately show ?thesis by simp | |
qed | |
qed | |
lemma devExt_bc_geq: | |
assumes "\<not> Option.is_none (devBC t n nid n')" and "n'\<ge>n\<^sub>s" | |
shows "devExt t n nid n\<^sub>s (n'-n\<^sub>s) = bc (\<sigma>\<^bsub>the (devBC t n nid n')\<^esub>(t n'))" (is "?LHS = ?RHS") | |
proof - | |
have "devExt t n nid n\<^sub>s (n'-n\<^sub>s) = devExt t n nid (n\<^sub>s+(n'-n\<^sub>s)) 0" using devExt_shift by auto | |
moreover from assms(2) have "n\<^sub>s+(n'-n\<^sub>s) = n'" by simp | |
ultimately have "devExt t n nid n\<^sub>s (n'-n\<^sub>s) = devExt t n nid n' 0" by simp | |
with assms(1) show ?thesis by simp | |
qed | |
lemma his_bc_empty: | |
assumes "(n',nid')\<in> his t n nid" and "\<not>(\<exists>n''<n'. \<exists>nid''. (n'',nid'')\<in> his t n nid)" | |
shows "bc (\<sigma>\<^bsub>nid'\<^esub>(t n')) = []" | |
proof - | |
have "\<not> (\<exists>x. his_prop t n nid n' nid' x)" | |
proof (rule ccontr) | |
assume "\<not> \<not> (\<exists>x. his_prop t n nid n' nid' x)" | |
hence "\<exists>x. his_prop t n nid n' nid' x" by simp | |
with \<open>(n',nid')\<in> his t n nid\<close> have "(SOME x. his_prop t n nid n' nid' x) \<in> his t n nid" | |
using his.intros by simp | |
moreover from \<open>\<exists>x. his_prop t n nid n' nid' x\<close> have "his_prop t n nid n' nid' (SOME x. his_prop t n nid n' nid' x)" | |
using someI_ex[of "\<lambda>x. his_prop t n nid n' nid' x"] by auto | |
hence "(\<exists>n. latestAct_cond nid' t n' n) \<and> fst (SOME x. his_prop t n nid n' nid' x) = \<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub>" | |
by force | |
hence "fst (SOME x. his_prop t n nid n' nid' x) < n'" using latestAct_prop(2)[of n' nid' t] by force | |
ultimately have "fst (SOME x. his_prop t n nid n' nid' x)<n' \<and> | |
(fst (SOME x. his_prop t n nid n' nid' x),snd (SOME x. his_prop t n nid n' nid' x))\<in> his t n nid" by simp | |
thus False using assms(2) by blast | |
qed | |
hence "\<forall>x. \<not> (\<exists>n. latestAct_cond nid' t n' n) \<or> \<not> \<parallel>snd x\<parallel>\<^bsub>t (fst x)\<^esub> \<or> \<not> fst x = \<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub> \<or> \<not> (prefix (bc (\<sigma>\<^bsub>nid'\<^esub>(t n'))) (bc (\<sigma>\<^bsub>snd x\<^esub>(t (fst x)))) \<or> (\<exists>b. bc (\<sigma>\<^bsub>nid'\<^esub>(t n')) = (bc (\<sigma>\<^bsub>snd x\<^esub>(t (fst x)))) @ [b] \<and> mining (\<sigma>\<^bsub>nid'\<^esub>(t n'))))" by auto | |
hence "\<not> (\<exists>n. latestAct_cond nid' t n' n) \<or> (\<exists>n. latestAct_cond nid' t n' n) \<and> (\<forall>x. \<not> \<parallel>snd x\<parallel>\<^bsub>t (fst x)\<^esub> \<or> \<not> fst x = \<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub> \<or> \<not> (prefix (bc (\<sigma>\<^bsub>nid'\<^esub>(t n'))) (bc (\<sigma>\<^bsub>snd x\<^esub>(t (fst x)))) \<or> (\<exists>b. bc (\<sigma>\<^bsub>nid'\<^esub>(t n')) = (bc (\<sigma>\<^bsub>snd x\<^esub>(t (fst x)))) @ [b] \<and> mining (\<sigma>\<^bsub>nid'\<^esub>(t n')))))" by auto | |
thus ?thesis | |
proof | |
assume "\<not> (\<exists>n. latestAct_cond nid' t n' n)" | |
moreover from assms(1) have "\<parallel>nid'\<parallel>\<^bsub>t n'\<^esub>" using his_act by simp | |
ultimately show ?thesis using init_model by simp | |
next | |
assume "(\<exists>n. latestAct_cond nid' t n' n) \<and> (\<forall>x. \<not> \<parallel>snd x\<parallel>\<^bsub>t (fst x)\<^esub> \<or> \<not> fst x = \<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub> \<or> \<not> (prefix (bc (\<sigma>\<^bsub>nid'\<^esub>(t n'))) (bc (\<sigma>\<^bsub>snd x\<^esub>(t (fst x)))) \<or> (\<exists>b. bc (\<sigma>\<^bsub>nid'\<^esub>(t n')) = (bc (\<sigma>\<^bsub>snd x\<^esub>(t (fst x)))) @ [b] \<and> mining (\<sigma>\<^bsub>nid'\<^esub>(t n')))))" | |
hence "\<exists>n. latestAct_cond nid' t n' n" and "\<forall>x. \<not> \<parallel>snd x\<parallel>\<^bsub>t (fst x)\<^esub> \<or> \<not> fst x = \<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub> \<or> \<not> (prefix (bc (\<sigma>\<^bsub>nid'\<^esub>(t n'))) (bc (\<sigma>\<^bsub>snd x\<^esub>(t (fst x)))) \<or> (\<exists>b. bc (\<sigma>\<^bsub>nid'\<^esub>(t n')) = (bc (\<sigma>\<^bsub>snd x\<^esub>(t (fst x)))) @ [b] \<and> mining (\<sigma>\<^bsub>nid'\<^esub>(t n'))))" by auto | |
hence asmp: "\<forall>x. \<parallel>snd x\<parallel>\<^bsub>t (fst x)\<^esub> \<longrightarrow> fst x = \<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub> \<longrightarrow> \<not> (prefix (bc (\<sigma>\<^bsub>nid'\<^esub>(t n'))) (bc (\<sigma>\<^bsub>snd x\<^esub>(t (fst x)))) \<or> (\<exists>b. bc (\<sigma>\<^bsub>nid'\<^esub>(t n')) = (bc (\<sigma>\<^bsub>snd x\<^esub>(t (fst x)))) @ [b] \<and> mining (\<sigma>\<^bsub>nid'\<^esub>(t n'))))" by auto | |
show ?thesis | |
proof cases | |
assume "honest nid'" | |
moreover from assms(1) have "\<parallel>nid'\<parallel>\<^bsub>t n'\<^esub>" using his_act by simp | |
ultimately obtain nid'' where "\<parallel>nid''\<parallel>\<^bsub>t \<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub>\<^esub>" and "mining (\<sigma>\<^bsub>nid'\<^esub>t n') \<and> (\<exists>b. bc (\<sigma>\<^bsub>nid'\<^esub>t n') = bc (\<sigma>\<^bsub>nid''\<^esub>t \<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub>) @ [b]) \<or> \<not> mining (\<sigma>\<^bsub>nid'\<^esub>t n') \<and> bc (\<sigma>\<^bsub>nid'\<^esub>t n') = bc (\<sigma>\<^bsub>nid''\<^esub>t \<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub>)" using \<open>\<exists>n. latestAct_cond nid' t n' n\<close> bhv_hn_context[of nid' t n'] by auto | |
moreover from \<open>\<parallel>nid''\<parallel>\<^bsub>t \<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub>\<^esub>\<close> have "\<not> (prefix (bc (\<sigma>\<^bsub>nid'\<^esub>(t n'))) (bc (\<sigma>\<^bsub>nid''\<^esub>(t (\<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub>)))) \<or> (\<exists>b. bc (\<sigma>\<^bsub>nid'\<^esub>(t n')) = (bc (\<sigma>\<^bsub>nid''\<^esub>(t (\<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub>)))) @ [b] \<and> mining (\<sigma>\<^bsub>nid'\<^esub>(t n'))))" using asmp by auto | |
ultimately have False by auto | |
thus ?thesis .. | |
next | |
assume "\<not> honest nid'" | |
moreover from assms(1) have "\<parallel>nid'\<parallel>\<^bsub>t n'\<^esub>" using his_act by simp | |
ultimately obtain nid'' where "\<parallel>nid''\<parallel>\<^bsub>t \<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub>\<^esub>" and "(mining (\<sigma>\<^bsub>nid'\<^esub>t n') \<and> (\<exists>b. prefix (bc (\<sigma>\<^bsub>nid'\<^esub>t n')) (bc (\<sigma>\<^bsub>nid''\<^esub>t \<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub>) @ [b])) \<or> \<not> mining (\<sigma>\<^bsub>nid'\<^esub>t n') \<and> prefix (bc (\<sigma>\<^bsub>nid'\<^esub>t n')) (bc (\<sigma>\<^bsub>nid''\<^esub>t \<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub>)))" using \<open>\<exists>n. latestAct_cond nid' t n' n\<close> bhv_dn_context[of nid' t n'] by auto | |
