Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: BDD | |
Author: Veronika Ortner and Norbert Schirmer, 2004 | |
Maintainer: Norbert Schirmer, norbert.schirmer at web de | |
License: LGPL | |
*) | |
(* | |
LevellistProof.thy | |
Copyright (C) 2004-2008 Veronika Ortner and Norbert Schirmer | |
Some rights reserved, TU Muenchen | |
This library is free software; you can redistribute it and/or modify | |
it under the terms of the GNU Lesser General Public License as | |
published by the Free Software Foundation; either version 2.1 of the | |
License, or (at your option) any later version. | |
This library is distributed in the hope that it will be useful, but | |
WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
Lesser General Public License for more details. | |
You should have received a copy of the GNU Lesser General Public | |
License along with this library; if not, write to the Free Software | |
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 | |
USA | |
*) | |
section \<open>Proof of Procedure Levellist\<close> | |
theory LevellistProof imports ProcedureSpecs Simpl.HeapList begin | |
hide_const (open) DistinctTreeProver.set_of tree.Node tree.Tip | |
lemma (in Levellist_impl) Levellist_modifies: | |
shows "\<forall>\<sigma>. \<Gamma>\<turnstile>{\<sigma>} \<acute>levellist :== PROC Levellist (\<acute>p, \<acute>m, \<acute>levellist) | |
{t. t may_only_modify_globals \<sigma> in [mark,next]}" | |
apply (hoare_rule HoarePartial.ProcRec1) | |
apply (vcg spec=modifies) | |
done | |
(*a well formed levellist is a list that contains all nodes with variable | |
i on position i | |
because the elements of levellist can contain old elements before the call of Levellist, | |
subdag_eq t pt can not be postulated for all elements of the sublists. One has to make | |
shure that the initial call of Levellist is parameterized with a levellist with empty sublists. | |
Otherwise some problems could arise in the call of Reduce! | |
(\<exists> ptt. (Dag pt low high ptt \<and> subdag_eq (Node lt p rt) ptt \<and> pt\<rightarrow>var = i)) | |
consts wf_levellist :: "dag \<Rightarrow> ref list list \<Rightarrow> ref list list \<Rightarrow> | |
(ref \<Rightarrow> nat) \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> bool" | |
defs wf_levellist_def: "wf_levellist t levellist_old levellist_new var low high \<equiv> | |
case t of Tip \<Rightarrow> levellist_old = levellist_new | |
| (Node lt p rt) \<Rightarrow> | |
(\<forall> q. q \<in> set_of t \<longrightarrow> q \<in> set (levellist_new ! (q\<rightarrow>var))) \<and> | |
(\<forall> i \<le> p\<rightarrow>var. (\<exists> prx. (levellist_new ! i) = prx@(levellist_old ! i) | |
\<and> (\<forall> pt \<in> set prx. pt \<in> set_of t \<and> pt\<rightarrow>var = i))) \<and> | |
(\<forall> i. (p\<rightarrow>var) < i \<longrightarrow> (levellist_new ! i) = (levellist_old ! i)) \<and> | |
(length levellist_new = length levellist_old)" | |
*) | |
lemma all_stop_cong: "(\<forall>x. P x) = (\<forall>x. P x)" | |
by simp | |
lemma Dag_RefD: | |
"\<lbrakk>Dag p l r t; p\<noteq>Null\<rbrakk> \<Longrightarrow> | |
\<exists>lt rt. t=Node lt p rt \<and> Dag (l p) l r lt \<and> Dag (r p) l r rt" | |
by simp | |
lemma Dag_unique_ex_conjI: | |
"\<lbrakk>Dag p l r t; P t\<rbrakk> \<Longrightarrow> (\<exists>t. Dag p l r t \<and> P t)" | |
by simp | |
(* FIXME: To BinDag *) | |
lemma dag_Null [simp]: "dag Null l r = Tip" | |
by (simp add: dag_def) | |
definition first:: "ref list \<Rightarrow> ref" where | |
"first ps = (case ps of [] \<Rightarrow> Null | (p#rs) \<Rightarrow> p)" | |
lemma first_simps [simp]: | |
"first [] = Null" | |
"first (r#rs) = r" | |
by (simp_all add: first_def) | |
definition Levellist:: "ref list \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> (ref list list) \<Rightarrow> bool" where | |
"Levellist hds next ll \<longleftrightarrow> (map first ll = hds) \<and> | |
(\<forall>i < length hds. List (hds ! i) next (ll!i))" | |
lemma Levellist_unique: | |
assumes ll: "Levellist hds next ll" | |
assumes ll': "Levellist hds next ll'" | |
shows "ll=ll'" | |
proof - | |
from ll have "length ll = length hds" | |
by (clarsimp simp add: Levellist_def) | |
moreover | |
from ll' have "length ll' = length hds" | |
by (clarsimp simp add: Levellist_def) | |
ultimately have leq: "length ll = length ll'" by simp | |
show ?thesis | |
proof (rule nth_equalityI [OF leq, rule_format]) | |
fix i | |
assume "i < length ll" | |
with ll ll' | |
show "ll!i = ll'!i" | |
apply (clarsimp simp add: Levellist_def) | |
apply (erule_tac x=i in allE) | |
apply (erule_tac x=i in allE) | |
apply simp | |
by (erule List_unique) | |
qed | |
qed | |
lemma Levellist_unique_ex_conj_simp [simp]: | |
"Levellist hds next ll \<Longrightarrow> (\<exists>ll. Levellist hds next ll \<and> P ll) = P ll" | |
by (auto dest: Levellist_unique) | |
lemma in_set_concat_idx: | |
"x \<in> set (concat xss) \<Longrightarrow> \<exists>i < length xss. x \<in> set (xss!i)" | |
apply (induct xss) | |
apply simp | |
apply clarsimp | |
apply (erule disjE) | |
apply (rule_tac x=0 in exI) | |
apply simp | |
apply auto | |
done | |
definition wf_levellist :: "dag \<Rightarrow> ref list list \<Rightarrow> ref list list \<Rightarrow> | |
(ref \<Rightarrow> nat) \<Rightarrow> bool" where | |
"wf_levellist t levellist_old levellist_new var = | |
(case t of Tip \<Rightarrow> levellist_old = levellist_new | |
| (Node lt p rt) \<Rightarrow> | |
(\<forall> q. q \<in> set_of t \<longrightarrow> q \<in> set (levellist_new ! (var q))) \<and> | |
(\<forall> i \<le> var p. (\<exists> prx. (levellist_new ! i) = prx@(levellist_old ! i) | |
\<and> (\<forall> pt \<in> set prx. pt \<in> set_of t \<and> var pt = i))) \<and> | |
(\<forall> i. (var p) < i \<longrightarrow> (levellist_new ! i) = (levellist_old ! i)) \<and> | |
(length levellist_new = length levellist_old))" | |
lemma wf_levellist_subset: | |
