Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
theory BTree_ImpSplit | |
imports | |
BTree_ImpSet | |
BTree_Split | |
Imperative_Loops | |
begin | |
section "Imperative split operations" | |
text "So far, we have only given a functional specification of a possible split. | |
We will now provide imperative split functions that refine the functional specification. | |
However, rather than tracing the execution of the abstract specification, | |
the imperative versions are implemented using while-loops." | |
subsection "Linear split" | |
text "The linear split is the most simple split function for binary trees. | |
It serves a good example on how to use while-loops in Imperative/HOL | |
and how to prove Hoare-Triples about its application using loop invariants." | |
definition lin_split :: "('a::heap \<times> 'b::{heap,linorder}) pfarray \<Rightarrow> 'b \<Rightarrow> nat Heap" | |
where | |
"lin_split \<equiv> \<lambda> (a,n) p. do { | |
i \<leftarrow> heap_WHILET | |
(\<lambda>i. if i<n then do { | |
(_,s) \<leftarrow> Array.nth a i; | |
return (s<p) | |
} else return False) | |
(\<lambda>i. return (i+1)) | |
0; | |
return i | |
}" | |
lemma lin_split_rule: " | |
< is_pfa c xs (a,n)> | |
lin_split (a,n) p | |
<\<lambda>i. is_pfa c xs (a,n) * \<up>(i\<le>n \<and> (\<forall>j<i. snd (xs!j) < p) \<and> (i<n \<longrightarrow> snd (xs!i)\<ge>p))>\<^sub>t" | |
unfolding lin_split_def | |
supply R = heap_WHILET_rule''[where | |
R = "measure (\<lambda>i. n - i)" | |
and I = "\<lambda>i. is_pfa c xs (a,n) * \<up>(i\<le>n \<and> (\<forall>j<i. snd (xs!j) < p))" | |
and b = "\<lambda>i. i<n \<and> snd (xs!i) < p" | |
and Q="\<lambda>i. is_pfa c xs (a,n) * \<up>(i\<le>n \<and> (\<forall>j<i. snd (xs!j) < p) \<and> (i<n \<longrightarrow> snd (xs!i)\<ge>p))" | |
] | |
thm R | |
apply (sep_auto decon: R simp: less_Suc_eq is_pfa_def) [] | |
apply (metis nth_take snd_eqD) | |
apply (metis nth_take snd_eqD) | |
apply (sep_auto simp: is_pfa_def less_Suc_eq)+ | |
apply (metis nth_take) | |
apply(sep_auto simp: is_pfa_def) | |
apply (metis le_simps(3) less_Suc_eq less_le_trans nth_take) | |
apply(sep_auto simp: is_pfa_def)+ | |
done | |
subsection "Binary split" | |
text "To obtain an efficient B-Tree implementation, we prefer a binary split | |
function. | |
To explore the searching procedure | |
and the resulting proof, we first implement the split on singleton arrays." | |
definition bin'_split :: "'b::{heap,linorder} array_list \<Rightarrow> 'b \<Rightarrow> nat Heap" | |
where | |
"bin'_split \<equiv> \<lambda>(a,n) p. do { | |
(low',high') \<leftarrow> heap_WHILET | |
(\<lambda>(low,high). return (low < high)) | |
(\<lambda>(low,high). let mid = ((low + high) div 2) in | |
do { | |
s \<leftarrow> Array.nth a mid; | |
if p < s then | |
return (low, mid) | |
else if p > s then | |
return (mid+1, high) | |
else return (mid,mid) | |
}) | |
(0::nat,n); | |
return low' | |
}" | |
thm sorted_wrt_nth_less | |
(* alternative: replace (\<forall>j<l. xs!j < p) by (l > 0 \<longrightarrow> xs!(l-1) < p)*) | |
lemma bin'_split_rule: " | |
sorted_less xs \<Longrightarrow> | |
< is_pfa c xs (a,n)> | |
bin'_split (a,n) p | |
<\<lambda>l. is_pfa c xs (a,n) * \<up>(l \<le> n \<and> (\<forall>j<l. xs!j < p) \<and> (l<n \<longrightarrow> xs!l\<ge>p)) >\<^sub>t" | |
