Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
theory Matrix_Equation_Construction | |
imports "BKR_Algorithm" | |
begin | |
section "Results with Sturm's Theorem" | |
lemma relprime: | |
fixes q::"real poly" | |
assumes "coprime p q" | |
assumes "p \<noteq> 0" | |
assumes "q \<noteq> 0" | |
shows "changes_R_smods p (pderiv p) = card {x. poly p x = 0 \<and> poly q x > 0} + card {x. poly p x = 0 \<and> poly q x < 0}" | |
proof - | |
have 1: "{x. poly p x = 0 \<and> poly q x = 0} = {}" | |
using assms(1) coprime_poly_0 by auto | |
have 2: "changes_R_smods p (pderiv p) = int (card {x . poly p x = 0})" using sturm_R by auto | |
have 3: "{x. poly p x = 0 \<and> poly q x > 0} \<inter> {x. poly p x = 0 \<and> poly q x < 0} = {}" by auto | |
have "{x . poly p x = 0} = {x. poly p x = 0 \<and> poly q x > 0} \<union>{x. poly p x = 0 \<and> poly q x < 0} \<union> {x. poly p x = 0 \<and> poly q x = 0}" by force | |
then have "{x . poly p x = 0} = {x. poly p x = 0 \<and> poly q x > 0} \<union>{x. poly p x = 0 \<and> poly q x < 0}" using 1 by auto | |
then have "(card {x . poly p x = 0}) = (card ({x. poly p x = 0 \<and> poly q x > 0} \<union>{x. poly p x = 0 \<and> poly q x < 0}))" by presburger | |
then have 4: "(card {x . poly p x = 0}) = card {x. poly p x = 0 \<and> poly q x > 0} + card {x. poly p x = 0 \<and> poly q x < 0}" using 3 by (simp add: card_Un_disjoint assms(2) poly_roots_finite) | |
show ?thesis by (simp add: "2" "4") | |
qed | |
(* This is the same proof as card_eq_sum *) | |
lemma card_eq_const_sum: | |
fixes k:: real | |
assumes "finite A" | |
shows "k*card A = sum (\<lambda>x. k) A" | |
proof - | |
have "plus \<circ> (\<lambda>_. Suc 0) = (\<lambda>_. Suc)" | |
by (simp add: fun_eq_iff) | |
then have "Finite_Set.fold (plus \<circ> (\<lambda>_. Suc 0)) = Finite_Set.fold (\<lambda>_. Suc)" | |
by (rule arg_cong) | |
then have "Finite_Set.fold (plus \<circ> (\<lambda>_. Suc 0)) 0 A = Finite_Set.fold (\<lambda>_. Suc) 0 A" | |
by (blast intro: fun_cong) | |
then show ?thesis | |
by (simp add: card.eq_fold sum.eq_fold) | |
qed | |
lemma restate_tarski: | |
fixes q::"real poly" | |
assumes "coprime p q" | |
assumes "p \<noteq> 0" | |
assumes "q \<noteq> 0" | |
shows "changes_R_smods p ((pderiv p) * q) = card {x. poly p x = 0 \<and> poly q x > 0} - int(card {x. poly p x = 0 \<and> poly q x < 0})" | |
proof - | |
have 3: "taq {x. poly p x=0} q \<equiv> \<Sum>y\<in>{x. poly p x=0}. sign (poly q y)" by (simp add: taq_def) | |
have 4: "{x. poly p x=0} = {x. poly p x = 0 \<and> poly q x > 0} \<union> {x. poly p x = 0 \<and> poly q x < 0} \<union> {x. poly p x = 0 \<and> poly q x = 0}" by force | |
then have 5: "{x. poly p x=0} = {x. poly p x = 0 \<and> poly q x > 0} \<union> {x. poly p x = 0 \<and> poly q x < 0}" using assms(1) coprime_poly_0 by auto | |
then have 6: "\<Sum>y\<in>{x. poly p x=0}. sign (poly q y) \<equiv> \<Sum>y\<in>{x. poly p x = 0 \<and> poly q x > 0} \<union> {x. poly p x = 0 \<and> poly q x < 0}. sign (poly q y)" by presburger | |
then have 12: "taq {x. poly p x=0} q \<equiv> \<Sum>y\<in>{x. poly p x = 0 \<and> poly q x > 0} \<union> {x. poly p x = 0 \<and> poly q x < 0}. sign (poly q y)" using 3 by linarith | |
have 7: "{x. poly p x = 0 \<and> poly q x > 0} \<inter> {x. poly p x = 0 \<and> poly q x < 0} = {}" by auto | |