assumes wf_ll: "wf_levellist t ll ll' var" | |
shows "set (concat ll') \<subseteq> set (concat ll) \<union> set_of t" | |
proof (cases t) | |
case Tip with wf_ll show ?thesis by (simp add: wf_levellist_def) | |
next | |
case (Node lt p rt) | |
show ?thesis | |
proof - | |
{ | |
fix n | |
assume "n \<in> set (concat ll')" | |
from in_set_concat_idx [OF this] | |
obtain i where i_bound: "i < length ll'" and n_in: "n \<in> set (ll' ! i)" | |
by blast | |
have "n \<in> set (concat ll) \<union> set_of t" | |
proof (cases "i \<le> var p") | |
case True | |
with wf_ll obtain prx where | |
ll'_ll: "ll' ! i = prx @ ll ! i" and | |
prx: "\<forall>pt \<in> set prx. pt \<in> set_of t" and | |
leq: "length ll' = length ll" | |
apply (clarsimp simp add: wf_levellist_def Node) | |
apply (erule_tac x="i" in allE) | |
apply clarsimp | |
done | |
show ?thesis | |
proof (cases "n \<in> set prx") | |
case True | |
with prx have "n \<in> set_of t" | |
by simp | |
thus ?thesis by simp | |
next | |
case False | |
with n_in ll'_ll | |
have "n \<in> set (ll ! i)" | |
by simp | |
with i_bound leq | |
have "n \<in> set (concat ll)" | |
by auto | |
thus ?thesis by simp | |
qed | |
next | |
case False | |
with wf_ll obtain "ll'!i = ll!i" "length ll' = length ll" | |
by (auto simp add: wf_levellist_def Node) | |
with n_in i_bound | |
have "n \<in> set (concat ll)" | |
by auto | |
thus ?thesis by simp | |
qed | |
} | |
thus ?thesis by auto | |
qed | |
qed | |
(* | |
next | |
show "set (concat ll) \<union> set_of t \<subseteq> set (concat ll')" | |
proof - | |
{ | |
fix n | |
assume "n \<in> set (concat ll)" | |
from in_set_concat_idx [OF this] | |
obtain i where i_bound: "i < length ll" and n_in: "n \<in> set (ll ! i)" | |
by blast | |
with wf_ll | |
obtain "n \<in> set (ll' ! i)" "length ll = length ll'" | |
apply (clarsimp simp add: wf_levellist_def Node) | |
apply (case_tac "i \<le> var p") | |
apply fastforce | |
apply fastforce | |
done | |
with i_bound have "n \<in> set (concat ll')" | |
by auto | |
} | |
moreover | |
{ | |
fix n | |
assume "n \<in> set_of t" | |
with wf_ll obtain "n \<in> set (ll' ! var n)" "length ll' = length ll" | |
by (auto simp add: wf_levellist_def Node) | |
with root | |
next | |
proof (cases prx) | |
case Nil | |
with ll'_ll i_bound leq n_in | |
have "n \<in> set (concat ll)" | |
by auto | |
thus ?thesis by simp | |
next | |
case (Cons p prx') | |
show ?thesis | |
apply auto | |
*) | |
(* | |
consts wf_levellist :: "dag \<Rightarrow> ref list \<Rightarrow> ref list \<Rightarrow> | |
(ref \<Rightarrow> ref) \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> | |
(ref \<Rightarrow> nat) \<Rightarrow> bool" | |
defs wf_levellist_def: | |
"wf_levellist t levellist_old levellist_new next_old next_new var \<equiv> | |
case t of Tip \<Rightarrow> levellist_old = levellist_new | |
| (Node lt p rt) \<Rightarrow> | |
(\<forall> q. q \<in> set_of t \<longrightarrow> (\<exists>ns. List (levellist_new ! (var q)) next_new ns \<and> | |
q \<in> set ns)) \<and> | |
(\<forall> i \<le> var p. (\<exists>ns_new ns_old. | |
List (levellist_new ! i) next_new ns_new \<and> | |
List (levellist_old ! i) next_old ns_old \<and> | |
(\<exists> prx. ns_new = prx@ns_old | |
\<and> (\<forall> pt \<in> set prx. pt \<in> set_of t \<and> var pt = i)))) \<and> | |
(\<forall> i. (var p) < i \<longrightarrow> (\<exists>ns_new ns_old. | |
List (levellist_new ! i) next_new ns_new \<and> | |
List (levellist_old ! i) next_old ns_old \<and> | |
ns_new = ns_old)) \<and> | |
(length levellist_new = length levellist_old)" | |
*) | |
lemma Levellist_ext_to_all: "((\<exists>ll. Levellist hds next ll \<and> P ll) \<longrightarrow> Q) | |
= | |
(\<forall>ll. Levellist hds next ll \<and> P ll \<longrightarrow> Q)" | |
apply blast | |
done | |
lemma Levellist_length: "Levellist hds p ll \<Longrightarrow> length ll = length hds" | |
by (auto simp add: Levellist_def) | |
lemma map_update: | |
"\<And>i. i < length xss \<Longrightarrow> map f (xss[i := xs]) = (map f xss) [i := f xs]" | |
apply (induct xss) | |
apply simp | |
apply (case_tac i) | |
apply simp | |
apply simp | |
done | |
lemma (in Levellist_impl) Levellist_spec_total': | |
shows "\<forall>ll \<sigma> t. \<Gamma>,\<Theta>\<turnstile>\<^sub>t | |
\<lbrace>\<sigma>. Dag \<acute>p \<acute>low \<acute>high t \<and> (\<acute>p \<noteq> Null \<longrightarrow> (\<acute>p\<rightarrow>\<acute>var) < length \<acute>levellist) \<and> | |
ordered t \<acute>var \<and> Levellist \<acute>levellist \<acute>next ll \<and> | |
(\<forall>n \<in> set_of t. | |
(if \<acute>mark n = \<acute>m | |
then n \<in> set (ll ! \<acute>var n) \<and> | |
(\<forall>nt p. Dag n \<acute>low \<acute>high nt \<and> p \<in> set_of nt | |
\<longrightarrow> \<acute>mark p = \<acute>m) | |
else n \<notin> set (concat ll)))\<rbrace> | |
\<acute>levellist :== PROC Levellist (\<acute>p, \<acute>m, \<acute>levellist) | |
\<lbrace>\<exists>ll'. Levellist \<acute>levellist \<acute>next ll' \<and> wf_levellist t ll ll' \<^bsup>\<sigma>\<^esup>var \<and> | |
wf_marking t \<^bsup>\<sigma>\<^esup>mark \<acute>mark \<^bsup>\<sigma>\<^esup>m \<and> | |
(\<forall>p. p \<notin> set_of t \<longrightarrow> \<^bsup>\<sigma>\<^esup>next p = \<acute>next p) | |
\<rbrace>" | |
apply (hoare_rule HoareTotal.ProcRec1 | |
[where r="measure (\<lambda>(s,p). size (dag \<^bsup>s\<^esup>p \<^bsup>s\<^esup>low \<^bsup>s\<^esup>high))"]) | |
apply vcg | |
apply (rule conjI) | |
apply clarify | |
apply (rule conjI) | |
apply clarify | |
apply (clarsimp simp del: BinDag.set_of.simps split del: if_split) | |
defer | |
apply (rule impI) | |
apply (clarsimp simp del: BinDag.set_of.simps split del: if_split) | |
defer | |
apply (clarsimp simp add: wf_levellist_def wf_marking_def) (* p=Null*) | |
apply (simp only: Levellist_ext_to_all ) | |
proof - | |
fix ll var low high mark "next" nexta p levellist m lt rt | |
assume pnN: "p \<noteq> Null" | |