moreover from \<open>\<parallel>nid''\<parallel>\<^bsub>t \<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub>\<^esub>\<close> have "\<not> (prefix (bc (\<sigma>\<^bsub>nid'\<^esub>(t n'))) (bc (\<sigma>\<^bsub>nid''\<^esub>(t (\<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub>)))) \<or> (\<exists>b. bc (\<sigma>\<^bsub>nid'\<^esub>(t n')) = (bc (\<sigma>\<^bsub>nid''\<^esub>(t (\<langle>nid' \<leftarrow> t\<rangle>\<^bsub>n'\<^esub>)))) @ [b] \<and> mining (\<sigma>\<^bsub>nid'\<^esub>(t n'))))" using asmp by auto | |
ultimately have False by auto | |
thus ?thesis .. | |
qed | |
qed | |
qed | |
lemma devExt_devop: | |
"prefix (devExt t n nid n\<^sub>s (Suc n')) (devExt t n nid n\<^sub>s n') \<or> (\<exists>b. devExt t n nid n\<^sub>s (Suc n') = devExt t n nid n\<^sub>s n' @ [b]) \<and> \<not> Option.is_none (devBC t n nid (n\<^sub>s + Suc n')) \<and> \<parallel>the (devBC t n nid (n\<^sub>s + Suc n'))\<parallel>\<^bsub>t (n\<^sub>s + Suc n')\<^esub> \<and> n\<^sub>s + Suc n' \<le> n \<and> mining (\<sigma>\<^bsub>the (devBC t n nid (n\<^sub>s + Suc n'))\<^esub>(t (n\<^sub>s + Suc n')))" | |
proof cases | |
assume "n\<^sub>s + Suc n' > n" | |
hence "\<not>(\<exists>nid'. (n\<^sub>s + Suc n', nid') \<in> his t n nid)" using his_le by fastforce | |
hence "Option.is_none (devBC t n nid (n\<^sub>s + Suc n'))" using devBC_def by simp | |
hence "devExt t n nid n\<^sub>s (Suc n') = devExt t n nid n\<^sub>s n'" by simp | |
thus ?thesis by simp | |
next | |
assume "\<not>n\<^sub>s + Suc n' > n" | |
hence "n\<^sub>s + Suc n' \<le> n" by simp | |
show ?thesis | |
proof cases | |
assume "Option.is_none (devBC t n nid (n\<^sub>s + Suc n'))" | |
hence "devExt t n nid n\<^sub>s (Suc n') = devExt t n nid n\<^sub>s n'" by simp | |
thus ?thesis by simp | |
next | |
assume "\<not> Option.is_none (devBC t n nid (n\<^sub>s + Suc n'))" | |
hence "devExt t n nid n\<^sub>s (Suc n') = bc (\<sigma>\<^bsub>the (devBC t n nid (n\<^sub>s + Suc n'))\<^esub>(t (n\<^sub>s + Suc n')))" by simp | |
moreover have "prefix (bc (\<sigma>\<^bsub>the (devBC t n nid (n\<^sub>s + Suc n'))\<^esub>(t (n\<^sub>s + Suc n')))) (devExt t n nid n\<^sub>s n') \<or> (\<exists>b. bc (\<sigma>\<^bsub>the (devBC t n nid (n\<^sub>s + Suc n'))\<^esub>(t (n\<^sub>s + Suc n'))) = devExt t n nid n\<^sub>s n' @ [b] \<and> \<not> Option.is_none (devBC t n nid (n\<^sub>s + Suc n')) \<and> \<parallel>the (devBC t n nid (n\<^sub>s + Suc n'))\<parallel>\<^bsub>t (n\<^sub>s + Suc n')\<^esub> \<and> n\<^sub>s + Suc n' \<le> n \<and> mining (\<sigma>\<^bsub>the (devBC t n nid (n\<^sub>s + Suc n'))\<^esub>(t (n\<^sub>s + Suc n'))))" | |
proof cases | |
assume "\<exists>n''<n\<^sub>s + Suc n'. \<exists>nid'. (n'',nid')\<in> his t n nid" | |
let ?nid="(THE nid'. (n\<^sub>s + Suc n',nid')\<in>his t n nid)" | |
let ?x="SOME x. his_prop t n nid (n\<^sub>s + Suc n') ?nid x" | |
from \<open>\<not> Option.is_none (devBC t n nid (n\<^sub>s + Suc n'))\<close> | |
have "n\<^sub>s + Suc n'\<le>n" using devExt_nopt_leq by simp | |
moreover from \<open>\<not> Option.is_none (devBC t n nid (n\<^sub>s + Suc n'))\<close> | |
have "\<exists>nid'. (n\<^sub>s + Suc n',nid')\<in>his t n nid" using his_ex by simp | |
ultimately have "\<exists>x. his_prop t n nid (n\<^sub>s + Suc n') (THE nid'. ((n\<^sub>s + Suc n'),nid')\<in>his t n nid) x" | |
and "(hisPred t n nid (n\<^sub>s + Suc n'), (SOME nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid') \<in> his t n nid)) = ?x" | |
using \<open>\<exists>n''<n\<^sub>s + Suc n'. \<exists>nid'. (n'',nid')\<in> his t n nid\<close> | |
his_determ_ext[of "n\<^sub>s + Suc n'" n t nid] by auto | |
moreover have "bc (\<sigma>\<^bsub>(SOME nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid') \<in> his t n nid)\<^esub>(t (hisPred t n nid (n\<^sub>s + Suc n')))) = devExt t n nid n\<^sub>s n'" | |
proof cases | |
assume "Option.is_none (devBC t n nid (n\<^sub>s+n'))" | |
have "devExt t n nid n\<^sub>s n' = bc (\<sigma>\<^bsub>the (devBC t n nid (GREATEST n''. n''<n\<^sub>s+n' \<and> \<not>Option.is_none (devBC t n nid n'')))\<^esub>(t (GREATEST n''. n''<n\<^sub>s+n' \<and> \<not>Option.is_none (devBC t n nid n''))))" | |
proof cases | |
assume "n'=0" | |
moreover have "\<exists>n''<n\<^sub>s+n'. \<not>Option.is_none (devBC t n nid n'')" | |
proof - | |
from \<open>\<exists>n''<n\<^sub>s + Suc n'. \<exists>nid'. (n'',nid')\<in> his t n nid\<close> obtain n'' | |
where "n''<Suc n\<^sub>s + n'" and "\<exists>nid'. (n'',nid')\<in> his t n nid" by auto | |
hence "\<not> Option.is_none (devBC t n nid n'')" using devBC_def by simp | |
moreover from \<open>\<not> Option.is_none (devBC t n nid n'')\<close> | |
\<open>Option.is_none (devBC t n nid (n\<^sub>s+n'))\<close> have "\<not> n''=n\<^sub>s+n'" by auto | |
with \<open>n''<Suc n\<^sub>s+n'\<close> have "n''<n\<^sub>s+n'" by simp | |
ultimately show ?thesis by auto | |
qed | |
ultimately show ?thesis using \<open>Option.is_none (devBC t n nid (n\<^sub>s+n'))\<close> by simp | |
next | |
assume "\<not> n'=0" | |
moreover have "\<exists>n''<n\<^sub>s + n'. \<not> Option.is_none (devBC t n nid n'')" | |
proof - | |
from \<open>\<exists>n''<n\<^sub>s + Suc n'. \<exists>nid'. (n'',nid')\<in> his t n nid\<close> obtain n'' | |
where "n''<Suc n\<^sub>s + n'" and "\<exists>nid'. (n'',nid')\<in> his t n nid" by auto | |
hence "\<not> Option.is_none (devBC t n nid n'')" using devBC_def by simp | |
moreover from \<open>\<not> Option.is_none (devBC t n nid n'')\<close> \<open>Option.is_none (devBC t n nid (n\<^sub>s+n'))\<close> | |
have "\<not> n''=n\<^sub>s+n'" by auto | |
with \<open>n''<Suc n\<^sub>s+n'\<close> have "n''<n\<^sub>s+n'" by simp | |
ultimately show ?thesis by auto | |
qed | |
with \<open>\<not> (n'=0)\<close> \<open>Option.is_none (devBC t n nid (n\<^sub>s+n'))\<close> show ?thesis | |
using devExt_greatest[of n\<^sub>s n' t n nid] by simp | |
qed | |
moreover have "(GREATEST n''. n''<n\<^sub>s+n' \<and> \<not>Option.is_none (devBC t n nid n''))=hisPred t n nid (n\<^sub>s + Suc n')" | |
proof - | |
have "(\<lambda>n''. n''<n\<^sub>s+n' \<and> \<not>Option.is_none (devBC t n nid n'')) = (\<lambda>n''. \<exists>nid'. (n'',nid')\<in> his t n nid \<and> n'' < n\<^sub>s + Suc n')" | |
proof | |
fix n'' | |
show "(n'' < n\<^sub>s + n' \<and> \<not> Option.is_none (devBC t n nid n'')) = (\<exists>nid'. (n'', nid') \<in> his t n nid \<and> n'' < n\<^sub>s + Suc n')" | |
proof | |
assume "n'' < n\<^sub>s + n' \<and> \<not> Option.is_none (devBC t n nid n'')" | |
thus "(\<exists>nid'. (n'', nid') \<in> his t n nid \<and> n'' < n\<^sub>s + Suc n')" using his_ex by simp | |
next | |
assume "(\<exists>nid'. (n'', nid') \<in> his t n nid \<and> n'' < n\<^sub>s + Suc n')" | |
hence "\<exists>nid'. (n'', nid') \<in> his t n nid" and "n'' < n\<^sub>s + Suc n'" by auto | |
hence "\<not> Option.is_none (devBC t n nid n'')" using devBC_def by simp | |
moreover from \<open>\<not> Option.is_none (devBC t n nid n'')\<close> \<open>Option.is_none (devBC t n nid (n\<^sub>s+n'))\<close> | |
have "n''\<noteq>n\<^sub>s+n'" by auto | |
with \<open>n'' < n\<^sub>s + Suc n'\<close> have "n'' < n\<^sub>s + n'" by simp | |
ultimately show "n'' < n\<^sub>s + n' \<and> \<not> Option.is_none (devBC t n nid n'')" by simp | |
qed | |
qed | |