then have 8: "\<Sum>y\<in>{x. poly p x = 0 \<and> poly q x > 0} \<union> {x. poly p x = 0 \<and> poly q x < 0}. sign (poly q y) \<equiv> (\<Sum>y\<in>{x. poly p x = 0 \<and> poly q x > 0}.sign (poly q y)) + (\<Sum>y\<in>{x. poly p x = 0 \<and> poly q x < 0}.sign(poly q y))" by (simp add: assms(2) poly_roots_finite sum.union_disjoint) | |
then have 13: "taq {x. poly p x=0} q \<equiv> (\<Sum>y\<in>{x. poly p x = 0 \<and> poly q x > 0}.sign (poly q y)) + (\<Sum>y\<in>{x. poly p x = 0 \<and> poly q x < 0}.sign(poly q y))" using 12 by linarith | |
then have 9: "taq {x. poly p x = 0} q \<equiv> (\<Sum>y\<in>{x. poly p x = 0 \<and> poly q x > 0}.1) + (\<Sum>y\<in>{x. poly p x = 0 \<and> poly q x < 0}.(-1))" by simp | |
have 10: "(\<Sum>y\<in>{x. poly p x = 0 \<and> poly q x > 0}.1) = card {x. poly p x = 0 \<and> poly q x > 0}" using card_eq_sum by auto | |
have 11: " (\<Sum>y\<in>{x. poly p x = 0 \<and> poly q x < 0}.(-1)) = -1*card {x. poly p x = 0 \<and> poly q x < 0}" using card_eq_const_sum by simp | |
have 14: "taq {x. poly p x = 0} q \<equiv> card {x. poly p x = 0 \<and> poly q x > 0} + -1*card {x. poly p x = 0 \<and> poly q x < 0}" using 9 10 11 by simp | |
have 1: "changes_R_smods p (pderiv p * q) = taq {x. poly p x=0} q" using sturm_tarski_R by simp | |
then have 15: "changes_R_smods p (pderiv p * q) = card {x. poly p x = 0 \<and> poly q x > 0} + (-1*card {x. poly p x = 0 \<and> poly q x < 0})" using 14 by linarith | |
have 16: "(-1*card {x. poly p x = 0 \<and> poly q x < 0}) = - card {x. poly p x = 0 \<and> poly q x < 0}" by auto | |
then show ?thesis using 15 by linarith | |
qed | |
lemma restate_tarski2: | |
fixes q::"real poly" | |
assumes "p \<noteq> 0" | |
shows "changes_R_smods p ((pderiv p) * q) = | |
int(card {x. poly p x = 0 \<and> poly q x > 0}) - | |
int(card {x. poly p x = 0 \<and> poly q x < 0})" | |
unfolding sturm_tarski_R[symmetric] taq_def | |
proof - | |
let ?all = "{x. poly p x=0}" | |
let ?lt = "{x. poly p x=0 \<and> poly q x < 0}" | |
let ?gt = "{x. poly p x=0 \<and> poly q x > 0}" | |
let ?eq = "{x. poly p x=0 \<and> poly q x = 0}" | |
have eq: "?all = ?lt \<union> ?gt \<union> ?eq" by force | |
from poly_roots_finite[OF assms] have fin: "finite ?all" . | |
show "(\<Sum>x | poly p x = 0. sign (poly q x)) = int (card ?gt) - int (card ?lt)" | |
unfolding eq | |
apply (subst sum_Un) | |
apply (auto simp add:fin) | |
apply (subst sum_Un) | |
by (auto simp add:fin) | |
qed | |
lemma coprime_set_prod: | |
fixes I:: "real poly set" | |
shows "finite I \<Longrightarrow> ((\<forall> q \<in> I. (coprime p q)) \<longrightarrow> (coprime p (\<Prod> I)))" | |
proof (induct rule: finite_induct) | |
case empty | |
then show ?case | |
by simp | |
next | |
case (insert x F) | |
then show ?case using coprime_mult_right_iff | |
by simp | |
qed | |
lemma finite_nonzero_set_prod: | |
fixes I:: "real poly set" | |
shows nonzero_hyp: "finite I \<Longrightarrow> ((\<forall> q \<in> I. q \<noteq> 0) \<longrightarrow> \<Prod> I \<noteq> 0)" | |
proof (induct rule: finite_induct) | |
case empty | |
then show ?case | |
by simp | |
next | |
case (insert x F) | |
have h: "\<Prod> (insert x F) = x * (\<Prod> F)" | |
by (simp add: insert.hyps(1) insert.hyps(2)) | |
have h_xin: "x \<in> insert x F" | |