unfolding bin'_split_def | |
supply R = heap_WHILET_rule''[where | |
R = "measure (\<lambda>(l,h). h-l)" | |
and I = "\<lambda>(l,h). is_pfa c xs (a,n) * \<up>(l\<le>h \<and> h \<le> n \<and> (\<forall>j<l. xs!j < p) \<and> (h<n \<longrightarrow> xs!h\<ge>p))" | |
and b = "\<lambda>(l,h). l<h" | |
and Q="\<lambda>(l,h). is_pfa c xs (a,n) * \<up>(l \<le> n \<and> (\<forall>j<l. xs!j < p) \<and> (l<n \<longrightarrow> xs!l\<ge>p))" | |
] | |
thm R | |
apply (sep_auto decon: R simp: less_Suc_eq is_pfa_def) [] | |
subgoal for l' aa l'a aaa ba j | |
proof - | |
assume 0: "n \<le> length l'a" | |
assume a: "l'a ! ((aa + n) div 2) < p" | |
moreover assume "aa < n" | |
ultimately have b: "((aa+n)div 2) < n" | |
by linarith | |
then have "(take n l'a) ! ((aa + n) div 2) < p" | |
using a by auto | |
moreover assume "sorted_less (take n l'a)" | |
ultimately have "\<And>j. j < (aa+n)div 2 \<Longrightarrow> (take n l'a) ! j < (take n l'a) ! ((aa + n) div 2)" | |
using | |
sorted_wrt_nth_less[where ?P="(<)" and xs="(take n l'a)" and ?j="((aa + n) div 2)"] | |
a b "0" by auto | |
moreover fix j assume "j < (aa+n) div 2" | |
ultimately show "l'a ! j < p" using "0" b | |
using \<open>take n l'a ! ((aa + n) div 2) < p\<close> dual_order.strict_trans by auto | |
qed | |
subgoal for l' aa b l'a aaa ba j | |
proof - | |
assume t0: "n \<le> length l'a" | |
assume t1: "aa < b" | |
assume a: "l'a ! ((aa + b) div 2) < p" | |
moreover assume "b \<le> n" | |
ultimately have b: "((aa+b)div 2) < n" using t1 | |
by linarith | |
then have "(take n l'a) ! ((aa + b) div 2) < p" | |
using a by auto | |
moreover assume "sorted_less (take n l'a)" | |
ultimately have "\<And>j. j < (aa+b)div 2 \<Longrightarrow> (take n l'a) ! j < (take n l'a) ! ((aa + b) div 2)" | |
using | |
sorted_wrt_nth_less[where ?P="(<)" and xs="(take n l'a)" and ?j="((aa + b) div 2)"] | |
a b t0 by auto | |
moreover fix j assume "j < (aa+b) div 2" | |
ultimately show "l'a ! j < p" using t0 b | |
using \<open>take n l'a ! ((aa + b) div 2) < p\<close> dual_order.strict_trans by auto | |
qed | |
apply sep_auto | |
apply (metis le_less nth_take) | |
apply (metis le_less nth_take) | |
apply sep_auto | |
subgoal for l' aa l'a aaa ba j | |
proof - | |
assume t0: "aa < n" | |
assume t1: " n \<le> length l'a" | |
assume t4: "sorted_less (take n l'a)" | |
assume t5: "j < (aa + n) div 2" | |
have "(aa+n) div 2 < n" using t0 by linarith | |
then have "(take n l'a) ! j < (take n l'a) ! ((aa + n) div 2)" | |
using t0 sorted_wrt_nth_less[where xs="take n l'a" and ?j="((aa + n) div 2)"] | |
t1 t4 t5 by auto | |
then show ?thesis | |
using \<open>(aa + n) div 2 < n\<close> t5 by auto | |
qed | |
subgoal for l' aa b l'a aaa ba j | |
proof - | |
assume t0: "aa < b" | |
assume t1: " n \<le> length l'a" | |
assume t3: "b \<le> n" | |
assume t4: "sorted_less (take n l'a)" | |
assume t5: "j < (aa + b) div 2" | |
have "(aa+b) div 2 < n" using t3 t0 by linarith | |
then have "(take n l'a) ! j < (take n l'a) ! ((aa + b) div 2)" | |
using t0 sorted_wrt_nth_less[where xs="take n l'a" and ?j="((aa + b) div 2)"] | |
t1 t4 t5 by auto | |
then show ?thesis | |
using \<open>(aa + b) div 2 < n\<close> t5 by auto | |