hence "(GREATEST n''. n''<n\<^sub>s+n' \<and> \<not>Option.is_none (devBC t n nid n''))= (GREATEST n''. \<exists>nid'. (n'',nid')\<in> his t n nid \<and> n'' < n\<^sub>s + Suc n')" using arg_cong[of "\<lambda>n''. n''<n\<^sub>s+n' \<and> \<not>Option.is_none (devBC t n nid n'')" "(\<lambda>n''. \<exists>nid'. (n'',nid')\<in> his t n nid \<and> n'' < n\<^sub>s + Suc n')"] by simp | |
with hisPred_def show ?thesis by simp | |
qed | |
moreover have "the (devBC t n nid (hisPred t n nid (n\<^sub>s + Suc n')))=(SOME nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid') \<in> his t n nid)" | |
proof - | |
from \<open>\<exists>n''<n\<^sub>s + Suc n'. \<exists>nid'. (n'',nid')\<in> his t n nid\<close> | |
have "\<exists>nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid')\<in> his t n nid" | |
using hisPrev_prop(2) by simp | |
hence "the (devBC t n nid (hisPred t n nid (n\<^sub>s + Suc n'))) = (THE nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid')\<in>his t n nid)" | |
using devBC_def by simp | |
moreover from \<open>\<exists>nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid')\<in> his t n nid\<close> | |
have "(hisPred t n nid (n\<^sub>s + Suc n'), SOME nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid') \<in> his t n nid) \<in> his t n nid" | |
using someI_ex[of "\<lambda>nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid')\<in>his t n nid"] by simp | |
hence "(THE nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid')\<in>his t n nid) = (SOME nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid') \<in> his t n nid)" | |
using his_determ_the by simp | |
ultimately show ?thesis by simp | |
qed | |
ultimately show ?thesis by simp | |
next | |
assume "\<not> Option.is_none (devBC t n nid (n\<^sub>s+n'))" | |
hence "devExt t n nid n\<^sub>s n' = bc (\<sigma>\<^bsub>the (devBC t n nid (n\<^sub>s+n'))\<^esub>(t (n\<^sub>s+n')))" | |
proof cases | |
assume "n'=0" | |
with \<open>\<not> Option.is_none (devBC t n nid (n\<^sub>s+n'))\<close> show ?thesis by simp | |
next | |
assume "\<not> n'=0" | |
hence "\<exists>nat. n' = Suc nat" by presburger | |
then obtain nat where "n' = Suc nat" by auto | |
with \<open>\<not> Option.is_none (devBC t n nid (n\<^sub>s+n'))\<close> have "devExt t n nid n\<^sub>s (Suc nat) = bc (\<sigma>\<^bsub>the (devBC t n nid (n\<^sub>s + Suc nat))\<^esub>(t (n\<^sub>s + Suc nat)))" by simp | |
with \<open>n' = Suc nat\<close> show ?thesis by simp | |
qed | |
moreover have "hisPred t n nid (n\<^sub>s + Suc n') = n\<^sub>s+n'" | |
proof - | |
have "(GREATEST n''. \<exists>nid'. (n'',nid')\<in> his t n nid \<and> n'' < (n\<^sub>s + Suc n')) = n\<^sub>s+n'" | |
proof (rule Greatest_equality) | |
from \<open>\<not> Option.is_none (devBC t n nid (n\<^sub>s+n'))\<close> have "\<exists>nid'. (n\<^sub>s + n', nid') \<in> his t n nid" using his_ex by simp | |
thus "\<exists>nid'. (n\<^sub>s + n', nid') \<in> his t n nid \<and> n\<^sub>s + n' < n\<^sub>s + Suc n'" by simp | |
next | |
fix y assume "\<exists>nid'. (y, nid') \<in> his t n nid \<and> y < n\<^sub>s + Suc n'" | |
thus "y \<le> n\<^sub>s + n'" by simp | |
qed | |
thus ?thesis using hisPred_def by simp | |
qed | |
moreover have "the (devBC t n nid (hisPred t n nid (n\<^sub>s + Suc n')))=(SOME nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid') \<in> his t n nid)" | |
proof - | |
from \<open>\<exists>n''<n\<^sub>s + Suc n'. \<exists>nid'. (n'',nid')\<in> his t n nid\<close> | |
have "\<exists>nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid')\<in> his t n nid" | |
using hisPrev_prop(2) by simp | |
hence "the (devBC t n nid (hisPred t n nid (n\<^sub>s + Suc n'))) = (THE nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid')\<in>his t n nid)" | |
using devBC_def by simp | |
moreover from \<open>\<exists>nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid')\<in> his t n nid\<close> | |
have "(hisPred t n nid (n\<^sub>s + Suc n'), SOME nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid') \<in> his t n nid) \<in> his t n nid" | |
using someI_ex[of "\<lambda>nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid')\<in>his t n nid"] by simp | |
hence "(THE nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid')\<in>his t n nid) = (SOME nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid') \<in> his t n nid)" | |
using his_determ_the by simp | |
ultimately show ?thesis by simp | |
qed | |
ultimately show ?thesis by simp | |
qed | |
ultimately have "bc (\<sigma>\<^bsub>snd ?x\<^esub>(t (fst ?x))) = devExt t n nid n\<^sub>s n'" | |
using fst_conv[of "hisPred t n nid (n\<^sub>s + Suc n')" | |
"(SOME nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid') \<in> his t n nid)"] | |
snd_conv[of "hisPred t n nid (n\<^sub>s + Suc n')" | |
"(SOME nid'. (hisPred t n nid (n\<^sub>s + Suc n'), nid') \<in> his t n nid)"] by simp | |
moreover from \<open>\<exists>x. his_prop t n nid (n\<^sub>s + Suc n') ?nid x\<close> | |
have "his_prop t n nid (n\<^sub>s + Suc n') ?nid ?x" | |
using someI_ex[of "\<lambda>x. his_prop t n nid (n\<^sub>s + Suc n') ?nid x"] by blast | |
hence "prefix (bc (\<sigma>\<^bsub>?nid\<^esub>(t (n\<^sub>s + Suc n')))) (bc (\<sigma>\<^bsub>snd ?x\<^esub>(t (fst ?x)))) \<or> (\<exists>b. bc (\<sigma>\<^bsub>?nid\<^esub>(t (n\<^sub>s + Suc n'))) = (bc (\<sigma>\<^bsub>snd ?x\<^esub>(t (fst ?x)))) @ [b] \<and> mining (\<sigma>\<^bsub>?nid\<^esub>(t (n\<^sub>s + Suc n'))))" by blast | |
ultimately have "prefix (bc (\<sigma>\<^bsub>?nid\<^esub>(t (n\<^sub>s + Suc n')))) (devExt t n nid n\<^sub>s n') \<or> (\<exists>b. bc (\<sigma>\<^bsub>?nid\<^esub>(t (n\<^sub>s + Suc n'))) = (devExt t n nid n\<^sub>s n') @ [b] \<and> mining (\<sigma>\<^bsub>?nid\<^esub>(t (n\<^sub>s + Suc n'))))" by simp | |
moreover from \<open>\<exists>nid'. (n\<^sub>s + Suc n',nid')\<in> his t n nid\<close> | |
have "?nid=the (devBC t n nid (n\<^sub>s + Suc n'))" using devBC_def by simp | |
moreover have "\<parallel>the (devBC t n nid (n\<^sub>s + Suc n'))\<parallel>\<^bsub>t (n\<^sub>s + Suc n')\<^esub>" | |
proof - | |
from \<open>\<exists>nid'. (n\<^sub>s + Suc n',nid')\<in>his t n nid\<close> obtain nid' | |
where "(n\<^sub>s + Suc n',nid')\<in>his t n nid" by auto | |
with his_determ_the have "nid' = (THE nid'. (n\<^sub>s + Suc n', nid') \<in> his t n nid)" by simp | |
with \<open>?nid=the (devBC t n nid (n\<^sub>s + Suc n'))\<close> | |
have "the (devBC t n nid (n\<^sub>s + Suc n')) = nid'" by simp | |
with \<open>(n\<^sub>s + Suc n',nid')\<in>his t n nid\<close> show ?thesis using his_act by simp | |
qed | |
ultimately show ?thesis | |
using \<open>\<not> Option.is_none (devBC t n nid (n\<^sub>s+Suc n'))\<close> \<open>n\<^sub>s + Suc n' \<le> n\<close> by simp | |
next | |
assume "\<not> (\<exists>n''<n\<^sub>s + Suc n'. \<exists>nid'. (n'',nid')\<in> his t n nid)" | |
moreover have "(n\<^sub>s + Suc n', the (devBC t n nid (n\<^sub>s + Suc n'))) \<in> his t n nid" | |
proof - | |
from \<open>\<not> Option.is_none (devBC t n nid (n\<^sub>s + Suc n'))\<close> | |
have "\<exists>nid'. (n\<^sub>s + Suc n',nid')\<in>his t n nid" using his_ex by simp | |