assume mark_p: "mark p = (\<not> m)" | |
assume lt: "Dag (low p) low high lt" | |
assume rt: "Dag (high p) low high rt" | |
from pnN lt rt have Dag_p: "Dag p low high (Node lt p rt)" by simp | |
from Dag_p rt | |
have size_rt_dec: "size (dag (high p) low high) < size (dag p low high)" | |
by (simp only: Dag_dag) simp | |
from Dag_p lt | |
have size_lt_dec: "size (dag (low p) low high) < size (dag p low high)" | |
by (simp only: Dag_dag) simp | |
assume ll: "Levellist levellist next ll" | |
assume marked_child_ll: | |
"\<forall>n \<in> set_of (Node lt p rt). | |
if mark n = m | |
then n \<in> set (ll ! var n) \<and> | |
(\<forall>nt p. Dag n low high nt \<and> p \<in> set_of nt \<longrightarrow> mark p = m) | |
else n \<notin> set (concat ll)" | |
with mark_p have p_notin_ll: "p \<notin> set (concat ll)" | |
by auto | |
assume varsll': "var p < length levellist" | |
with ll have varsll: "var p < length ll" | |
by (simp add: Levellist_length) | |
assume orderedt: "ordered (Node lt p rt) var" | |
show "(low p \<noteq> Null \<longrightarrow> var (low p) < length levellist) \<and> | |
ordered lt var \<and> | |
(\<forall>n \<in> set_of lt. | |
if mark n = m | |
then n \<in> set (ll ! var n) \<and> | |
(\<forall>nt p. Dag n low high nt \<and> p \<in> set_of nt \<longrightarrow> mark p = m) | |
else n \<notin> set (concat ll)) \<and> | |
size (dag (low p) low high) < size (dag p low high) \<and> | |
(\<forall>marka nexta levellist lla. | |
Levellist levellist nexta lla \<and> | |
wf_levellist lt ll lla var \<and> wf_marking lt mark marka m \<and> | |
(\<forall>p. p \<notin> set_of lt \<longrightarrow> next p = nexta p)\<longrightarrow> | |
(high p \<noteq> Null \<longrightarrow> var (high p) < length levellist) \<and> | |
ordered rt var \<and> | |
(\<exists>lla. Levellist levellist nexta lla \<and> | |
(\<forall>n \<in> set_of rt. | |
if marka n = m | |
then n \<in> set (lla ! var n) \<and> | |
(\<forall>nt p. Dag n low high nt \<and> p \<in> set_of nt \<longrightarrow> | |
marka p = m) | |
else n \<notin> set (concat lla)) \<and> | |
size (dag (high p) low high) < size (dag p low high) \<and> | |
(\<forall>markb nextb levellist llb. | |
Levellist levellist nextb llb \<and> | |
wf_levellist rt lla llb var \<and> | |
wf_marking rt marka markb m \<and> | |
(\<forall>p. p \<notin> set_of rt \<longrightarrow> nexta p = nextb p) \<longrightarrow> | |
(\<exists>ll'. Levellist (levellist[var p := p]) | |
(nextb(p := levellist ! var p)) ll' \<and> | |
wf_levellist (Node lt p rt) ll ll' var \<and> | |
wf_marking (Node lt p rt) mark (markb(p := m)) m \<and> | |
(\<forall>pa. pa \<notin> set_of (Node lt p rt) \<longrightarrow> | |
next pa = | |
(if pa = p then levellist ! var p | |
else nextb pa))))))" | |
proof (cases "lt") | |
case Tip | |
note lt_Tip = this | |
show ?thesis | |
proof (cases "rt") | |
case Tip | |
show ?thesis | |
using size_rt_dec Tip lt_Tip Tip lt rt | |
apply clarsimp | |
subgoal premises prems for marka nexta levellista lla markb nextb levellistb llb | |
proof - | |
have lla: "Levellist levellista nexta lla" by fact | |
have llb: "Levellist levellistb nextb llb" by fact | |
have wfll_lt: "wf_levellist Tip ll lla var" | |
"wf_marking Tip mark marka m" by fact+ | |
then have ll_lla: "ll = lla" | |
by (simp add: wf_levellist_def) | |
moreover | |
with wfll_lt lt_Tip lt have "marka = mark" | |
by (simp add: wf_marking_def) | |
moreover | |
have wfll_rt:"wf_levellist Tip lla llb var" | |
"wf_marking Tip marka markb m" by fact+ | |
then have lla_llb: "lla = llb" | |
by (simp add: wf_levellist_def) | |
moreover | |
with wfll_rt Tip rt have "markb = marka" | |
by (simp add: wf_marking_def) | |
moreover | |
from varsll llb ll_lla lla_llb | |
obtain "var p < length levellistb" "var p < length llb" | |
by (simp add: Levellist_length) | |
with llb pnN | |
have llc: "Levellist (levellistb[var p := p]) (nextb(p := levellistb ! var p)) | |
(llb[var p := p # llb ! var p])" | |
apply (clarsimp simp add: Levellist_def map_update) | |
apply (erule_tac x=i in allE) | |
apply clarsimp | |
apply (subgoal_tac "p \<notin> set (llb ! i) ") | |
prefer 2 | |
using p_notin_ll ll_lla lla_llb | |
apply simp | |
apply (case_tac "i=var p") | |
apply simp | |
apply simp | |
done | |
ultimately | |
show ?thesis | |
using lt_Tip Tip varsll | |
apply (clarsimp simp add: wf_levellist_def wf_marking_def) | |
proof - | |
fix i | |
assume varsllb: "var p < length llb" | |
assume "i \<le> var p" | |
show "\<exists>prx. llb[var p := p#llb!var p]!i = prx @ llb!i \<and> | |
(\<forall>pt\<in>set prx. pt = p \<and> var pt = i)" | |
proof (cases "i = var p") | |
case True | |
with pnN lt rt varsllb lt_Tip Tip show ?thesis | |
apply - | |
apply (rule_tac x="[p]" in exI) | |
apply (simp add: subdag_eq_def) | |
done | |
next | |
assume "i \<noteq> var p" | |
with varsllb show ?thesis | |
apply - | |
apply (rule_tac x="[]" in exI) | |
apply (simp add: subdag_eq_def) | |
done | |
qed | |
qed | |
qed | |
done | |
next | |
case (Node dag1 a dag2) | |
have rt_node: "rt = Node dag1 a dag2" by fact | |
with rt have high_p: "high p = a" | |
by simp | |
have s: "\<And>nexta. (\<forall>p. next p = nexta p) = (next = nexta)" | |
by auto | |
show ?thesis | |
using size_rt_dec size_lt_dec rt_node lt_Tip Tip lt rt | |
apply (clarsimp simp del: set_of_Node split del: if_split simp add: s) | |
subgoal premises prems for marka levellista lla | |
proof - | |
have lla: "Levellist levellista next lla" by fact | |
have wfll_lt:"wf_levellist Tip ll lla var" | |
"wf_marking Tip mark marka m" by fact+ | |
from this have ll_lla: "ll = lla" | |
by (simp add: wf_levellist_def) | |
moreover | |
from wfll_lt lt_Tip lt have marklrec: "marka = mark" | |
by (simp add: wf_marking_def) | |
from orderedt varsll lla ll_lla rt_node lt_Tip high_p | |
have var_highp_bound: "var (high p) < length levellista" | |
by (auto simp add: Levellist_length) | |
from orderedt high_p rt_node lt_Tip | |