by simp | |
have hq: "(\<forall> q \<in> (insert x F). q \<noteq> 0) \<longrightarrow> x \<noteq> 0" using h_xin | |
by blast | |
show ?case using h hq | |
using insert.hyps(3) by auto | |
qed | |
section "Setting up the construction: Definitions" | |
definition characterize_root_list_p:: "real poly \<Rightarrow> real list" | |
where "characterize_root_list_p p \<equiv> sorted_list_of_set({x. poly p x = 0}::real set)" | |
(************** Renegar's N(I); towards defining the RHS of the matrix equation **************) | |
lemma construct_NofI_prop: | |
fixes p:: "real poly" | |
fixes I:: "real poly list" | |
assumes nonzero: "p\<noteq>0" | |
shows "construct_NofI p I = | |
rat_of_int (int (card {x. poly p x = 0 \<and> poly (prod_list I) x > 0}) - | |
int (card {x. poly p x = 0 \<and> poly (prod_list I) x < 0}))" | |
unfolding construct_NofI_def | |
using assms restate_tarski2 nonzero rsquarefree_def | |
by (simp add: rsquarefree_def) | |
definition construct_s_vector:: "real poly \<Rightarrow> real poly list list \<Rightarrow> rat vec" | |
where "construct_s_vector p Is = vec_of_list (map (\<lambda> I.(construct_NofI p I)) Is)" | |
(* Consistent sign assignments *) | |
definition squash::"'a::linordered_field \<Rightarrow> rat" | |
where "squash x = (if x > 0 then 1 | |
else if x < 0 then -1 | |
else 0)" | |
definition signs_at::"real poly list \<Rightarrow> real \<Rightarrow> rat list" | |
where "signs_at qs x \<equiv> | |
map (squash \<circ> (\<lambda>q. poly q x)) qs" | |
definition characterize_consistent_signs_at_roots:: "real poly \<Rightarrow> real poly list \<Rightarrow> rat list list" | |
where "characterize_consistent_signs_at_roots p qs = | |
(remdups (map (signs_at qs) (characterize_root_list_p p)))" | |
(* An alternate version designed to be used when every polynomial in qs is relatively prime to p*) | |
definition consistent_sign_vec_copr::"real poly list \<Rightarrow> real \<Rightarrow> rat list" | |
where "consistent_sign_vec_copr qs x \<equiv> | |
map (\<lambda> q. if (poly q x > 0) then (1::rat) else (-1::rat)) qs" | |
definition characterize_consistent_signs_at_roots_copr:: "real poly \<Rightarrow> real poly list \<Rightarrow> rat list list" | |
where "characterize_consistent_signs_at_roots_copr p qss = | |
(remdups (map (consistent_sign_vec_copr qss) (characterize_root_list_p p)))" | |
lemma csa_list_copr_rel: | |
fixes p:: "real poly" | |
fixes qs:: "real poly list" | |
assumes nonzero: "p\<noteq>0" | |
assumes pairwise_rel_prime: "\<forall>q. ((List.member qs q) \<longrightarrow> (coprime p q))" | |
shows "characterize_consistent_signs_at_roots p qs = characterize_consistent_signs_at_roots_copr p qs" | |
proof - | |
have "\<forall>q \<in> set(qs). \<forall> x \<in> set (characterize_root_list_p p). poly q x \<noteq> 0" | |
using pairwise_rel_prime | |
using coprime_poly_0 in_set_member nonzero poly_roots_finite characterize_root_list_p_def by fastforce | |
then have h: "\<forall>q \<in> set(qs). \<forall> x \<in> set (characterize_root_list_p p). squash (poly q x) = (if (poly q x > 0) then (1::rat) else (-1::rat))" | |
by (simp add: squash_def) | |
have "map (\<lambda>r. map (\<lambda>p. if 0 < poly p r then 1 else - 1) qs) (characterize_root_list_p p) = map (\<lambda>r. map (squash \<circ> (\<lambda>p. poly p r)) qs) (characterize_root_list_p p)" | |