hence "the (devBC t n nid (n\<^sub>s + Suc n')) = (THE nid'. (n\<^sub>s + Suc n', nid') \<in> his t n nid)" | |
using devBC_def by simp | |
moreover from \<open>\<exists>nid'. (n\<^sub>s + Suc n',nid')\<in>his t n nid\<close> obtain nid' | |
where "(n\<^sub>s + Suc n',nid')\<in>his t n nid" by auto | |
with his_determ_the have "nid' = (THE nid'. (n\<^sub>s + Suc n', nid') \<in> his t n nid)" by simp | |
ultimately have "the (devBC t n nid (n\<^sub>s + Suc n')) = nid'" by simp | |
with \<open>(n\<^sub>s + Suc n',nid')\<in>his t n nid\<close> show ?thesis by simp | |
qed | |
ultimately have "bc (\<sigma>\<^bsub>the (devBC t n nid (n\<^sub>s + Suc n'))\<^esub>(t (n\<^sub>s + Suc n'))) = []" | |
using his_bc_empty by simp | |
thus ?thesis by simp | |
qed | |
ultimately show ?thesis by simp | |
qed | |
qed | |
abbreviation devLgthBC where "devLgthBC t n nid n\<^sub>s \<equiv> (\<lambda>n'. length (devExt t n nid n\<^sub>s n'))" | |
theorem blockchain_save: | |
fixes t::"nat\<Rightarrow>cnf" and n\<^sub>s and sbc and n | |
assumes "\<forall>nid. honest nid \<longrightarrow> prefix sbc (bc (\<sigma>\<^bsub>nid\<^esub>(t (\<langle>nid \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>))))" | |
and "\<forall>nid\<in>actDn (t n\<^sub>s). length (bc (\<sigma>\<^bsub>nid\<^esub>(t n\<^sub>s))) < length sbc" | |
and "PoW t n\<^sub>s\<ge>length sbc + cb" | |
and "\<forall>n'<n\<^sub>s. \<forall>nid. \<parallel>nid\<parallel>\<^bsub>t n'\<^esub> \<longrightarrow> length (bc (\<sigma>\<^bsub>nid\<^esub>t n')) < length sbc \<or> prefix sbc (bc (\<sigma>\<^bsub>nid\<^esub>(t n')))" | |
and "n\<ge>n\<^sub>s" | |
shows "\<forall>nid \<in> actHn (t n). prefix sbc (bc (\<sigma>\<^bsub>nid\<^esub>(t n)))" | |
proof (cases) | |
assume "sbc=[]" | |
thus ?thesis by simp | |
next | |
assume "\<not> sbc=[]" | |
have "n\<ge>n\<^sub>s \<Longrightarrow> \<forall>nid \<in> actHn (t n). prefix sbc (bc (\<sigma>\<^bsub>nid\<^esub>(t n)))" | |
proof (induction n rule: ge_induct) | |
case (step n) | |
show ?case | |
proof | |
fix nid assume "nid \<in> actHn (t n)" | |
hence "\<parallel>nid\<parallel>\<^bsub>t n\<^esub>" and "honest nid" using actHn_def by auto | |
show "prefix sbc (bc (\<sigma>\<^bsub>nid\<^esub>t n))" | |
proof cases | |
assume lAct: "\<exists>n' < n. n' \<ge> n\<^sub>s \<and> \<parallel>nid\<parallel>\<^bsub>t n'\<^esub>" | |
show ?thesis | |
proof cases | |
assume "\<exists>b\<in>pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>). length b > length (bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>))" | |
moreover from \<open>\<parallel>nid\<parallel>\<^bsub>t n\<^esub>\<close> have "\<exists>n'\<ge>n. \<parallel>nid\<parallel>\<^bsub>t n'\<^esub>" by auto | |
moreover from lAct have "\<exists>n'. latestAct_cond nid t n n'" by auto | |
ultimately have "\<not> mining (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) = MAX (pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) \<or> | |
mining (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> (\<exists>b. bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) = MAX (pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) @ [b])" | |
using \<open>honest nid\<close> bhv_hn_ex[of nid n t] by simp | |
moreover have "prefix sbc (MAX (pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)))" | |
proof - | |
from \<open>\<exists>n'. latestAct_cond nid t n n'\<close> have "\<parallel>nid\<parallel>\<^bsub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" | |
using latestAct_prop(1) by simp | |
hence "pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<noteq> {}" and "finite (pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>))" | |
using nempty_input[of nid t "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>"] finite_input[of nid t "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>"] \<open>honest nid\<close> by auto | |
hence "MAX (pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) \<in> pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)" using max_prop(1) by auto | |
with \<open>\<parallel>nid\<parallel>\<^bsub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>\<close> obtain nid' where "\<parallel>nid'\<parallel>\<^bsub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" | |
and "bc (\<sigma>\<^bsub>nid'\<^esub>(t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) = MAX (pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>))" | |
using closed[where b="MAX (pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>))"] by blast | |
moreover have "prefix sbc (bc (\<sigma>\<^bsub>nid'\<^esub>(t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)))" | |
proof cases | |
assume "honest nid'" | |
with \<open>\<parallel>nid'\<parallel>\<^bsub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>\<close> have "nid' \<in> actHn (t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)" | |
using actHn_def by simp | |
moreover from \<open>\<exists>n'. latestAct_cond nid t n n'\<close> have "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> < n" | |
using latestAct_prop(2) by simp | |
moreover from lAct have "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<ge> n\<^sub>s" using latestActless by blast | |
ultimately show ?thesis using \<open>\<parallel>nid'\<parallel>\<^bsub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>\<close> step.IH by simp | |
next | |
assume "\<not> honest nid'" | |
show ?thesis | |
proof (rule ccontr) | |
assume "\<not> prefix sbc (bc (\<sigma>\<^bsub>nid'\<^esub>(t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)))" | |
moreover have "\<exists>n'\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>. n'\<ge>n\<^sub>s \<and> length (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' 0) < length sbc \<and> (\<forall>n''>n'. n''\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'') \<longrightarrow> \<not> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'')))" | |
proof cases | |
assume "\<exists>n'\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>. n'\<ge>n\<^sub>s \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n') \<and> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'))" | |
hence "\<exists>n'\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>. n'\<ge>n\<^sub>s \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n') \<and> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n')) \<and> (\<forall>n''>n'. n''\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'') \<longrightarrow> \<not> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'')))" | |
proof - | |
let ?P="\<lambda>n'. n'\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> n'\<ge>n\<^sub>s \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n') \<and> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'))" | |
from \<open>\<exists>n'\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>. n'\<ge>n\<^sub>s \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n') \<and> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'))\<close> have "\<exists>n'. ?P n'" by simp | |