have ordered_rt: "ordered (Node dag1 (high p) dag2) var" | |
by simp | |
from high_p marklrec marked_child_ll lt rt lt_Tip rt_node ll_lla | |
have mark_rt: "(\<forall>n\<in>set_of (Node dag1 (high p) dag2). | |
if marka n = m | |
then n \<in> set (lla ! var n) \<and> | |
(\<forall>nt p. Dag n low high nt \<and> p \<in> set_of nt \<longrightarrow> marka p = m) | |
else n \<notin> set (concat lla))" | |
apply (simp only: BinDag.set_of.simps) | |
apply clarify | |
apply (drule_tac x=n in bspec) | |
apply blast | |
apply assumption | |
done | |
show ?thesis | |
apply (rule conjI) | |
apply (rule var_highp_bound) | |
apply (rule conjI) | |
apply (rule ordered_rt) | |
apply (rule conjI) | |
apply (rule mark_rt) | |
apply clarify | |
apply clarsimp | |
subgoal premises prems for markb nextb levellistb llb | |
proof - | |
have llb: "Levellist levellistb nextb llb" by fact | |
have wfll_rt: "wf_levellist (Node dag1 (high p) dag2) lla llb var" by fact | |
have wfmarking_rt: "wf_marking (Node dag1 (high p) dag2) marka markb m" by fact | |
from wfll_rt varsll llb ll_lla | |
obtain var_p_bounds: "var p < length levellistb" "var p < length llb" | |
by (simp add: Levellist_length wf_levellist_def) | |
with p_notin_ll ll_lla wfll_rt | |
have p_notin_llb: "\<forall>i < length llb. p \<notin> set (llb ! i)" | |
apply - | |
apply (intro allI impI) | |
apply (clarsimp simp add: wf_levellist_def) | |
apply (case_tac "i \<le> var (high p)") | |
apply (drule_tac x=i in spec) | |
using orderedt rt_node lt_Tip high_p | |
apply clarsimp | |
apply (drule_tac x=i in spec) | |
apply (drule_tac x=i in spec) | |
apply clarsimp | |
done | |
with llb pnN var_p_bounds | |
have llc: "Levellist (levellistb[var p := p]) | |
(nextb(p := levellistb ! var p)) | |
(llb[var p := p # llb ! var p])" | |
apply (clarsimp simp add: Levellist_def map_update) | |
apply (erule_tac x=i in allE) | |
apply (erule_tac x=i in allE) | |
apply clarsimp | |
apply (case_tac "i=var p") | |
apply simp | |
apply simp | |
done | |
then show ?thesis | |
apply simp | |
using wfll_rt wfmarking_rt | |
lt_Tip rt_node varsll orderedt lt rt pnN ll_lla marklrec | |
apply (clarsimp simp add: wf_levellist_def wf_marking_def) | |
apply (intro conjI) | |
apply (rule allI) | |
apply (rule conjI) | |
apply (erule_tac x="q" in allE) | |
apply (case_tac "var p = var q") | |
apply fastforce | |
apply fastforce | |
apply (case_tac "var p = var q") | |
apply hypsubst_thin | |
apply fastforce | |
apply fastforce | |
apply (rule allI) | |
apply (rotate_tac 4) | |
apply (erule_tac x="i" in allE) | |
apply (case_tac "i=var p") | |
apply simp | |
apply (case_tac "var (high p) < i") | |
apply simp | |
apply simp | |
apply (erule exE) | |
apply (rule_tac x="prx" in exI) | |
apply (intro conjI) | |
apply simp | |
apply clarify | |
apply (rotate_tac 15) | |
apply (erule_tac x="pt" in ballE) | |
apply fastforce | |
apply fastforce | |
done | |
qed | |
done | |
qed | |
done | |
qed | |
next | |
case (Node llt l rlt) | |
have lt_Node: "lt = Node llt l rlt" by fact | |
from orderedt lt varsll' lt_Node | |
obtain ordered_lt: | |
"ordered lt var" "(low p \<noteq> Null \<longrightarrow> var (low p) < length levellist)" | |
by (cases rt) auto | |
from lt lt_Node marked_child_ll | |
have mark_lt: "\<forall>n\<in>set_of lt. | |
if mark n = m | |
then n \<in> set (ll ! var n) \<and> | |
(\<forall>nt p. Dag n low high nt \<and> p \<in> set_of nt \<longrightarrow> mark p = m) | |
else n \<notin> set (concat ll)" | |
apply (simp only: BinDag.set_of.simps) | |
apply clarify | |
apply (drule_tac x=n in bspec) | |
apply blast | |
apply assumption | |
done | |
show ?thesis | |
apply (intro conjI ordered_lt mark_lt size_lt_dec) | |
apply (clarify) | |
apply (simp add: size_rt_dec split del: if_split) | |
apply (simp only: Levellist_ext_to_all) | |
subgoal premises prems for marka nexta levellista lla | |
proof - | |
have lla: "Levellist levellista nexta lla" by fact | |
have wfll_lt: "wf_levellist lt ll lla var" by fact | |
have wfmarking_lt:"wf_marking lt mark marka m" by fact | |
from wfll_lt lt_Node | |
have lla_eq_ll: "length lla = length ll" | |
by (simp add: wf_levellist_def) | |
with ll lla have lla_eq_ll': "length levellista = length levellist" | |
by (simp add: Levellist_length) | |
with orderedt rt lt_Node lt varsll' | |
obtain ordered_rt: | |
"ordered rt var" "(high p \<noteq> Null \<longrightarrow> var (high p) < length levellista)" | |
by (cases rt) auto | |
from wfll_lt lt_Node | |
have nodes_in_lla: "\<forall> q. q \<in> set_of lt \<longrightarrow> q \<in> set (lla ! (q\<rightarrow>var))" | |
by (simp add: wf_levellist_def) | |
from wfll_lt lt_Node lt | |
have lla_st: "(\<forall>i \<le> (low p)\<rightarrow>var. | |
(\<exists>prx. (lla ! i) = prx@(ll ! i) \<and> | |
(\<forall>pt \<in> set prx. pt \<in> set_of lt \<and> pt\<rightarrow>var = i)))" | |
by (simp add: wf_levellist_def) | |
from wfll_lt lt_Node lt | |
have lla_nc: "\<forall>i. ((low p)\<rightarrow>var) < i \<longrightarrow> (lla ! i) = (ll ! i)" | |
by (simp add: wf_levellist_def) | |
from wfmarking_lt lt_Node lt | |
have mot_nc: "\<forall> n. n \<notin> set_of lt \<longrightarrow> mark n = marka n" | |
by (simp add: wf_marking_def) | |
from wfmarking_lt lt_Node lt | |
have mit_marked: "\<forall>n. n \<in> set_of lt \<longrightarrow> marka n = m" | |
by (simp add: wf_marking_def) | |
from marked_child_ll nodes_in_lla mot_nc mit_marked lla_st | |
have mark_rt: "\<forall>n\<in>set_of rt. | |
if marka n = m | |
then n \<in> set (lla ! var n) \<and> | |
(\<forall>nt p. Dag n low high nt \<and> p \<in> set_of nt \<longrightarrow> marka p = m) | |
else n \<notin> set (concat lla)" | |
apply - | |
apply (rule ballI) | |
apply (drule_tac x="n" in bspec) | |
apply (simp) | |
proof - | |
fix n | |
assume nodes_in_lla: "\<forall>q. q \<in> set_of lt \<longrightarrow> q \<in> set (lla ! var q)" | |
