Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
File: Mapping_Str.thy | |
Author: Bohua Zhan | |
*) | |
section \<open>Mapping\<close> | |
theory Mapping_Str | |
imports "Auto2_HOL.Auto2_Main" | |
begin | |
text \<open> | |
Basic definitions of a mapping. Here, we enclose the mapping inside | |
a structure, to make evaluation a first-order concept. | |
\<close> | |
datatype ('a, 'b) map = Map "'a \<Rightarrow> 'b option" | |
fun meval :: "('a, 'b) map \<Rightarrow> 'a \<Rightarrow> 'b option" ("_\<langle>_\<rangle>" [90]) where | |
"(Map f) \<langle>h\<rangle> = f h" | |
setup \<open>add_rewrite_rule @{thm meval.simps}\<close> | |
lemma meval_ext: "\<forall>x. M\<langle>x\<rangle> = N\<langle>x\<rangle> \<Longrightarrow> M = N" | |
apply (cases M) apply (cases N) by auto | |
setup \<open>add_backward_prfstep_cond @{thm meval_ext} [with_filt (order_filter "M" "N")]\<close> | |
definition empty_map :: "('a, 'b) map" where | |
"empty_map = Map (\<lambda>x. None)" | |
setup \<open>add_rewrite_rule @{thm empty_map_def}\<close> | |
definition update_map :: "('a, 'b) map \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a ,'b) map" (" _ { _ \<rightarrow> _ }" [89,90,90] 90) where | |
"M {k \<rightarrow> v} = Map (\<lambda>x. if x = k then Some v else M\<langle>x\<rangle>)" | |
setup \<open>add_rewrite_rule @{thm update_map_def}\<close> | |
definition delete_map :: "'a \<Rightarrow> ('a, 'b) map \<Rightarrow> ('a, 'b) map" where | |
"delete_map k M = Map (\<lambda>x. if x = k then None else M\<langle>x\<rangle>)" | |
setup \<open>add_rewrite_rule @{thm delete_map_def}\<close> | |
subsection \<open>Map from an AList\<close> | |
fun map_of_alist :: "('a \<times> 'b) list \<Rightarrow> ('a, 'b) map" where | |
"map_of_alist [] = empty_map" | |
| "map_of_alist (x # xs) = (map_of_alist xs) {fst x \<rightarrow> snd x}" | |
setup \<open>fold add_rewrite_rule @{thms map_of_alist.simps}\<close> | |
definition has_key_alist :: "('a \<times> 'b) list \<Rightarrow> 'a \<Rightarrow> bool" where [rewrite]: | |
"has_key_alist xs a \<longleftrightarrow> (\<exists>p\<in>set xs. fst p = a)" | |
lemma map_of_alist_nil [rewrite_back]: | |
"has_key_alist ys x \<longleftrightarrow> (map_of_alist ys)\<langle>x\<rangle> \<noteq> None" | |
@proof @induct ys @qed | |
setup \<open>add_rewrite_rule_cond @{thm map_of_alist_nil} [with_term "(map_of_alist ?ys)\<langle>?x\<rangle>"]\<close> | |
lemma map_of_alist_some [forward]: | |
"(map_of_alist xs)\<langle>k\<rangle> = Some v \<Longrightarrow> (k, v) \<in> set xs" | |
@proof @induct xs @qed | |
lemma map_of_alist_nil': | |
"x \<in> set (map fst ys) \<longleftrightarrow> (map_of_alist ys)\<langle>x\<rangle> \<noteq> None" | |
@proof @induct ys @qed | |
setup \<open>add_rewrite_rule_cond @{thm map_of_alist_nil'} [with_term "(map_of_alist ?ys)\<langle>?x\<rangle>"]\<close> | |
subsection \<open>Mapping defined by a set of key-value pairs\<close> | |
definition unique_keys_set :: "('a \<times> 'b) set \<Rightarrow> bool" where [rewrite]: | |
"unique_keys_set S = (\<forall>i x y. (i, x) \<in> S \<longrightarrow> (i, y) \<in> S \<longrightarrow> x = y)" | |