moreover have "\<forall>n'>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>. \<not> ?P n'" by simp | |
ultimately obtain n' where "?P n'" and "\<forall>n''. ?P n'' \<longrightarrow> n''\<le>n'" using boundedGreatest[of ?P _ "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>"] by auto | |
hence "\<forall>n''>n'. n''\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'') \<longrightarrow> \<not> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n''))" by auto | |
thus ?thesis using \<open>?P n'\<close> by auto | |
qed | |
then obtain n' where "n'\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" and "\<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n')" | |
and "n'\<ge>n\<^sub>s" and "honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'))" | |
and "\<forall>n''>n'. n''\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'') \<longrightarrow> \<not> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n''))" by auto | |
hence "n'\<ge>n\<^sub>s" and dishonest: "\<forall>n''>n'. n''\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'') \<longrightarrow> \<not> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n''))" by auto | |
moreover have "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub><n" using \<open>\<exists>n'. latestAct_cond nid t n n'\<close> latestAct_prop(2) by blast | |
with \<open>n'\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<close> have "n'<n" by simp | |
moreover from \<open>\<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n')\<close> | |
have "\<parallel>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n')\<parallel>\<^bsub>t n'\<^esub>" using devBC_act by simp | |
with \<open>honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'))\<close> | |
have "the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n') \<in>actHn (t n')" using actHn_def by simp | |
ultimately have "prefix sbc (bc (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n')\<^esub>t n'))" | |
using step.IH by simp | |
interpret ut: dishonest "devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'" "\<lambda>n. dmining t (n' + n)" | |
proof | |
fix n'' | |
from devExt_devop[of t "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" nid' n'] have "prefix (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (Suc n'')) (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' n'') \<or> (\<exists>b. devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (Suc n'') = devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' n'' @ [b]) \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n'')) \<and> \<parallel>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<parallel>\<^bsub>t (n' + Suc n'')\<^esub> \<and> n' + Suc n'' \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> mining (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<^esub>t (n' + Suc n''))" . | |
thus "prefix (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (Suc n'')) (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' n'') \<or> (\<exists>b. devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (Suc n'') = devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' n'' @ [b]) \<and> dmining t (n' + Suc n'')" | |
proof | |
assume "prefix (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (Suc n'')) (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' n'')" | |
thus ?thesis by simp | |
next | |
assume "(\<exists>b. devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (Suc n'') = devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' n'' @ [b]) \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n'')) \<and> \<parallel>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<parallel>\<^bsub>t (n' + Suc n'')\<^esub> \<and> n' + Suc n'' \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> mining (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<^esub>t (n' + Suc n''))" | |
hence "\<exists>b. devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (Suc n'') = devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' n'' @ [b]" and "\<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))" and "\<parallel>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<parallel>\<^bsub>t (n' + Suc n'')\<^esub>" and "n' + Suc n'' \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" and "mining (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<^esub>t (n' + Suc n''))" by auto | |
moreover from \<open>n' + Suc n'' \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<close> \<open>\<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<close> have "\<not> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n'')))" using dishonest by simp | |
with \<open>\<parallel>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<parallel>\<^bsub>t (n' + Suc n'')\<^esub>\<close> have "the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<in>actDn (t (n' + Suc n''))" using actDn_def by simp | |
ultimately show ?thesis using dmining_def by auto | |
qed | |
qed | |
from \<open>\<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n')\<close> have "bc (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n')\<^esub>t n') = devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' 0" | |
using devExt_bc_geq[of t "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" nid' n'] by simp | |
moreover from \<open>n'\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<close> \<open>\<parallel>nid'\<parallel>\<^bsub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>\<close> have "bc (\<sigma>\<^bsub>nid'\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) = devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>-n')" | |
using devExt_bc_geq by simp | |
with \<open>\<not> prefix sbc (bc (\<sigma>\<^bsub>nid'\<^esub>(t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)))\<close> have "\<not> prefix sbc (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>-n'))" by simp | |
ultimately have "\<exists>n'''. n''' \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>-n' \<and> length (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' n''') < length sbc" | |
using \<open>prefix sbc (bc (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n')\<^esub>(t n')))\<close> | |
ut.prefix_length[of sbc 0 "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>-n'"] by auto | |
then obtain n\<^sub>p where "n\<^sub>p \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>-n'" | |
and "length (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' n\<^sub>p) < length sbc" by auto | |
hence "length (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + n\<^sub>p) 0) < length sbc" using devExt_shift[of t "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" nid' n' n\<^sub>p] by simp | |
moreover from \<open>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<ge>n'\<close> \<open>n\<^sub>p \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>-n'\<close> have "(n' + n\<^sub>p) \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" by simp | |
ultimately show ?thesis using \<open>n'\<ge>n\<^sub>s\<close> dishonest by auto | |
next | |
