Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: BDD | |
Author: Veronika Ortner and Norbert Schirmer, 2004 | |
Maintainer: Norbert Schirmer, norbert.schirmer at web de | |
License: LGPL | |
*) | |
(* | |
ShareRepProof.thy | |
Copyright (C) 2004-2008 Veronika Ortner and Norbert Schirmer | |
Some rights reserved, TU Muenchen | |
This library is free software; you can redistribute it and/or modify | |
it under the terms of the GNU Lesser General Public License as | |
published by the Free Software Foundation; either version 2.1 of the | |
License, or (at your option) any later version. | |
This library is distributed in the hope that it will be useful, but | |
WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
Lesser General Public License for more details. | |
You should have received a copy of the GNU Lesser General Public | |
License along with this library; if not, write to the Free Software | |
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 | |
USA | |
*) | |
section \<open>Proof of Procedure ShareRep\<close> | |
theory ShareRepProof imports ProcedureSpecs Simpl.HeapList begin | |
lemma (in ShareRep_impl) ShareRep_modifies: | |
shows "\<forall>\<sigma>. \<Gamma>\<turnstile>{\<sigma>} PROC ShareRep (\<acute>nodeslist, \<acute>p) | |
{t. t may_only_modify_globals \<sigma> in [rep]}" | |
apply (hoare_rule HoarePartial.ProcRec1) | |
apply (vcg spec=modifies) | |
done | |
lemma hd_filter_cons: | |
"\<And> i. \<lbrakk> P (xs ! i) p; i < length xs; \<forall> no \<in> set (take i xs). \<not> P no p; \<forall> a b. P a b = P b a\<rbrakk> | |
\<Longrightarrow> xs ! i = hd (filter (P p) xs)" | |
apply (induct xs) | |
apply simp | |
apply (case_tac "P a p") | |
apply simp | |
apply (case_tac i) | |
apply simp | |
apply simp | |
apply (case_tac i) | |
apply simp | |
apply auto | |
done | |
lemma (in ShareRep_impl) ShareRep_spec_total: | |
shows | |
"\<forall>\<sigma> ns. \<Gamma>,\<Theta>\<turnstile>\<^sub>t | |
\<lbrace>\<sigma>. List \<acute>nodeslist \<acute>next ns \<and> | |
(\<forall>no \<in> set ns. no \<noteq> Null \<and> | |
((no\<rightarrow>\<acute>low = Null) = (no\<rightarrow>\<acute>high = Null)) \<and> | |
(isLeaf_pt \<acute>p \<acute>low \<acute>high \<longrightarrow> isLeaf_pt no \<acute>low \<acute>high) \<and> | |
no\<rightarrow>\<acute>var = \<acute>p\<rightarrow>\<acute>var) \<and> | |
\<acute>p \<in> set ns\<rbrace> | |
PROC ShareRep (\<acute>nodeslist, \<acute>p) | |
\<lbrace> (\<^bsup>\<sigma>\<^esup>p \<rightarrow> \<acute>rep = hd (filter (\<lambda> sn. repNodes_eq sn \<^bsup>\<sigma>\<^esup>p \<^bsup>\<sigma>\<^esup>low \<^bsup>\<sigma>\<^esup>high \<^bsup>\<sigma>\<^esup>rep) ns)) \<and> | |
(\<forall>pt. pt \<noteq> \<^bsup>\<sigma>\<^esup>p \<longrightarrow> pt\<rightarrow>\<^bsup>\<sigma>\<^esup>rep = pt\<rightarrow>\<acute>rep) \<and> | |
(\<^bsup>\<sigma>\<^esup>p\<rightarrow>\<acute>rep\<rightarrow>\<^bsup>\<sigma>\<^esup>var = \<^bsup>\<sigma>\<^esup>p \<rightarrow> \<^bsup>\<sigma>\<^esup>var)\<rbrace>" | |
apply (hoare_rule HoareTotal.ProcNoRec1) | |
apply (hoare_rule anno= | |
"IF (isLeaf_pt \<acute>p \<acute>low \<acute>high) | |
THEN \<acute>p \<rightarrow> \<acute>rep :== \<acute>nodeslist | |
ELSE | |
WHILE (\<acute>nodeslist \<noteq> Null) | |
INV \<lbrace>\<exists>prx sfx. List \<acute>nodeslist \<acute>next sfx \<and> ns=prx@sfx \<and> | |
\<not> isLeaf_pt \<acute>p \<acute>low \<acute>high \<and> | |