qed | |
apply (metis nth_take order_mono_setup.refl) | |
apply sep_auto | |
apply (sep_auto simp add: is_pfa_def) | |
done | |
text "Then, using the same loop invariant, a binary split for B-tree-like arrays | |
is derived in a straightforward manner." | |
definition bin_split :: "('a::heap \<times> 'b::{heap,linorder}) pfarray \<Rightarrow> 'b \<Rightarrow> nat Heap" | |
where | |
"bin_split \<equiv> \<lambda>(a,n) p. do { | |
(low',high') \<leftarrow> heap_WHILET | |
(\<lambda>(low,high). return (low < high)) | |
(\<lambda>(low,high). let mid = ((low + high) div 2) in | |
do { | |
(_,s) \<leftarrow> Array.nth a mid; | |
if p < s then | |
return (low, mid) | |
else if p > s then | |
return (mid+1, high) | |
else return (mid,mid) | |
}) | |
(0::nat,n); | |
return low' | |
}" | |
thm nth_take | |
lemma nth_take_eq: "take n ls = take n ls' \<Longrightarrow> i < n \<Longrightarrow> ls!i = ls'!i" | |
by (metis nth_take) | |
lemma map_snd_sorted_less: "\<lbrakk>sorted_less (map snd xs); i < j; j < length xs\<rbrakk> | |
\<Longrightarrow> snd (xs ! i) < snd (xs ! j)" | |
by (metis (mono_tags, opaque_lifting) length_map less_trans nth_map sorted_wrt_iff_nth_less) | |
lemma map_snd_sorted_lesseq: "\<lbrakk>sorted_less (map snd xs); i \<le> j; j < length xs\<rbrakk> | |
\<Longrightarrow> snd (xs ! i) \<le> snd (xs ! j)" | |
by (metis eq_iff less_imp_le map_snd_sorted_less order.not_eq_order_implies_strict) | |
lemma bin_split_rule: " | |
sorted_less (map snd xs) \<Longrightarrow> | |
< is_pfa c xs (a,n)> | |
bin_split (a,n) p | |
<\<lambda>l. is_pfa c xs (a,n) * \<up>(l \<le> n \<and> (\<forall>j<l. snd(xs!j) < p) \<and> (l<n \<longrightarrow> snd(xs!l)\<ge>p)) >\<^sub>t" | |
(* this works in principle, as demonstrated above *) | |
unfolding bin_split_def | |
supply R = heap_WHILET_rule''[where | |
R = "measure (\<lambda>(l,h). h-l)" | |
and I = "\<lambda>(l,h). is_pfa c xs (a,n) * \<up>(l\<le>h \<and> h \<le> n \<and> (\<forall>j<l. snd (xs!j) < p) \<and> (h<n \<longrightarrow> snd (xs!h)\<ge>p))" | |
and b = "\<lambda>(l,h). l<h" | |
and Q="\<lambda>(l,h). is_pfa c xs (a,n) * \<up>(l \<le> n \<and> (\<forall>j<l. snd (xs!j) < p) \<and> (l<n \<longrightarrow> snd (xs!l)\<ge>p))" | |
] | |
thm R | |
apply (sep_auto decon: R simp: less_Suc_eq is_pfa_def) [] | |
apply(auto dest!: sndI nth_take_eq[of n _ _ "(_ + _) div 2"])[] | |
apply(auto dest!: sndI nth_take_eq[of n _ _ "(_ + _) div 2"])[] | |
apply (sep_auto dest!: sndI ) | |
subgoal for ls i ls' _ _ j | |
using map_snd_sorted_lesseq[of "take n ls'" j "(i + n) div 2"] | |
less_mult_imp_div_less apply(auto)[] | |
done | |
subgoal for ls i j ls' _ _ j' | |
using map_snd_sorted_lesseq[of "take n ls'" j' "(i + j) div 2"] | |
less_mult_imp_div_less apply(auto)[] | |
done | |
apply sep_auto | |
subgoal for ls i ls' _ _ j | |
using map_snd_sorted_less[of "take n ls'" j "(i + n) div 2"] | |
less_mult_imp_div_less | |
apply(auto)[] | |
done | |
subgoal for ls i j ls' _ _ j' | |
using map_snd_sorted_less[of "take n ls'" j' "(i + j) div 2"] | |
less_mult_imp_div_less | |
apply(auto)[] | |
done | |
apply (metis le_less nth_take_eq) | |
apply sep_auto | |
apply (sep_auto simp add: is_pfa_def) | |
done | |
subsection "Refinement of an abstract split" | |