assume "\<not>(\<exists>n'\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>. n'\<ge>n\<^sub>s \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n') \<and> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n')))" | |
hence cas: "\<forall>n'\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>. n'\<ge>n\<^sub>s \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n') \<longrightarrow> \<not> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'))" by auto | |
show ?thesis | |
proof cases | |
assume "Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s)" | |
thus ?thesis | |
proof cases | |
assume "\<forall>n'<n\<^sub>s. Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n')" | |
with \<open>Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s)\<close> have "devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s 0 = []" by simp | |
with \<open>\<not> sbc=[]\<close> have "length (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s 0) < length sbc" by simp | |
moreover from lAct have "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<ge>n\<^sub>s" using latestActless by blast | |
moreover from cas have "\<forall>n''>n\<^sub>s. n''\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'') \<longrightarrow> \<not> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n''))" by simp | |
ultimately show ?thesis by auto | |
next | |
let ?P="\<lambda>n'. n'<n\<^sub>s \<and> \<not>Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n')" | |
let ?n'="GREATEST n'. ?P n'" | |
assume "\<not> (\<forall>n'<n\<^sub>s. Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'))" | |
moreover have "\<forall>n'>n\<^sub>s. \<not> ?P n'" by simp | |
ultimately have exists: "\<exists>n'. ?P n' \<and> (\<forall>n''. ?P n''\<longrightarrow> n''\<le>n')" | |
using boundedGreatest[of ?P] by blast | |
hence "?P ?n'" using GreatestI_ex_nat[of ?P] by auto | |
moreover from \<open>?P ?n'\<close> have "\<parallel>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' ?n')\<parallel>\<^bsub>t ?n'\<^esub>" using devBC_act by simp | |
ultimately have "length (bc (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' ?n')\<^esub>t ?n')) < length sbc \<or> prefix sbc (bc (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' ?n')\<^esub>(t ?n')))" using assms(4) by simp | |
thus ?thesis | |
proof | |
assume "length (bc (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' ?n')\<^esub>t ?n')) < length sbc" | |
moreover from exists have "\<not>(\<exists>n'>?n'. ?P n')" using Greatest_ex_le_nat[of ?P] by simp | |
moreover from \<open>?P ?n'\<close> have "\<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n')" by blast | |
with \<open>Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s)\<close> | |
have "devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s 0 = bc (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' ?n')\<^esub>(t ?n'))" by simp | |
ultimately have "length (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s 0) < length sbc" by simp | |
moreover from lAct have "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<ge>n\<^sub>s" using latestActless by blast | |
moreover from cas have "\<forall>n''>n\<^sub>s. n''\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'') \<longrightarrow> \<not> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n''))" by simp | |
ultimately show ?thesis by auto | |
next | |
interpret ut: dishonest "devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s" "\<lambda>n. dmining t (n\<^sub>s + n)" | |
proof | |
fix n'' | |
from devExt_devop[of t "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" nid' n\<^sub>s] have "prefix (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s (Suc n'')) (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s n'') \<or> (\<exists>b. devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s (Suc n'') = devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s n'' @ [b]) \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n\<^sub>s + Suc n'')) \<and> \<parallel>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n\<^sub>s + Suc n''))\<parallel>\<^bsub>t (n\<^sub>s + Suc n'')\<^esub> \<and> n\<^sub>s + Suc n'' \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> mining (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n\<^sub>s + Suc n''))\<^esub>t (n\<^sub>s + Suc n''))" . | |
thus "prefix (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s (Suc n'')) (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s n'') \<or> (\<exists>b. devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s (Suc n'') = devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s n'' @ [b]) \<and> dmining t (n\<^sub>s + Suc n'')" | |
proof | |
assume "prefix (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s (Suc n'')) (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s n'')" thus ?thesis by simp | |
next | |
assume "(\<exists>b. devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s (Suc n'') = devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s n'' @ [b]) \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n\<^sub>s + Suc n'')) \<and> \<parallel>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n\<^sub>s + Suc n''))\<parallel>\<^bsub>t (n\<^sub>s + Suc n'')\<^esub> \<and> n\<^sub>s + Suc n'' \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> mining (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n\<^sub>s + Suc n''))\<^esub>t (n\<^sub>s + Suc n''))" | |
hence "\<exists>b. devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s (Suc n'') = devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s n'' @ [b]" | |
and "\<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n\<^sub>s + Suc n''))" | |
and "\<parallel>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n\<^sub>s + Suc n''))\<parallel>\<^bsub>t (n\<^sub>s + Suc n'')\<^esub>" | |
and "n\<^sub>s + Suc n'' \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" | |
and "mining (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n\<^sub>s + Suc n''))\<^esub>t (n\<^sub>s + Suc n''))" | |
by auto | |
moreover from \<open>n\<^sub>s + Suc n'' \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<close> \<open>\<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n\<^sub>s + Suc n''))\<close> | |
have "\<not> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n\<^sub>s + Suc n'')))" | |
using cas by simp | |
with \<open>\<parallel>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n\<^sub>s + Suc n''))\<parallel>\<^bsub>t (n\<^sub>s + Suc n'')\<^esub>\<close> | |
have "the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n\<^sub>s + Suc n''))\<in>actDn (t (n\<^sub>s + Suc n''))" using actDn_def by simp | |
ultimately show ?thesis using dmining_def by auto | |
qed | |
qed | |
assume "prefix sbc (bc (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' ?n')\<^esub>(t ?n')))" | |
moreover from exists have "\<not>(\<exists>n'>?n'. ?P n')" using Greatest_ex_le_nat[of ?P] by simp | |
moreover from \<open>?P ?n'\<close> have "\<exists>n'<n\<^sub>s. \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n')" by blast | |