(\<forall>no \<in> set ns. no \<noteq> Null \<and> | |
((no\<rightarrow>\<^bsup>\<sigma>\<^esup>low = Null) = (no\<rightarrow>\<^bsup>\<sigma>\<^esup>high = Null)) \<and> | |
(isLeaf_pt \<^bsup>\<sigma>\<^esup>p \<^bsup>\<sigma>\<^esup>low \<^bsup>\<sigma>\<^esup>high \<longrightarrow> isLeaf_pt no \<^bsup>\<sigma>\<^esup>low \<^bsup>\<sigma>\<^esup>high) \<and> | |
no\<rightarrow>\<^bsup>\<sigma>\<^esup>var = \<^bsup>\<sigma>\<^esup>p\<rightarrow>\<^bsup>\<sigma>\<^esup>var) \<and> | |
\<^bsup>\<sigma>\<^esup>p \<in> set ns \<and> | |
((\<exists>pt \<in> set prx. repNodes_eq pt \<^bsup>\<sigma>\<^esup>p \<^bsup>\<sigma>\<^esup>low \<^bsup>\<sigma>\<^esup>high \<^bsup>\<sigma>\<^esup>rep) | |
\<longrightarrow> \<acute>rep \<^bsup>\<sigma>\<^esup>p = hd (filter (\<lambda> sn. repNodes_eq sn \<^bsup>\<sigma>\<^esup>p \<^bsup>\<sigma>\<^esup>low \<^bsup>\<sigma>\<^esup>high \<^bsup>\<sigma>\<^esup>rep) prx) \<and> | |
(\<forall>pt. pt \<noteq> \<^bsup>\<sigma>\<^esup>p \<longrightarrow> pt\<rightarrow>\<^bsup>\<sigma>\<^esup>rep = pt\<rightarrow>\<acute>rep)) \<and> | |
((\<forall>pt \<in> set prx. \<not> repNodes_eq pt \<^bsup>\<sigma>\<^esup>p \<^bsup>\<sigma>\<^esup>low \<^bsup>\<sigma>\<^esup>high \<^bsup>\<sigma>\<^esup>rep) \<longrightarrow> \<^bsup>\<sigma>\<^esup>rep = \<acute>rep) \<and> | |
(\<acute>nodeslist \<noteq> Null \<longrightarrow> | |
(\<forall>pt \<in> set prx. \<not> repNodes_eq pt \<^bsup>\<sigma>\<^esup>p \<^bsup>\<sigma>\<^esup>low \<^bsup>\<sigma>\<^esup>high \<^bsup>\<sigma>\<^esup>rep)) \<and> | |
(\<acute>p = \<^bsup>\<sigma>\<^esup>p \<and> \<acute>high = \<^bsup>\<sigma>\<^esup>high \<and> \<acute>low = \<^bsup>\<sigma>\<^esup>low)\<rbrace> | |
VAR MEASURE (length (list \<acute>nodeslist \<acute>next)) | |
DO | |
IF (repNodes_eq \<acute>nodeslist \<acute>p \<acute>low \<acute>high \<acute>rep) | |
THEN \<acute>p\<rightarrow>\<acute>rep :== \<acute>nodeslist;; \<acute>nodeslist :== Null | |
ELSE \<acute>nodeslist :== \<acute>nodeslist\<rightarrow>\<acute>next | |
FI | |
OD | |
FI" in HoareTotal.annotateI) | |
apply vcg | |
using [[simp_depth_limit = 2]] | |
apply (rule conjI) | |
apply clarify | |
apply (simp (no_asm_use)) | |
prefer 2 | |
apply clarify | |
apply (rule_tac x="[]" in exI) | |
apply (rule_tac x=ns in exI) | |
apply (simp (no_asm_use)) | |
prefer 2 | |
apply clarify | |
apply (rule conjI) | |
apply clarify | |
apply (rule conjI) | |
apply (clarsimp simp add: List_list) (* solving termination contraint *) | |
apply (simp (no_asm_use)) | |
apply (rule conjI) | |
apply assumption | |
prefer 2 | |
apply clarify | |
apply (simp (no_asm_use)) | |
apply (rule conjI) | |
apply (clarsimp simp add: List_list) (* solving termination constraint *) | |
apply (simp only: List_not_Null simp_thms triv_forall_equality) | |
apply clarify | |
apply (simp only: triv_forall_equality) | |
apply (rename_tac sfx) | |
apply (rule_tac x="prx@[nodeslist]" in exI) | |
apply (rule_tac x="sfx" in exI) | |
apply (rule conjI) | |
apply assumption | |
apply (rule conjI) | |
apply simp | |
prefer 4 | |
apply (elim exE conjE) | |
apply (simp (no_asm_use)) | |
apply hypsubst | |
using [[simp_depth_limit = 100]] | |
proof - | |
(* IF-THEN to postcondition *) | |
fix ns var low high rep "next" p nodeslist | |
assume ns: "List nodeslist next ns" | |
assume no_prop: "\<forall>no\<in>set ns. | |
no \<noteq> Null \<and> | |