by (simp add: h) | |
thus ?thesis unfolding characterize_consistent_signs_at_roots_def characterize_consistent_signs_at_roots_copr_def | |
signs_at_def consistent_sign_vec_copr_def | |
by presburger | |
qed | |
(************** Towards defining Renegar's polynomial function and the LHS of the matrix equation **************) | |
definition list_constr:: "nat list \<Rightarrow> nat \<Rightarrow> bool" | |
where "list_constr L n \<equiv> list_all (\<lambda>x. x < n) L" | |
definition all_list_constr:: "nat list list \<Rightarrow> nat \<Rightarrow> bool" | |
where "all_list_constr L n \<equiv> (\<forall>x. List.member L x \<longrightarrow> list_constr x n)" | |
(* The first input is the subset; the second input is the consistent sign assignment. | |
We want to map over the first list and pull out all of the elements in the second list with | |
corresponding positions, and then multiply those together. | |
*) | |
definition z:: "nat list \<Rightarrow> rat list \<Rightarrow> rat" | |
where "z index_list sign_asg \<equiv> (prod_list (map (nth sign_asg) index_list))" | |
definition mtx_row:: "rat list list \<Rightarrow> nat list \<Rightarrow> rat list" | |
where "mtx_row sign_list index_list \<equiv> (map ( (z index_list)) sign_list)" | |
definition matrix_A:: "rat list list \<Rightarrow> nat list list \<Rightarrow> rat mat" | |
where "matrix_A sign_list subset_list = | |
(mat_of_rows_list (length sign_list) (map (\<lambda>i .(mtx_row sign_list i)) subset_list))" | |
definition alt_matrix_A:: "rat list list \<Rightarrow> nat list list \<Rightarrow> rat mat" | |
where "alt_matrix_A signs subsets = (mat (length subsets) (length signs) | |
(\<lambda>(i, j). z (subsets ! i) (signs ! j)))" | |
lemma alt_matrix_char: "alt_matrix_A signs subsets = matrix_A signs subsets" | |
proof - | |
have h0: "(\<And>i j. i < length subsets \<Longrightarrow> | |
j < length signs \<Longrightarrow> | |
map (\<lambda>index_list. map (z index_list) signs) subsets ! i ! j = z (subsets ! i) (signs ! j))" | |
proof - | |
fix i | |
fix j | |
assume i_lt: "i < length subsets" | |
assume j_lt: "j < length signs" | |
show "((map (\<lambda>index_list. map (z index_list) signs) subsets) ! i) ! j = z (subsets ! i) (signs ! j)" | |
proof - | |
have h0: "(map (\<lambda>index_list. map (z index_list) signs) subsets) ! i = map (z (subsets ! i)) signs" | |
using nth_map i_lt | |
by blast | |
then show ?thesis using nth_map j_lt | |
by simp | |
qed | |
qed | |
have h: " mat (length subsets) (length signs) (\<lambda>(i, j). z (subsets ! i) (signs ! j)) = | |
mat (length subsets) (length signs) (\<lambda>(i, y). map (\<lambda>index_list. map (z index_list) signs) subsets ! i ! y)" | |
using h0 eq_matI[where A = "mat (length subsets) (length signs) (\<lambda>(i, j). z (subsets ! i) (signs ! j))", | |
where B = "mat (length subsets) (length signs) (\<lambda>(i, y). map (\<lambda>index_list. map (z index_list) signs) subsets ! i ! y)"] | |
by auto | |
show ?thesis unfolding alt_matrix_A_def matrix_A_def mat_of_rows_list_def apply (auto) unfolding mtx_row_def | |
using h by blast | |
qed | |
lemma subsets_are_rows: "\<forall>i < (length subsets). row (alt_matrix_A signs subsets) i = vec (length signs) (\<lambda>j. z (subsets ! i) (signs ! j))" | |