lemma unique_keys_setD [forward]: "unique_keys_set S \<Longrightarrow> (i, x) \<in> S \<Longrightarrow> (i, y) \<in> S \<Longrightarrow> x = y" by auto2 | |
setup \<open>del_prfstep_thm_eqforward @{thm unique_keys_set_def}\<close> | |
definition map_of_aset :: "('a \<times> 'b) set \<Rightarrow> ('a, 'b) map" where | |
"map_of_aset S = Map (\<lambda>a. if \<exists>b. (a, b) \<in> S then Some (THE b. (a, b) \<in> S) else None)" | |
setup \<open>add_rewrite_rule @{thm map_of_aset_def}\<close> | |
setup \<open>add_prfstep_check_req ("map_of_aset S", "unique_keys_set S")\<close> | |
lemma map_of_asetI1 [rewrite]: "unique_keys_set S \<Longrightarrow> (a, b) \<in> S \<Longrightarrow> (map_of_aset S)\<langle>a\<rangle> = Some b" | |
@proof @have "\<exists>b. (a, b) \<in> S" @have "\<exists>!b. (a, b) \<in> S" @qed | |
lemma map_of_asetI2 [rewrite]: "\<forall>b. (a, b) \<notin> S \<Longrightarrow> (map_of_aset S)\<langle>a\<rangle> = None" by auto2 | |
lemma map_of_asetD1 [forward]: "(map_of_aset S)\<langle>a\<rangle> = None \<Longrightarrow> \<forall>b. (a, b) \<notin> S" by auto2 | |
lemma map_of_asetD2 [forward]: | |
"unique_keys_set S \<Longrightarrow> (map_of_aset S)\<langle>a\<rangle> = Some b \<Longrightarrow> (a, b) \<in> S" by auto2 | |
setup \<open>del_prfstep_thm @{thm map_of_aset_def}\<close> | |
lemma map_of_aset_insert [rewrite]: | |
"unique_keys_set (S \<union> {(k, v)}) \<Longrightarrow> map_of_aset (S \<union> {(k, v)}) = (map_of_aset S) {k \<rightarrow> v}" | |
@proof | |
@let "M = map_of_aset S" "N = map_of_aset (S \<union> {(k, v)})" | |
@have (@rule) "\<forall>x. N\<langle>x\<rangle> = (M {k \<rightarrow> v}) \<langle>x\<rangle>" @with @case "M\<langle>x\<rangle> = None" @end | |
@qed | |
lemma map_of_alist_to_aset [rewrite]: | |
"unique_keys_set (set xs) \<Longrightarrow> map_of_aset (set xs) = map_of_alist xs" | |
@proof @induct xs @with | |
@subgoal "xs = x # xs'" | |
@have "set (x # xs') = set xs' \<union> {x}" | |
@endgoal @end | |
@qed | |
lemma map_of_aset_delete [rewrite]: | |
"unique_keys_set S \<Longrightarrow> (k, v) \<in> S \<Longrightarrow> map_of_aset (S - {(k, v)}) = delete_map k (map_of_aset S)" | |
@proof | |
@let "T = S - {(k, v)}" | |
@let "M = map_of_aset S" "N = map_of_aset T" | |
@have (@rule) "\<forall>x. N\<langle>x\<rangle> = (delete_map k M) \<langle>x\<rangle>" @with | |
@case "M\<langle>x\<rangle> = None" @case "x = k" | |
@obtain y where "M\<langle>x\<rangle> = Some y" @have "(x, y) \<in> T" | |
@end | |
@qed | |
lemma map_of_aset_update [rewrite]: | |
"unique_keys_set S \<Longrightarrow> (k, v) \<in> S \<Longrightarrow> | |
map_of_aset (S - {(k, v)} \<union> {(k, v')}) = (map_of_aset S) {k \<rightarrow> v'}" by auto2 | |
lemma map_of_alist_delete [rewrite]: | |
"set xs' = set xs - {x} \<Longrightarrow> unique_keys_set (set xs) \<Longrightarrow> x \<in> set xs \<Longrightarrow> | |
map_of_alist xs' = delete_map (fst x) (map_of_alist xs)" | |
@proof @have "map_of_alist xs' = map_of_aset (set xs')" @qed | |
lemma map_of_alist_insert [rewrite]: | |
"set xs' = set xs \<union> {x} \<Longrightarrow> unique_keys_set (set xs') \<Longrightarrow> | |