with \<open>Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s)\<close> have "devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s 0 = bc (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' ?n')\<^esub>(t ?n'))" by simp | |
ultimately have "prefix sbc (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s 0)" by simp | |
moreover from lAct have "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<ge>n\<^sub>s" using latestActless by blast | |
with \<open>\<parallel>nid'\<parallel>\<^bsub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>\<close> have "bc (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) = devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s (\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>-n\<^sub>s)" using devExt_bc_geq by simp | |
with \<open>\<not> prefix sbc (bc (\<sigma>\<^bsub>nid'\<^esub>(t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)))\<close> \<open>\<parallel>nid'\<parallel>\<^bsub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>\<close> have "\<not> prefix sbc (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s (\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>-n\<^sub>s))" by simp | |
ultimately have "\<exists>n'''>0. n''' \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>-n\<^sub>s \<and> length (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s n''') < length sbc" using ut.prefix_length[of sbc 0 "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>-n\<^sub>s"] by simp | |
then obtain n\<^sub>p where "n\<^sub>p>0" and "n\<^sub>p \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>-n\<^sub>s" and "length (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s n\<^sub>p) < length sbc" by auto | |
hence "length (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n\<^sub>s + n\<^sub>p) 0) < length sbc" using devExt_shift by simp | |
moreover from lAct have "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<ge>n\<^sub>s" using latestActless by blast | |
with \<open>n\<^sub>p \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>-n\<^sub>s\<close> have "(n\<^sub>s + n\<^sub>p) \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" by simp | |
moreover from \<open>n\<^sub>p \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>-n\<^sub>s\<close> have "n\<^sub>p \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" by simp | |
moreover have "\<forall>n''>n\<^sub>s + n\<^sub>p. n'' \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'') \<longrightarrow> \<not> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n''))" using cas by simp | |
ultimately show ?thesis by auto | |
qed | |
qed | |
next | |
assume asmp: "\<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s)" | |
moreover from lAct have "n\<^sub>s\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" using latestActless by blast | |
ultimately have "\<not> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s))" using cas by simp | |
moreover from asmp have "\<parallel>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s)\<parallel>\<^bsub>t n\<^sub>s\<^esub>" | |
using devBC_act by simp | |
ultimately have "the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s)\<in>actDn (t n\<^sub>s)" | |
using actDn_def by simp | |
hence "length (bc (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s)\<^esub>(t n\<^sub>s))) < length sbc" | |
using assms(2) by simp | |
moreover from asmp have | |
"devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s 0 = bc (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s)\<^esub>(t n\<^sub>s))" | |
by simp | |
ultimately have "length (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n\<^sub>s 0) < length sbc" by simp | |
moreover from lAct have "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<ge>n\<^sub>s" using latestActless by blast | |
moreover from cas have "\<forall>n''>n\<^sub>s. n''\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'') \<longrightarrow> \<not> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n''))" by simp | |
ultimately show ?thesis by auto | |
qed | |
qed | |
then obtain n' where "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<ge>n'" and "n'\<ge>n\<^sub>s" | |
and "length (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' 0) < length sbc" | |
and dishonest: "\<forall>n''>n'. n''\<le>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'') \<longrightarrow> \<not> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n''))" by auto | |
interpret ut: dishonest "devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'" "\<lambda>n. dmining t (n' + n)" | |
proof | |
fix n'' | |
from devExt_devop[of t "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" nid' n'] | |
have "prefix (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (Suc n'')) (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' n'') \<or> | |
(\<exists>b. devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (Suc n'') = devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' n'' @ [b]) \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n'')) \<and> \<parallel>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<parallel>\<^bsub>t (n' + Suc n'')\<^esub> \<and> n' + Suc n'' \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> mining (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<^esub>t (n' + Suc n''))" . | |
thus "prefix (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (Suc n'')) (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' n'') | |
\<or> (\<exists>b. devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (Suc n'') = devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' n'' @ [b]) \<and> dmining t (n' + Suc n'')" | |
proof | |
assume "prefix (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (Suc n'')) (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' n'')" | |
thus ?thesis by simp | |
next | |
assume "(\<exists>b. devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (Suc n'') = devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' n'' @ [b]) \<and> \<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n'')) \<and> \<parallel>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<parallel>\<^bsub>t (n' + Suc n'')\<^esub> \<and> n' + Suc n'' \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<and> mining (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<^esub>t (n' + Suc n''))" | |
hence "\<exists>b. devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (Suc n'') = devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' n'' @ [b]" | |
and "\<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))" | |
and "\<parallel>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<parallel>\<^bsub>t (n' + Suc n'')\<^esub>" | |
and "n' + Suc n'' \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" | |
and "mining (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<^esub>t (n' + Suc n''))" | |
by auto | |
moreover from \<open>n' + Suc n'' \<le> \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<close> \<open>\<not> Option.is_none (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<close> | |