assume mot_nc: "\<forall>n. n \<notin> set_of lt \<longrightarrow> mark n = marka n" | |
assume mit_marked: "\<forall>n. n \<in> set_of lt \<longrightarrow> marka n = m" | |
assume marked_child_ll: "if mark n = m | |
then n \<in> set (ll ! var n) \<and> | |
(\<forall>nt p. Dag n low high nt \<and> p \<in> set_of nt \<longrightarrow> mark p = m) | |
else n \<notin> set (concat ll)" | |
assume lla_st: "\<forall>i\<le>var (low p). | |
\<exists>prx. lla ! i = prx @ ll ! i \<and> | |
(\<forall>pt\<in>set prx. pt \<in> set_of lt \<and> var pt = i)" | |
assume n_in_rt: " n \<in> set_of rt" | |
show n_in_lla_marked: "if marka n = m | |
then n \<in> set (lla ! var n) \<and> | |
(\<forall>nt p. Dag n low high nt \<and> p \<in> set_of nt \<longrightarrow> marka p = m) | |
else n \<notin> set (concat lla)" | |
proof (cases "n \<in> set_of lt") | |
case True | |
from True nodes_in_lla have n_in_ll: "n \<in> set (lla ! var n)" | |
by simp | |
moreover | |
from True wfmarking_lt | |
have "marka n = m" | |
apply (cases lt) | |
apply (auto simp add: wf_marking_def) | |
done | |
moreover | |
{ | |
fix nt p | |
assume "Dag n low high nt" | |
with lt True have subset_nt_lt: "set_of nt \<subseteq> set_of lt" | |
by (rule dag_setof_subsetD) | |
moreover assume " p \<in> set_of nt" | |
ultimately have "p \<in> set_of lt" | |
by blast | |
with mit_marked have " marka p = m" | |
by simp | |
} | |
ultimately show ?thesis | |
using n_in_rt | |
apply clarsimp | |
done | |
next | |
assume n_notin_lt: "n \<notin> set_of lt" | |
show ?thesis | |
proof (cases "marka n = m") | |
case True | |
from n_notin_lt mot_nc have marka_eq_mark: "mark n = marka n" | |
by simp | |
from marka_eq_mark True have n_marked: "mark n = m" | |
by simp | |
from rt n_in_rt have nnN: "n \<noteq> Null" | |
apply - | |
apply (rule set_of_nn [rule_format]) | |
apply fastforce | |
apply assumption | |
done | |
from marked_child_ll n_in_rt marka_eq_mark nnN n_marked | |
have n_in_ll: "n \<in> set (ll ! var n)" | |
by fastforce | |
from marked_child_ll n_in_rt marka_eq_mark nnN n_marked lt rt | |
have nt_mark: "\<forall>nt p. Dag n low high nt \<and> p \<in> set_of nt \<longrightarrow> mark p = m" | |
by simp | |
from nodes_in_lla n_in_ll lla_st | |
have n_in_lla: "n \<in> set (lla ! var n)" | |
proof (cases "var (low p) < (var n)") | |
case True | |
with lla_nc have "(lla ! var n) = (ll ! var n)" | |
by fastforce | |
with n_in_ll show ?thesis | |
by fastforce | |
next | |
assume varnslp: " \<not> var (low p) < var n" | |
with lla_st | |
have ll_in_lla: "\<exists>prx. lla ! (var n) = prx @ ll ! (var n)" | |
apply - | |
apply (erule_tac x="var n" in allE) | |
apply fastforce | |
done | |
with n_in_ll show ?thesis | |
by fastforce | |
qed | |
{ | |
fix nt pt | |
assume nt_Dag: "Dag n low high nt" | |
assume pt_in_nt: "pt \<in> set_of nt" | |
have " marka pt = m" | |
proof (cases "pt \<in> set_of lt") | |
case True | |
with mit_marked show ?thesis | |
by fastforce | |
next | |
assume pt_notin_lt: " pt \<notin> set_of lt" | |
with mot_nc have "mark pt = marka pt" | |
by fastforce | |
with nt_mark nt_Dag pt_in_nt show ?thesis | |
by fastforce | |
qed | |
} | |
then have nt_marka: | |
"\<forall>nt pt. Dag n low high nt \<and> pt \<in> set_of nt \<longrightarrow> marka pt = m" | |
by fastforce | |
with n_in_lla nt_marka True show ?thesis | |
by fastforce | |
next | |
case False | |
note n_not_marka = this | |
with wfmarking_lt n_notin_lt | |
have "mark n \<noteq> m" | |
by (simp add: wf_marking_def lt_Node) | |
with marked_child_ll | |
have n_notin_ll: "n \<notin> set (concat ll)" | |
by simp | |
show ?thesis | |
proof (cases "n \<in> set (concat lla)") | |
case False with n_not_marka show ?thesis by simp | |
next | |
case True | |
with wf_levellist_subset [OF wfll_lt] n_notin_ll | |
have "n \<in> set_of lt" | |
by blast | |
with n_notin_lt have False by simp | |
thus ?thesis .. | |
qed | |
qed | |
qed | |
qed | |
show ?thesis | |
apply (intro conjI ordered_rt mark_rt) | |
apply clarify | |
subgoal premises prems for markb nextb levellistb llb | |
proof - | |
have llb: "Levellist levellistb nextb llb" by fact | |
have wfll_rt: "wf_levellist rt lla llb var" by fact | |
have wfmarking_rt: "wf_marking rt marka markb m" by fact | |
show ?thesis | |
proof (cases rt) | |
case Tip | |
from wfll_rt Tip have lla_llb: "lla = llb" | |
by (simp add: wf_levellist_def) | |
moreover | |
from wfmarking_rt Tip rt have "markb = marka" | |
by (simp add: wf_marking_def) | |
moreover | |
from wfll_lt varsll llb lla_llb | |
obtain var_p_bounds: "var p < length levellistb" "var p < length llb" | |
by (simp add: Levellist_length wf_levellist_def lt_Node Tip) | |
with p_notin_ll lla_llb wfll_lt | |
have p_notin_llb: "\<forall>i < length llb. p \<notin> set (llb ! i)" | |
apply - | |
apply (intro allI impI) | |
apply (clarsimp simp add: wf_levellist_def lt_Node) | |
apply (case_tac "i \<le> var l") | |
apply (drule_tac x=i in spec) | |
using orderedt Tip lt_Node | |
apply clarsimp | |
apply (drule_tac x=i in spec) | |
apply (drule_tac x=i in spec) | |
apply clarsimp | |
done | |
with llb pnN var_p_bounds | |
have llc: "Levellist (levellistb[var p := p]) | |
(nextb(p := levellistb ! var p)) | |
(llb[var p := p # llb ! var p])" | |
apply (clarsimp simp add: Levellist_def map_update) | |
apply (erule_tac x=i in allE) | |
apply (erule_tac x=i in allE) | |
apply clarsimp | |
apply (case_tac "i=var p") | |
apply simp | |
apply simp | |
done | |
ultimately show ?thesis | |
using Tip lt_Node varsll orderedt lt rt pnN wfll_lt wfmarking_lt | |
apply (clarsimp simp add: wf_levellist_def wf_marking_def) | |
apply (intro conjI) | |
apply (rule allI) | |
apply (rule conjI) | |
apply (erule_tac x="q" in allE) | |
apply (case_tac "var p = var q") | |
apply fastforce | |
apply fastforce | |
apply (case_tac "var p = var q") | |
apply hypsubst_thin | |
apply fastforce | |
apply fastforce | |
apply (rule allI) | |