text "We provide a certain abstract split function | |
that is particularly easy to analyse. The idea of this function is due to Peter Lammich." | |
definition "abs_split xs x = (takeWhile (\<lambda>(_,s). s<x) xs, dropWhile (\<lambda>(_,s). s<x) xs)" | |
interpretation btree_abs_search: split abs_split | |
unfolding abs_split_def sym[OF linear_split_alt] | |
by unfold_locales | |
text \<open>Any function that yields the heap rule | |
we have obtained for bin\_split and lin\_split also | |
refines this abstract split.\<close> | |
locale imp_split_smeq = | |
fixes split_fun :: "('a::{heap,default,linorder} btnode ref option \<times> 'a) array \<times> nat \<Rightarrow> 'a \<Rightarrow> nat Heap" | |
assumes split_rule: "sorted_less (separators xs) \<Longrightarrow> | |
<is_pfa c xs (a, n)> | |
split_fun (a, n) (p::'a) | |
<\<lambda>r. is_pfa c xs (a, n) * | |
\<up> (r \<le> n \<and> | |
(\<forall>j<r. snd (xs ! j) < p) \<and> | |
(r < n \<longrightarrow> p \<le> snd (xs ! r)))>\<^sub>t" | |
begin | |
lemma abs_split_full: "\<forall>(_,s) \<in> set xs. s < p \<Longrightarrow> abs_split xs p = (xs,[])" | |
by (simp add: abs_split_def) | |
lemma abs_split_split: | |
assumes "n < length xs" | |
and "(\<forall>(_,s) \<in> set (take n xs). s < p)" | |
and " (case (xs!n) of (_,s) \<Rightarrow> \<not>(s < p))" | |
shows "abs_split xs p = (take n xs, drop n xs)" | |
using assms apply (auto simp add: abs_split_def) | |
apply (metis (mono_tags, lifting) id_take_nth_drop old.prod.case takeWhile_eq_all_conv takeWhile_tail) | |
by (metis (no_types, lifting) Cons_nth_drop_Suc case_prod_conv dropWhile.simps(2) dropWhile_append2 id_take_nth_drop) | |
lemma split_rule_abs_split: | |
shows | |
"sorted_less (separators ts) \<Longrightarrow> < | |
is_pfa c tsi (a,n) | |
* list_assn (A \<times>\<^sub>a id_assn) ts tsi> | |
split_fun (a,n) p | |
<\<lambda>i. | |
is_pfa c tsi (a,n) | |
* list_assn (A \<times>\<^sub>a id_assn) ts tsi | |
* \<up>(split_relation ts (abs_split ts p) i)>\<^sub>t" | |
apply(rule hoare_triple_preI) | |
apply (sep_auto heap: split_rule dest!: mod_starD id_assn_list | |
simp add: list_assn_prod_map split_ismeq) | |
apply(auto simp add: is_pfa_def) | |
proof - | |
fix h l' assume heap_init: | |
"h \<Turnstile> a \<mapsto>\<^sub>a l'" | |
"map snd ts = (map snd (take n l'))" | |
"n \<le> length l'" | |
show full_thm: "\<forall>j<n. snd (l' ! j) < p \<Longrightarrow> | |
split_relation ts (abs_split ts p) n" | |
proof - | |
assume sm_list: "\<forall>j<n. snd (l' ! j) < p" | |
then have "\<forall>j < length (map snd (take n l')). ((map snd (take n l'))!j) < p" | |
by simp | |
then have "\<forall>j<length (map snd ts). ((map snd ts)!j) < p" | |
using heap_init by simp | |
then have "\<forall>(_,s) \<in> set ts. s < p" | |
by (metis case_prod_unfold in_set_conv_nth length_map nth_map) | |
then have "abs_split ts p = (ts, [])" | |
using abs_split_full[of ts p] by simp | |
then show "split_relation ts (abs_split ts p) n" | |
using split_relation_length | |
by (metis heap_init(2) heap_init(3) length_map length_take min.absorb2) | |
qed | |
then show "\<forall>j<n. snd (l' ! j) < p \<Longrightarrow> | |
p \<le> snd (take n l' ! n) \<Longrightarrow> | |