unfolding row_def unfolding alt_matrix_A_def by auto | |
lemma signs_are_cols: "\<forall>i < (length signs). col (alt_matrix_A signs subsets) i = vec (length subsets) (\<lambda>j. z (subsets ! j) (signs ! i))" | |
unfolding col_def unfolding alt_matrix_A_def by auto | |
(* ith entry of LHS vector is the number of (distinct) real zeros of p where the sign vector of the qs is the ith entry of signs.*) | |
definition construct_lhs_vector:: "real poly \<Rightarrow> real poly list \<Rightarrow> rat list list \<Rightarrow> rat vec" | |
where "construct_lhs_vector p qs signs \<equiv> | |
vec_of_list (map (\<lambda>w. rat_of_int (int (length (filter (\<lambda>v. v = w) (map (consistent_sign_vec_copr qs) (characterize_root_list_p p)))))) signs)" | |
(* Putting all of the pieces of the construction together *) | |
definition satisfy_equation:: "real poly \<Rightarrow> real poly list \<Rightarrow> nat list list \<Rightarrow> rat list list \<Rightarrow> bool" | |
where "satisfy_equation p qs subset_list sign_list = | |
(mult_mat_vec (matrix_A sign_list subset_list) (construct_lhs_vector p qs sign_list) = (construct_rhs_vector p qs subset_list))" | |
section "Setting up the construction: Proofs" | |
(* Some matrix lemmas *) | |
lemma row_mat_of_rows_list: | |
assumes "list_all (\<lambda>r. length r = nc) rs" | |
assumes "i < length rs" | |
shows "row (mat_of_rows_list nc rs) i = vec_of_list (nth rs i)" | |
by (smt assms(1) assms(2) dim_col_mat(1) dim_vec_of_list eq_vecI index_row(2) index_vec list_all_length mat_of_rows_list_def row_mat split_conv vec_of_list_index) | |
lemma mult_mat_vec_of_list: | |
assumes "length ls = nc" | |
assumes "list_all (\<lambda>r. length r = nc) rs" | |
shows "mat_of_rows_list nc rs *\<^sub>v vec_of_list ls = | |
vec_of_list (map (\<lambda>r. vec_of_list r \<bullet> vec_of_list ls) rs)" | |
unfolding mult_mat_vec_def | |
using row_mat_of_rows_list assms | |
apply auto | |
by (smt dim_row_mat(1) dim_vec dim_vec_of_list eq_vecI index_map_vec(1) index_map_vec(2) index_vec list_all_length mat_of_rows_list_def row_mat_of_rows_list vec_of_list_index) | |
lemma mtx_row_length: | |
"list_all (\<lambda>r. length r = length signs) (map (mtx_row signs) ls)" | |
apply (induction ls) | |
by (auto simp add: mtx_row_def) | |
thm construct_lhs_vector_def | |
thm poly_roots_finite | |
(* Recharacterize the LHS vector *) | |
lemma construct_lhs_vector_clean: | |
assumes "p \<noteq> 0" | |
assumes "i < length signs" | |
shows "(construct_lhs_vector p qs signs) $ i = | |
card {x. poly p x = 0 \<and> ((consistent_sign_vec_copr qs x) = (nth signs i))}" | |
proof - | |
from poly_roots_finite[OF assms(1)] have "finite {x. poly p x = 0}" . | |
then have eq: "(Collect | |
((\<lambda>v. v = signs ! i) \<circ> | |
consistent_sign_vec_copr qs) \<inter> | |
set (sorted_list_of_set | |
{x. poly p x = 0})) = | |
{x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = signs ! i}" | |
by auto | |
show ?thesis | |
unfolding construct_lhs_vector_def vec_of_list_index characterize_root_list_p_def | |
apply auto | |
apply (subst nth_map[OF assms(2)]) | |
apply auto | |
apply (subst distinct_length_filter) | |
using eq by auto | |
qed | |
lemma construct_lhs_vector_cleaner: | |
assumes "p \<noteq> 0" | |