apply (rotate_tac 4) | |
apply (erule_tac x="i" in allE) | |
apply (case_tac "i=var p") | |
apply simp | |
apply (case_tac "var (low p) < i") | |
apply simp | |
apply simp | |
apply (erule exE) | |
apply (rule_tac x="prx" in exI) | |
apply (intro conjI) | |
apply simp | |
apply clarify | |
apply (rotate_tac 15) | |
apply (erule_tac x="pt" in ballE) | |
apply fastforce | |
apply fastforce | |
done | |
next | |
case (Node lrt r rrt) | |
have rt_Node: "rt = Node lrt r rrt" by fact | |
from wfll_rt rt_Node | |
have llb_eq_lla: "length llb = length lla" | |
by (simp add: wf_levellist_def) | |
with llb lla | |
have llb_eq_lla': "length levellistb = length levellista" | |
by (simp add: Levellist_length) | |
from wfll_rt rt_Node | |
have nodes_in_llb: "\<forall>q. q \<in> set_of rt \<longrightarrow> q \<in> set (llb ! (q\<rightarrow>var))" | |
by (simp add: wf_levellist_def) | |
from wfll_rt rt_Node rt | |
have llb_st: "(\<forall> i \<le> (high p)\<rightarrow>var. | |
(\<exists> prx. (llb ! i) = prx@(lla ! i) \<and> | |
(\<forall>pt \<in> set prx. pt \<in> set_of rt \<and> pt\<rightarrow>var = i)))" | |
by (simp add: wf_levellist_def) | |
from wfll_rt rt_Node rt | |
have llb_nc: | |
"\<forall>i. ((high p)\<rightarrow>var) < i \<longrightarrow> (llb ! i) = (lla ! i)" | |
by (simp add: wf_levellist_def) | |
from wfmarking_rt rt_Node rt | |
have mort_nc: "\<forall>n. n \<notin> set_of rt \<longrightarrow> marka n = markb n" | |
by (simp add: wf_marking_def) | |
from wfmarking_rt rt_Node rt | |
have mirt_marked: "\<forall>n. n \<in> set_of rt \<longrightarrow> markb n = m" | |
by (simp add: wf_marking_def) | |
with p_notin_ll wfll_rt wfll_lt | |
have p_notin_llb: "\<forall>i < length llb. p \<notin> set (llb ! i)" | |
apply - | |
apply (intro allI impI) | |
apply (clarsimp simp add: wf_levellist_def lt_Node rt_Node) | |
apply (case_tac "i \<le> var r") | |
apply (drule_tac x=i in spec) | |
using orderedt rt_Node lt_Node | |
apply clarsimp | |
apply (erule disjE) | |
apply clarsimp | |
apply (case_tac "i \<le> var l") | |
apply (drule_tac x=i in spec) | |
apply clarsimp | |
apply clarsimp | |
apply (subgoal_tac "llb ! i = lla ! i") | |
prefer 2 | |
apply clarsimp | |
apply (case_tac "i \<le> var l") | |
apply (drule_tac x=i in spec, erule impE, assumption) | |
apply clarsimp | |
using orderedt rt_Node lt_Node | |
apply clarsimp | |
apply clarsimp | |
done | |
from wfll_lt wfll_rt varsll lla llb | |
obtain var_p_bounds: "var p < length levellistb" "var p < length llb" | |
by (simp add: Levellist_length wf_levellist_def lt_Node rt_Node) | |
with p_notin_llb llb pnN var_p_bounds | |
have llc: "Levellist (levellistb[var p := p]) | |
(nextb(p := levellistb ! var p)) | |
(llb[var p := p # llb ! var p])" | |
apply (clarsimp simp add: Levellist_def map_update) | |
apply (erule_tac x=i in allE) | |
apply (erule_tac x=i in allE) | |
apply clarsimp | |
apply (case_tac "i=var p") | |
apply simp | |
apply simp | |
done | |
then show ?thesis | |
proof (clarsimp) | |
show "wf_levellist (Node lt p rt) ll (llb[var p := p#llb ! var p]) var \<and> | |
wf_marking (Node lt p rt) mark (markb(p := m)) m" | |
proof - | |
have nodes_in_upllb: "\<forall> q. q \<in> set_of (Node lt p rt) | |
\<longrightarrow> q \<in> set (llb[var p :=p # llb ! var p] ! (var q))" | |
apply - | |
apply (rule allI) | |
apply (rule impI) | |
proof - | |
fix q | |
assume q_in_t: "q \<in> set_of (Node lt p rt)" | |
show q_in_upllb: | |
"q \<in> set (llb[var p :=p # llb ! var p] ! (var q))" | |
proof (cases "q \<in> set_of rt") | |
case True | |
with nodes_in_llb have q_in_llb: "q \<in> set (llb ! (var q))" | |
by fastforce | |
from orderedt rt_Node lt_Node lt rt | |
have ordered_rt: "ordered rt var" | |
by fastforce | |
from True rt ordered_rt rt_Node lt lt_Node have "var q \<le> var r" | |
apply - | |
apply (drule subnodes_ordered) | |
apply fastforce | |
apply fastforce | |
apply fastforce | |
done | |
with orderedt rt lt rt_Node lt_Node have "var q < var p" | |
by fastforce | |
then have | |
"llb[var p :=p#llb ! var p] ! var q = | |
llb ! var q" | |
by fastforce | |
with q_in_llb show ?thesis | |
by fastforce | |
next | |
assume q_notin_rt: "q \<notin> set_of rt" | |
show "q \<in> set (llb[var p :=p # llb ! var p] ! var q)" | |
proof (cases "q \<in> set_of lt") | |
case True | |
assume q_in_lt: "q \<in> set_of lt" | |
with nodes_in_lla have q_in_lla: "q \<in> set (lla ! (var q))" | |
by fastforce | |
from orderedt rt_Node lt_Node lt rt | |
have ordered_lt: "ordered lt var" | |
by fastforce | |
from q_in_lt lt ordered_lt rt_Node rt lt_Node | |
have "var q \<le> var l" | |
apply - | |
apply (drule subnodes_ordered) | |
apply fastforce | |
apply fastforce | |
apply fastforce | |
done | |
with orderedt rt lt rt_Node lt_Node have qsp: "var q < var p" | |
by fastforce | |
then show ?thesis | |
proof (cases "var q \<le> var (high p)") | |
case True | |
with llb_st | |
have "\<exists>prx. (llb ! (var q)) = prx@(lla ! (var q))" | |
by fastforce | |
with nodes_in_lla q_in_lla | |
have q_in_llb: "q \<in> set (llb ! (var q))" | |
by fastforce | |
from qsp | |
have "llb[var p :=p#llb ! var p]!var q = | |
llb ! (var q)" | |
by fastforce | |
with q_in_llb show ?thesis | |
by fastforce | |
next | |
assume "\<not> var q \<le> var (high p)" | |
with llb_nc have "llb ! (var q) = lla ! (var q)" | |
by fastforce | |
with q_in_lla have q_in_llb: "q \<in> set (llb ! (var q))" | |
by fastforce | |
from qsp have | |
"llb[var p :=p # llb ! var p] ! var q = llb ! (var q)" | |
by fastforce | |
with q_in_llb show ?thesis | |
by fastforce | |
qed | |
next | |
assume q_notin_lt: "q \<notin> set_of lt" | |
with q_notin_rt rt lt rt_Node lt_Node q_in_t have qp: "q = p" | |
by fastforce | |
with varsll lla_eq_ll llb_eq_lla have "var p < length llb" | |
by fastforce | |
with qp show ?thesis | |
by simp | |
qed | |
qed | |
qed | |
have prx_ll_st: "\<forall>i \<le> var p. | |