split_relation ts (abs_split ts p) n" | |
by simp | |
show part_thm: "\<And>x. x < n \<Longrightarrow> | |
\<forall>j<x. snd (l' ! j) < p \<Longrightarrow> | |
p \<le> snd (l' ! x) \<Longrightarrow> split_relation ts (abs_split ts p) x" | |
proof - | |
fix x assume x_sm_len: "x < n" | |
moreover assume sm_list: "\<forall>j<x. snd (l' ! j) < p" | |
ultimately have "\<forall>j<x. ((map snd l') ! j) < p" | |
using heap_init | |
by auto | |
then have "\<forall>j<x. ((map snd ts)!j) < p" | |
using heap_init x_sm_len | |
by auto | |
moreover have x_sm_len_ts: "x < n" | |
using heap_init x_sm_len by auto | |
ultimately have "\<forall>(_,x) \<in> set (take x ts). x < p" | |
by (auto simp add: in_set_conv_nth min.absorb2)+ | |
moreover assume "p \<le> snd (l' ! x)" | |
then have "case l'!x of (_,s) \<Rightarrow> \<not>(s < p)" | |
by (simp add: case_prod_unfold) | |
then have "case ts!x of (_,s) \<Rightarrow> \<not>(s < p)" | |
using heap_init x_sm_len x_sm_len_ts | |
by (metis (mono_tags, lifting) case_prod_unfold length_map length_take min.absorb2 nth_take snd_map_help(2)) | |
ultimately have "abs_split ts p = (take x ts, drop x ts)" | |
using x_sm_len_ts abs_split_split[of x ts p] heap_init | |
by (metis length_map length_take min.absorb2) | |
then show "split_relation ts (abs_split ts p) x" | |
using x_sm_len_ts | |
by (metis append_take_drop_id heap_init(2) heap_init(3) length_map length_take less_imp_le_nat min.absorb2 split_relation_alt) | |
qed | |
qed | |
sublocale imp_split abs_split split_fun | |
apply(unfold_locales) | |
apply(sep_auto heap: split_rule_abs_split) | |
done | |
end | |
subsection "Obtaining executable code" | |
text "In order to obtain fully defined functions, | |
we need to plug our split function implementations | |
into the locales we introduced previously." | |
interpretation btree_imp_linear_split: imp_split_smeq lin_split | |
apply unfold_locales | |
apply(sep_auto heap: lin_split_rule) | |
done | |
text "Obtaining actual code turns out to be slightly more difficult | |
due to the use of locales. However, we successfully obtain | |
the B-tree insertion and membership query with binary search splitting." | |
global_interpretation btree_imp_binary_split: imp_split_smeq bin_split | |
defines btree_isin = btree_imp_binary_split.isin | |
and btree_ins = btree_imp_binary_split.ins | |
and btree_insert = btree_imp_binary_split.insert | |
and btree_del = btree_imp_binary_split.del | |
and btree_split_max = btree_imp_binary_split.split_max | |
and btree_delete = btree_imp_binary_split.delete | |
and btree_empty = btree_imp_binary_split.empty | |
apply unfold_locales | |
apply(sep_auto heap: bin_split_rule) | |
done | |
declare btree_imp_binary_split.ins.simps[code] | |
declare btree_imp_binary_split.isin.simps[code] | |
declare btree_imp_binary_split.del.simps[code] btree_imp_binary_split.split_max.simps[code] | |
export_code btree_empty btree_isin btree_insert btree_delete checking OCaml SML Scala | |
export_code btree_empty btree_isin btree_insert btree_delete in OCaml module_name BTree | |
export_code btree_empty btree_isin btree_insert btree_delete in SML module_name BTree | |
export_code btree_empty btree_isin btree_insert btree_delete in Scala module_name BTree | |
end | |