map_of_alist xs' = (map_of_alist xs) {fst x \<rightarrow> snd x}" | |
@proof @have "map_of_alist xs' = map_of_aset (set xs')" @qed | |
lemma map_of_alist_update [rewrite]: | |
"set xs' = set xs - {(k, v)} \<union> {(k, v')} \<Longrightarrow> unique_keys_set (set xs) \<Longrightarrow> (k, v) \<in> set xs \<Longrightarrow> | |
map_of_alist xs' = (map_of_alist xs) {k \<rightarrow> v'}" | |
@proof @have "map_of_alist xs' = map_of_aset (set xs')" @qed | |
subsection \<open>Set of keys of a mapping\<close> | |
definition keys_of :: "('a, 'b) map \<Rightarrow> 'a set" where [rewrite]: | |
"keys_of M = {x. M\<langle>x\<rangle> \<noteq> None}" | |
lemma keys_of_iff [rewrite_bidir]: "x \<in> keys_of M \<longleftrightarrow> M\<langle>x\<rangle> \<noteq> None" by auto2 | |
setup \<open>del_prfstep_thm @{thm keys_of_def}\<close> | |
lemma keys_of_empty [rewrite]: "keys_of empty_map = {}" by auto2 | |
lemma keys_of_delete [rewrite]: | |
"keys_of (delete_map x M) = keys_of M - {x}" by auto2 | |
subsection \<open>Minimum of a mapping, relevant for heaps (priority queues)\<close> | |
definition is_heap_min :: "'a \<Rightarrow> ('a, 'b::linorder) map \<Rightarrow> bool" where [rewrite]: | |
"is_heap_min x M \<longleftrightarrow> x \<in> keys_of M \<and> (\<forall>k\<in>keys_of M. the (M\<langle>x\<rangle>) \<le> the (M\<langle>k\<rangle>))" | |
subsection \<open>General construction and update of maps\<close> | |
fun map_constr :: "(nat \<Rightarrow> bool) \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> (nat, 'a) map" where | |
"map_constr S f 0 = empty_map" | |
| "map_constr S f (Suc k) = (let M = map_constr S f k in if S k then M {k \<rightarrow> f k} else M)" | |
setup \<open>fold add_rewrite_rule @{thms map_constr.simps}\<close> | |
lemma map_constr_eval [rewrite]: | |
"map_constr S f n = Map (\<lambda>i. if i < n then if S i then Some (f i) else None else None)" | |
@proof @induct n @qed | |
lemma keys_of_map_constr [rewrite]: | |
"i \<in> keys_of (map_constr S f n) \<longleftrightarrow> (S i \<and> i < n)" by auto2 | |
definition map_update_all :: "(nat \<Rightarrow> 'a) \<Rightarrow> (nat, 'a) map \<Rightarrow> (nat, 'a) map" where [rewrite]: | |
"map_update_all f M = Map (\<lambda>i. if i \<in> keys_of M then Some (f i) else M\<langle>i\<rangle>)" | |
fun map_update_all_impl :: "(nat \<Rightarrow> 'a) \<Rightarrow> (nat, 'a) map \<Rightarrow> nat \<Rightarrow> (nat, 'a) map" where | |
"map_update_all_impl f M 0 = M" | |
| "map_update_all_impl f M (Suc k) = | |
(let M' = map_update_all_impl f M k in if k \<in> keys_of M then M' {k \<rightarrow> f k} else M')" | |
setup \<open>fold add_rewrite_rule @{thms map_update_all_impl.simps}\<close> | |
lemma map_update_all_impl_ind [rewrite]: | |
"map_update_all_impl f M n = Map (\<lambda>i. if i < n then if i \<in> keys_of M then Some (f i) else None else M\<langle>i\<rangle>)" | |
@proof @induct n @qed | |
lemma map_update_all_impl_correct [rewrite]: | |
"\<forall>i\<in>keys_of M. i < n \<Longrightarrow> map_update_all_impl f M n = map_update_all f M" by auto2 | |
lemma keys_of_map_update_all [rewrite]: | |
"keys_of (map_update_all f M) = keys_of M" by auto2 | |
end | |