(\<exists>prx. llb[var p :=p#llb!var p]!i = prx@(ll!i) \<and> | |
(\<forall>pt \<in> set prx. pt \<in> set_of (Node lt p rt) \<and> var pt = i))" | |
apply - | |
apply (rule allI) | |
apply (rule impI) | |
proof - | |
fix i | |
assume isep: "i \<le> var p" | |
show "\<exists>prx. llb[var p :=p#llb!var p]!i = prx@ll!i \<and> | |
(\<forall>pt\<in>set prx. pt \<in> set_of (Node lt p rt) \<and> var pt = i)" | |
proof (cases "i = var p") | |
case True | |
with orderedt lt lt_Node rt rt_Node | |
have lpsp: "var (low p) < var p" | |
by fastforce | |
with orderedt lt lt_Node rt rt_Node | |
have hpsp: "var (high p) < var p" | |
by fastforce | |
with lpsp lla_nc | |
have llall: "lla ! var p = ll ! var p" | |
by fastforce | |
with hpsp llb_nc have "llb ! var p = ll ! var p" | |
by fastforce | |
with llb_eq_lla lla_eq_ll isep True varsll lt rt show ?thesis | |
apply - | |
apply (rule_tac x="[p]" in exI) | |
apply (rule conjI) | |
apply simp | |
apply (rule ballI) | |
apply fastforce | |
done | |
next | |
assume inp: " i \<noteq> var p" | |
show ?thesis | |
proof (cases "var (low p) < i") | |
case True | |
with lla_nc have llall: "lla ! i = ll ! i" | |
by fastforce | |
assume vpsi: "var (low p) < i" | |
show ?thesis | |
proof (cases "var (high p) < i") | |
case True | |
with llall llb_nc have "llb ! i = ll ! i" | |
by fastforce | |
with inp True vpsi varsll lt rt show ?thesis | |
apply - | |
apply (rule_tac x="[]" in exI) | |
apply (rule conjI) | |
apply simp | |
apply (rule ballI) | |
apply fastforce | |
done | |
next | |
assume isehp: " \<not> var (high p) < i" | |
with vpsi lla_nc have lla_ll: "lla ! i = ll ! i" | |
by fastforce | |
with isehp llb_st | |
have prx_lla: "\<exists>prx. llb ! i = prx @ lla ! i \<and> | |
(\<forall>pt\<in>set prx. pt \<in> set_of rt \<and> var pt = i)" | |
apply - | |
apply (erule_tac x="i" in allE) | |
apply simp | |
done | |
with lla_ll inp rt show ?thesis | |
apply - | |
apply (erule exE) | |
apply (rule_tac x="prx" in exI) | |
apply simp | |
done | |
qed | |
next | |
assume iselp: "\<not> var (low p) < i" | |
show ?thesis | |
proof (cases "var (high p) < i") | |
case True | |
with llb_nc have llb_ll: "llb ! i = lla ! i" | |
by fastforce | |
with iselp lla_st | |
have prx_ll: "\<exists>prx. lla ! i = prx @ ll ! i \<and> | |
(\<forall>pt\<in>set prx. pt \<in> set_of lt \<and> var pt = i)" | |
apply - | |
apply (erule_tac x="i" in allE) | |
apply simp | |
done | |
with llb_ll inp lt show ?thesis | |
apply - | |
apply (erule exE) | |
apply (rule_tac x="prx" in exI) | |
apply simp | |
done | |
next | |
assume isehp: " \<not> var (high p) < i" | |
from iselp lla_st | |
have prxl: "\<exists>prx. lla ! i = prx @ ll ! i \<and> | |
(\<forall>pt\<in>set prx. pt \<in> set_of lt \<and> var pt = i)" | |
by fastforce | |
from isehp llb_st | |
have prxh: "\<exists>prx. llb ! i = prx @ lla ! i \<and> | |
(\<forall>pt\<in>set prx. pt \<in> set_of rt \<and> var pt = i)" | |
by fastforce | |
with prxl inp lt pnN rt show ?thesis | |
apply - | |
apply (elim exE) | |
apply (rule_tac x="prxa @ prx" in exI) | |
apply simp | |
apply (elim conjE) | |
apply fastforce | |
done | |
qed | |
qed | |
qed | |
qed | |
have big_Nodes_nc: "\<forall>i. (p->var) < i | |
\<longrightarrow> (llb[var p :=p # llb ! var p]) ! i = ll ! i" | |
apply - | |
apply (rule allI) | |
apply (rule impI) | |
proof - | |
fix i | |
assume psi: "var p < i" | |
with orderedt lt rt lt_Node rt_Node have lpsi: "var (low p) < i" | |
by fastforce | |
with lla_nc have lla_ll: "lla ! i = ll ! i" | |
by fastforce | |
from psi orderedt lt rt lt_Node rt_Node have hpsi: "var (high p) < i" | |
by fastforce | |
with llb_nc have llb_lla: "llb ! i = lla ! i" | |
by fastforce | |
from psi | |
have upllb_llb: "llb[var p :=p#llb!var p]!i = llb!i" | |
by fastforce | |
from upllb_llb llb_lla lla_ll | |
show "llb[var p :=p # llb ! var p] ! i = ll ! i" | |
by fastforce | |
qed | |
from lla_eq_ll llb_eq_lla | |
have length_eq: "length (llb[var p :=p # llb ! var p]) = length ll" | |
by fastforce | |
from length_eq big_Nodes_nc prx_ll_st nodes_in_upllb | |
have wf_ll_upllb: | |
"wf_levellist (Node lt p rt) ll (llb[var p :=p # llb ! var p]) var" | |
by (simp add: wf_levellist_def) | |
have mark_nc: | |
"\<forall> n. n \<notin> set_of (Node lt p rt) \<longrightarrow> (markb(p:=m)) n = mark n" | |
apply - | |
apply (rule allI) | |
apply (rule impI) | |
proof - | |
fix n | |
assume nnit: "n \<notin> set_of (Node lt p rt)" | |
with lt rt have nnilt: " n \<notin> set_of lt" | |
by fastforce | |
from nnit lt rt have nnirt: " n \<notin> set_of rt" | |
by fastforce | |
with nnilt mot_nc mort_nc have mb_eq_m: "markb n = mark n" | |
by fastforce | |
from nnit have "n\<noteq>p" | |
by fastforce | |
then have upmarkb_markb: "(markb(p :=m)) n = markb n" | |
by fastforce | |
with mb_eq_m show "(markb(p :=m)) n = mark n" | |
by fastforce | |
qed | |
have mark_c: "\<forall> n. n \<in> set_of (Node lt p rt) \<longrightarrow> (markb(p :=m)) n = m" | |
apply - | |
apply (intro allI) | |
apply (rule impI) | |
proof - | |
fix n | |
assume nint: " n \<in> set_of (Node lt p rt)" | |
show "(markb(p :=m)) n = m" | |
proof (cases "n=p") | |
case True | |
then show ?thesis | |
by fastforce | |
next | |
assume nnp: " n \<noteq> p" | |
show ?thesis | |
proof (cases "n \<in> set_of rt") | |
case True | |
with mirt_marked have "markb n = m" | |
by fastforce | |
with nnp show ?thesis | |
by fastforce | |
next | |
assume nninrt: " n \<notin> set_of rt" | |
with nint nnp have ninlt: "n \<in> set_of lt" | |
by fastforce | |
with mit_marked have marka_m: "marka n = m" | |
by fastforce | |
from mort_nc nninrt have "marka n = markb n" | |
by fastforce | |
with marka_m have "markb n = m" | |
by fastforce | |
with nnp show ?thesis | |
by fastforce | |
qed | |
qed | |
qed | |
from mark_c mark_nc | |
have wf_mark: "wf_marking (Node lt p rt) mark (markb(p :=m)) m" | |
by (simp add: wf_marking_def) | |