(low no = Null) = (high no = Null) \<and> | |
(isLeaf_pt p low high \<longrightarrow> isLeaf_pt no low high) \<and> var no = var p" | |
assume p_in_ns: "p \<in> set ns" | |
assume p_Leaf: "isLeaf_pt p low high" | |
show "nodeslist = hd [sn\<leftarrow>ns . repNodes_eq sn p low high rep] \<and> | |
var nodeslist = var p" | |
proof - | |
from p_in_ns no_prop have p_not_Null: "p\<noteq>Null" | |
using [[simp_depth_limit=2]] | |
by auto | |
from p_in_ns have "ns \<noteq> []" | |
by (cases ns) auto | |
with ns obtain ns' where ns': "ns = nodeslist#ns'" | |
by (cases "nodeslist=Null") auto | |
with no_prop p_Leaf obtain | |
"isLeaf_pt nodeslist low high" and | |
var_eq: "var nodeslist = var p" and | |
"nodeslist\<noteq>Null" | |
using [[simp_depth_limit=2]] | |
by auto | |
with p_not_Null p_Leaf have "repNodes_eq nodeslist p low high rep" | |
by (simp add: repNodes_eq_def isLeaf_pt_def null_comp_def) | |
with ns' var_eq | |
show ?thesis | |
by simp | |
qed | |
next | |
(* From invariant to postcondition *) | |
fix var::"ref\<Rightarrow>nat" and low high rep repa p prx sfx "next" | |
assume sfx: "List Null next sfx" | |
assume p_in_ns: "p \<in> set (prx @ sfx)" | |
assume no_props: "\<forall>no\<in>set (prx @ sfx). | |
no \<noteq> Null \<and> | |
(low no = Null) = (high no = Null) \<and> | |
(isLeaf_pt p low high \<longrightarrow> isLeaf_pt no low high) \<and> var no = var p" | |
assume match_prx: "(\<exists>pt\<in>set prx. repNodes_eq pt p low high rep) \<longrightarrow> | |
repa p = hd [sn\<leftarrow>prx . repNodes_eq sn p low high rep] \<and> | |
(\<forall>pt. pt \<noteq> p \<longrightarrow> rep pt = repa pt)" | |
show "repa p = hd [sn\<leftarrow>prx @ sfx . repNodes_eq sn p low high rep] \<and> | |
(\<forall>pt. pt \<noteq> p \<longrightarrow> rep pt = repa pt) \<and> var (repa p) = var p" | |
proof - | |
from sfx | |
have sfx_Nil: "sfx=[]" | |
by simp | |
with p_in_ns have ex_match: "(\<exists>pt\<in>set prx. repNodes_eq pt p low high rep)" | |
apply - | |
apply (rule_tac x=p in bexI) | |
apply (simp add: repNodes_eq_def) | |
apply simp | |
done | |
hence not_empty: "[sn\<leftarrow>prx . repNodes_eq sn p low high rep] \<noteq> []" | |
apply - | |
apply (erule bexE) | |
apply (rule filter_not_empty) | |
apply auto | |
done | |
from ex_match match_prx obtain | |
found: "repa p = hd [sn\<leftarrow>prx . repNodes_eq sn p low high rep]" and | |
unmodif: "\<forall>pt. pt \<noteq> p \<longrightarrow> rep pt = repa pt" | |
by blast | |
from hd_filter_in_list [OF not_empty] found | |
have "repa p \<in> set prx" | |
by simp | |
with no_props | |
have "var (repa p) = var p" | |
using [[simp_depth_limit=2]] | |
by simp | |
with found unmodif sfx_Nil | |
show ?thesis | |
by simp | |
qed | |
next | |
(* Invariant to invariant; ELSE part *) | |
fix var low high p repa "next" nodeslist prx sfx | |
assume nodeslist_not_Null: "nodeslist \<noteq> Null" | |
assume p_no_Leaf: "\<not> isLeaf_pt p low high" | |
assume no_props: "\<forall>no\<in>set prx \<union> set (nodeslist # sfx). | |
no \<noteq> Null \<and> (low no = Null) = (high no = Null) \<and> var no = var p" | |
assume p_in_ns: "p \<in> set prx \<or> p \<in> set (nodeslist # sfx)" | |
assume match_prx: "(\<exists>pt\<in>set prx. repNodes_eq pt p low high repa) \<longrightarrow> | |
repa p = hd [sn\<leftarrow>prx . repNodes_eq sn p low high repa]" | |
assume nomatch_prx: "\<forall>pt\<in>set prx. \<not> repNodes_eq pt p low high repa" | |