have "\<not> honest (the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n'')))" using dishonest by simp | |
with \<open>\<parallel>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<parallel>\<^bsub>t (n' + Suc n'')\<^esub>\<close> | |
have "the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' (n' + Suc n''))\<in>actDn (t (n' + Suc n''))" | |
using actDn_def by simp | |
ultimately show ?thesis using dmining_def by auto | |
qed | |
qed | |
interpret dishonest_growth "devLgthBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'" "\<lambda>n. dmining t (n' + n)" | |
by unfold_locales | |
interpret honest_growth "\<lambda>n. PoW t (n' + n)" "\<lambda>n. hmining t (n' + n)" | |
proof | |
show "\<And>n. PoW t (n' + n) \<le> PoW t (n' + Suc n)" using pow_mono by simp | |
show "\<And>n. hmining t (n' + Suc n) \<Longrightarrow> PoW t (n' + n) < PoW t (n' + Suc n)" | |
using pow_mining_suc by simp | |
qed | |
interpret bg: bounded_growth "length sbc" "\<lambda>n. PoW t (n' + n)" "devLgthBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n'" "\<lambda>n. hmining t (n' + n)" "\<lambda>n. dmining t (n' + n)" "length sbc" cb | |
proof | |
from assms(3) \<open>n'\<ge>n\<^sub>s\<close> show "length sbc + cb \<le> PoW t (n' + 0)" using pow_mono[of n\<^sub>s n' t] by simp | |
next | |
from \<open>length (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' 0) < length sbc\<close> show "length (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' 0) < length sbc" . | |
next | |
fix n'' n''' | |
assume "cb < card {i. n'' < i \<and> i \<le> n''' \<and> dmining t (n' + i)}" | |
hence "cb < card {i. n'' + n' < i \<and> i \<le> n''' + n' \<and> dmining t i}" | |
using cardshift[of n'' n''' "dmining t" n'] by simp | |
with fair[of "n'' + n'" "n''' + n'" t] | |
have "cb < card {i. n'' + n' < i \<and> i \<le> n''' + n' \<and> hmining t i}" by simp | |
thus "cb < card {i. n'' < i \<and> i \<le> n''' \<and> hmining t (n' + i)}" | |
using cardshift[of n'' n''' "hmining t" n'] by simp | |
qed | |
from \<open>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<ge>n'\<close> have "length (devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>-n')) < PoW t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" | |
using bg.hn_upper_bound[of "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>-n'"] by simp | |
moreover from \<open>\<parallel>nid'\<parallel>\<^bsub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>\<close> \<open>\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<ge>n'\<close> | |
have "bc (\<sigma>\<^bsub>the (devBC t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) = devExt t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> nid' n' (\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>-n')" | |
using devExt_bc_geq[of t "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" nid' "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" n'] by simp | |
ultimately have "length (bc (\<sigma>\<^bsub>nid'\<^esub>(t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>))) < PoW t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>" | |
using \<open>\<parallel>nid'\<parallel>\<^bsub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>\<close> by simp | |
moreover have "PoW t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<le> length (bc (\<sigma>\<^bsub>nid'\<^esub>(t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)))" (is "?lhs \<le> ?rhs") | |
proof - | |
from \<open>honest nid\<close> \<open>\<parallel>nid\<parallel>\<^bsub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>\<close> | |
have "?lhs \<le> length (MAX (pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)))" using pow_le_max by simp | |
also from \<open>bc (\<sigma>\<^bsub>nid'\<^esub>(t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)) = MAX (pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>))\<close> | |
have "\<dots> = length (bc (\<sigma>\<^bsub>nid'\<^esub>(t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)))" by simp | |
finally show ?thesis . | |
qed | |
ultimately show False by simp | |
qed | |
qed | |
moreover from \<open>\<parallel>nid\<parallel>\<^bsub>t n\<^esub>\<close> have "\<langle>nid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>=n" using nxtAct_active by simp | |
ultimately show ?thesis by auto | |
qed | |
moreover from \<open>\<parallel>nid\<parallel>\<^bsub>t n\<^esub>\<close> have "\<langle>nid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>=n" using nxtAct_active by simp | |
ultimately show ?thesis by auto | |
next | |
assume "\<not> (\<exists>b\<in>pin (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>). length b > length (bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)))" | |
moreover from \<open>\<parallel>nid\<parallel>\<^bsub>t n\<^esub>\<close> have "\<exists>n'\<ge>n. \<parallel>nid\<parallel>\<^bsub>t n'\<^esub>" by auto | |
moreover from lAct have "\<exists>n'. latestAct_cond nid t n n'" by auto | |
ultimately have "\<not> mining (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) = bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) \<or> | |
mining (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) \<and> (\<exists>b. bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>) = bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>) @ [b])" | |
using \<open>honest nid\<close> bhv_hn_in[of nid n t] by simp | |
moreover have "prefix sbc (bc (\<sigma>\<^bsub>nid\<^esub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>))" | |
proof - | |
from \<open>\<exists>n'. latestAct_cond nid t n n'\<close> have "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> < n" using latestAct_prop(2) by simp | |
moreover from lAct have "\<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub> \<ge> n\<^sub>s" using latestActless by blast | |
moreover from \<open>\<exists>n'. latestAct_cond nid t n n'\<close> have "\<parallel>nid\<parallel>\<^bsub>t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>\<^esub>" | |
using latestAct_prop(1) by simp | |
with \<open>honest nid\<close> have "nid \<in> actHn (t \<langle>nid \<leftarrow> t\<rangle>\<^bsub>n\<^esub>)" using actHn_def by simp | |
ultimately show ?thesis using step.IH by auto | |
qed | |
moreover from \<open>\<parallel>nid\<parallel>\<^bsub>t n\<^esub>\<close> have "\<langle>nid \<rightarrow> t\<rangle>\<^bsub>n\<^esub>=n" using nxtAct_active by simp | |
ultimately show ?thesis by auto | |
qed | |
next | |
assume nAct: "\<not> (\<exists>n' < n. n' \<ge> n\<^sub>s \<and> \<parallel>nid\<parallel>\<^bsub>t n'\<^esub>)" | |
moreover from step.hyps have "n\<^sub>s \<le> n" by simp | |
ultimately have "\<langle>nid \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub> = n" using \<open>\<parallel>nid\<parallel>\<^bsub>t n\<^esub>\<close> nxtAct_eq[of n\<^sub>s n nid t] by simp | |
with \<open>honest nid\<close> show ?thesis using assms(1) by auto | |
qed | |
qed | |
qed | |
with assms(5) show ?thesis by simp | |
qed | |
end | |
end |