with wf_ll_upllb show ?thesis | |
by fastforce | |
qed | |
qed | |
qed | |
qed | |
done | |
qed | |
done | |
qed | |
next | |
fix var low high p lt rt and levellist and | |
ll::"ref list list" and mark::"ref \<Rightarrow> bool" and "next" | |
assume pnN: "p \<noteq> Null" | |
assume ll: "Levellist levellist next ll" | |
assume vpsll: "var p < length levellist" | |
assume orderedt: "ordered (Node lt p rt) var" | |
assume marked_child_ll: "\<forall>n\<in>set_of (Node lt p rt). | |
if mark n = mark p | |
then n \<in> set (ll ! var n) \<and> | |
(\<forall>nt pa. Dag n low high nt \<and> pa \<in> set_of nt \<longrightarrow> mark pa = mark p) | |
else n \<notin> set (concat ll)" | |
assume lt: "Dag (low p) low high lt" | |
assume rt: "Dag (high p) low high rt" | |
show "wf_levellist (Node lt p rt) ll ll var \<and> | |
wf_marking (Node lt p rt) mark mark (mark p)" | |
proof - | |
from marked_child_ll pnN lt rt have marked_st: | |
"(\<forall>pa. pa \<in> set_of (Node lt p rt) \<longrightarrow> mark pa = mark p)" | |
apply - | |
apply (drule_tac x="p" in bspec) | |
apply simp | |
apply (clarsimp) | |
apply (erule_tac x="(Node lt p rt)" in allE) | |
apply simp | |
done | |
have nodest_in_ll: | |
"\<forall>q. q \<in> set_of (Node lt p rt) \<longrightarrow> q \<in> set (ll ! var q)" | |
proof - | |
from marked_child_ll pnN have pinll: "p \<in> set (ll ! var p)" | |
apply - | |
apply (drule_tac x="p" in bspec) | |
apply simp | |
apply fastforce | |
done | |
from marked_st marked_child_ll lt rt show ?thesis | |
apply - | |
apply (rule allI) | |
apply (erule_tac x="q" in allE) | |
apply (rule impI) | |
apply (erule impE) | |
apply assumption | |
apply (drule_tac x="q" in bspec) | |
apply simp | |
apply fastforce | |
done | |
qed | |
have levellist_nc: "\<forall> i \<le> var p. (\<exists> prx. ll ! i = prx@(ll ! i) \<and> | |
(\<forall> pt \<in> set prx. pt \<in> set_of (Node lt p rt) \<and> var pt = i))" | |
apply - | |
apply (rule allI) | |
apply (rule impI) | |
apply (rule_tac x="[]" in exI) | |
apply fastforce | |
done | |
have ll_nc: "\<forall> i. (var p) < i \<longrightarrow> ll ! i = ll ! i" | |
by fastforce | |
have length_ll: "length ll = length ll" | |
by fastforce | |
with ll_nc levellist_nc nodest_in_ll | |
have wf: "wf_levellist (Node lt p rt) ll ll var" | |
by (simp add: wf_levellist_def) | |
have m_nc: "\<forall> n. n \<notin> set_of (Node lt p rt) \<longrightarrow> mark n = mark n" | |
by fastforce | |
from marked_st have "\<forall> n. n \<in> set_of (Node lt p rt) \<longrightarrow> mark n = mark p" | |
by fastforce | |
with m_nc have " wf_marking (Node lt p rt) mark mark (mark p)" | |
by (simp add: wf_marking_def) | |
with wf show ?thesis | |
by fastforce | |
qed | |
qed | |
lemma allD: "\<forall>ll. P ll \<Longrightarrow> P ll" | |
by blast | |
lemma replicate_spec: "\<lbrakk>\<forall>i < n. xs ! i = x; n=length xs\<rbrakk> | |
\<Longrightarrow> replicate (length xs) x = xs" | |
apply hypsubst_thin | |
apply (induct xs) | |
apply simp | |
apply force | |
done | |
lemma (in Levellist_impl) Levellist_spec_total: | |
shows "\<forall>\<sigma> t. \<Gamma>,\<Theta>\<turnstile>\<^sub>t | |
\<lbrace>\<sigma>. Dag \<acute>p \<acute>low \<acute>high t \<and> (\<forall>i < length \<acute>levellist. \<acute>levellist ! i = Null) \<and> | |
length \<acute>levellist = \<acute>p \<rightarrow> \<acute>var + 1 \<and> | |
ordered t \<acute>var \<and> (\<forall>n \<in> set_of t. \<acute>mark n = (\<not> \<acute>m) )\<rbrace> | |
\<acute>levellist :== PROC Levellist (\<acute>p, \<acute>m, \<acute>levellist) | |
\<lbrace>\<exists>ll. Levellist \<acute>levellist \<acute>next ll \<and> wf_ll t ll \<^bsup>\<sigma>\<^esup>var \<and> | |
length \<acute>levellist = \<^bsup>\<sigma>\<^esup>p \<rightarrow> \<^bsup>\<sigma>\<^esup>var + 1 \<and> | |
wf_marking t \<^bsup>\<sigma>\<^esup>mark \<acute>mark \<^bsup>\<sigma>\<^esup>m \<and> | |
(\<forall>p. p \<notin> set_of t \<longrightarrow> \<^bsup>\<sigma>\<^esup>next p = \<acute>next p)\<rbrace>" | |
apply (hoare_rule HoareTotal.conseq) | |
apply (rule_tac ll="replicate (\<^bsup>\<sigma>\<^esup>p\<rightarrow>\<^bsup>\<sigma>\<^esup>var + 1) []" in allD [OF Levellist_spec_total']) | |
apply (intro allI impI) | |
apply (rule_tac x=\<sigma> in exI) | |
apply (rule_tac x=t in exI) | |
apply (rule conjI) | |
apply (clarsimp split:if_split_asm simp del: concat_replicate_trivial) | |
apply (frule replicate_spec [symmetric]) | |
apply (simp) | |
apply (clarsimp simp add: Levellist_def ) | |
apply (case_tac i) | |
apply simp | |
apply simp | |
apply (simp add: Collect_conv_if split:if_split_asm) | |
apply vcg_step | |
apply (elim exE conjE) | |
apply (rule_tac x=ll' in exI) | |
apply simp | |
apply (thin_tac "\<forall>p. p \<notin> set_of t \<longrightarrow> next p = nexta p") | |
apply (simp add: wf_levellist_def wf_ll_def) | |
apply (case_tac "t = Tip") | |
apply simp | |
apply (rule conjI) | |
apply clarsimp | |
apply (case_tac k) | |
apply simp | |
apply simp | |
apply (subgoal_tac "length ll'=Suc (var Null)") | |
apply (simp add: Levellist_length) | |
apply fastforce | |
apply (split dag.splits) | |
apply simp | |
apply (elim conjE) | |
apply (intro conjI) | |
apply (rule allI) | |
apply (erule_tac x="pa" in allE) | |
apply clarify | |
prefer 2 | |
apply (simp add: Levellist_length) | |
apply (rule allI) | |
apply (rule impI) | |
apply (rule ballI) | |
apply (rotate_tac 11) | |
apply (erule_tac x="k" in allE) | |
apply (rename_tac dag1 ref dag2 k pa) | |
apply (subgoal_tac "k <= var ref") | |
prefer 2 | |
apply (subgoal_tac "ref = p") | |
apply simp | |
apply clarify | |
apply (erule_tac ?P = "Dag p low high (Node dag1 ref dag2)" in rev_mp) | |
apply (simp (no_asm)) | |
apply (rotate_tac 14) | |
apply (erule_tac x=k in allE) | |
apply clarify | |
apply (erule_tac x=k in allE) | |
apply clarify | |
apply (case_tac k) | |
apply simp | |
apply simp | |
done | |
end | |