assume nomatch_nodeslist: "\<not> repNodes_eq nodeslist p low high repa" | |
assume sfx: "List (next nodeslist) next sfx" | |
show "(\<forall>no\<in>set prx \<union> set (nodeslist # sfx). | |
no \<noteq> Null \<and> (low no = Null) = (high no = Null) \<and> var no = var p) \<and> | |
((\<exists>pt\<in>set (prx @ [nodeslist]). repNodes_eq pt p low high repa) \<longrightarrow> | |
repa p = hd [sn\<leftarrow>prx @ [nodeslist] . repNodes_eq sn p low high repa]) \<and> | |
(next nodeslist \<noteq> Null \<longrightarrow> | |
(\<forall>pt\<in>set (prx @ [nodeslist]). \<not> repNodes_eq pt p low high repa))" | |
proof - | |
from nomatch_prx nomatch_nodeslist | |
have "((\<exists>pt\<in>set (prx @ [nodeslist]). repNodes_eq pt p low high repa) \<longrightarrow> | |
repa p = hd [sn\<leftarrow>prx @ [nodeslist] . repNodes_eq sn p low high repa])" | |
by auto | |
moreover | |
from nomatch_prx nomatch_nodeslist | |
have "(next nodeslist \<noteq> Null \<longrightarrow> | |
(\<forall>pt\<in>set (prx @ [nodeslist]). \<not> repNodes_eq pt p low high repa))" | |
by auto | |
ultimately show ?thesis | |
using no_props | |
by (intro conjI) | |
qed | |
next | |
(* Invariant to invariant: THEN part *) | |
fix var low high p repa "next" nodeslist prx sfx | |
assume nodeslist_not_Null: "nodeslist \<noteq> Null" | |
assume sfx: "List nodeslist next sfx" | |
assume p_not_Leaf: "\<not> isLeaf_pt p low high" | |
assume no_props: "\<forall>no\<in>set prx \<union> set sfx. | |
no \<noteq> Null \<and> | |
(low no = Null) = (high no = Null) \<and> | |
(isLeaf_pt p low high \<longrightarrow> isLeaf_pt no low high) \<and> var no = var p" | |
assume p_in_ns: "p \<in> set prx \<or> p \<in> set sfx" | |
assume match_prx: "(\<exists>pt\<in>set prx. repNodes_eq pt p low high repa) \<longrightarrow> | |
repa p = hd [sn\<leftarrow>prx . repNodes_eq sn p low high repa]" | |
assume nomatch_prx: "\<forall>pt\<in>set prx. \<not> repNodes_eq pt p low high repa" | |
assume match: "repNodes_eq nodeslist p low high repa" | |
show "(\<forall>no\<in>set prx \<union> set sfx. | |
no \<noteq> Null \<and> | |
(low no = Null) = (high no = Null) \<and> | |
(isLeaf_pt p low high \<longrightarrow> isLeaf_pt no low high) \<and> var no = var p) \<and> | |
(p \<in> set prx \<or> p \<in> set sfx) \<and> | |
((\<exists>pt\<in>set prx \<union> set sfx. repNodes_eq pt p low high repa) \<longrightarrow> | |
nodeslist = | |
hd ([sn\<leftarrow>prx . repNodes_eq sn p low high repa] @ | |
[sn\<leftarrow>sfx . repNodes_eq sn p low high repa])) \<and> | |
((\<forall>pt\<in>set prx \<union> set sfx. \<not> repNodes_eq pt p low high repa) \<longrightarrow> | |
repa = repa(p := nodeslist))" | |
proof - | |
from nodeslist_not_Null sfx | |
obtain sfx' where sfx': "sfx=nodeslist#sfx'" | |
by (cases "nodeslist=Null") auto | |
from nomatch_prx match sfx' | |
have hd: "hd ([sn\<leftarrow>prx . repNodes_eq sn p low high repa] @ | |
[sn\<leftarrow>sfx . repNodes_eq sn p low high repa]) = nodeslist" | |
by simp | |
from match sfx' | |
have triv: "((\<forall>pt\<in>set prx \<union> set sfx. \<not> repNodes_eq pt p low high repa) \<longrightarrow> | |
repa = repa(p := nodeslist))" | |
by simp | |
show ?thesis | |
apply (rule conjI) | |
apply (rule no_props) | |
apply (intro conjI) | |
apply (rule p_in_ns) | |
apply (simp add: hd) | |
apply (rule triv) | |
done | |
qed | |
qed | |
end | |