shows "(construct_lhs_vector p qs signs) = | |
vec_of_list (map (\<lambda>s. rat_of_int (card {x. poly p x = 0 \<and> ((consistent_sign_vec_copr qs x) = s)})) signs)" | |
apply (rule eq_vecI) | |
apply (auto simp add: construct_lhs_vector_clean[OF assms] ) | |
apply (simp add: vec_of_list_index) | |
unfolding construct_lhs_vector_def | |
using assms construct_lhs_vector_clean construct_lhs_vector_def apply auto[1] | |
by simp | |
(* Show that because our consistent sign vectors consist of 1 and -1's, z returns 1 or -1 | |
when applied to a consistent sign vector *) | |
lemma z_signs: | |
assumes "list_all (\<lambda>i. i < length signs) I" | |
assumes "list_all (\<lambda>s. s = 1 \<or> s = -1) signs" | |
shows "(z I signs = 1) \<or> (z I signs = -1)" using assms | |
proof (induction I) | |
case Nil | |
then show ?case | |
by (auto simp add:z_def) | |
next | |
case (Cons a I) | |
moreover have "signs ! a = 1 \<or> signs ! a = -1" | |
by (metis (mono_tags, lifting) add_Suc_right calculation(2) calculation(3) gr0_conv_Suc list.size(4) list_all_length nth_Cons_0) | |
ultimately show ?case | |
by (auto simp add:z_def) | |
qed | |
lemma z_lemma: | |
fixes I:: "nat list" | |
fixes sign:: "rat list" | |
assumes consistent: "sign \<in> set (characterize_consistent_signs_at_roots_copr p qs)" | |
assumes welldefined: "list_constr I (length qs)" | |
shows "(z I sign = 1) \<or> (z I sign = -1)" | |
proof (rule z_signs) | |
have "length sign = length qs" using consistent | |
by (auto simp add: characterize_consistent_signs_at_roots_copr_def consistent_sign_vec_copr_def) | |
thus "list_all (\<lambda>i. i < length sign) I" | |
using welldefined | |
by (auto simp add: list_constr_def characterize_consistent_signs_at_roots_copr_def consistent_sign_vec_copr_def) | |
show "list_all (\<lambda>s. s = 1 \<or> s = - 1) sign" using consistent | |
apply (auto simp add: list.pred_map characterize_consistent_signs_at_roots_copr_def consistent_sign_vec_copr_def) | |
using Ball_set | |
by force | |
qed | |
(* Show that all consistent sign vectors on roots of polynomials are in characterize_consistent_signs_at_roots_copr *) | |
lemma in_set: | |
fixes p:: "real poly" | |
assumes nonzero: "p\<noteq>0" | |
fixes qs:: "real poly list" | |
fixes I:: "nat list" | |
fixes sign:: "rat list" | |
fixes x:: "real" | |
assumes root_p: "x \<in> {x. poly p x = 0}" | |
assumes sign_fix: "sign = consistent_sign_vec_copr qs x" | |
assumes welldefined: "list_constr I (length qs)" | |
shows "sign \<in> set (characterize_consistent_signs_at_roots_copr p qs)" | |
proof - | |
have h1: "consistent_sign_vec_copr qs x \<in> | |
set (remdups (map (consistent_sign_vec_copr qs) (sorted_list_of_set {x. poly p x = 0})))" | |
using root_p apply auto apply (subst set_sorted_list_of_set) | |
using nonzero poly_roots_finite rsquarefree_def apply blast by auto | |
thus ?thesis unfolding characterize_consistent_signs_at_roots_copr_def characterize_root_list_p_def using sign_fix | |
by blast | |
qed | |
(* Since all of the polynomials in qs are relatively prime to p, products of subsets of these | |
polynomials are also relatively prime to p *) | |
lemma nonzero_product: | |
fixes p:: "real poly" | |
assumes nonzero: "p\<noteq>0" | |
fixes qs:: "real poly list" | |
assumes pairwise_rel_prime_1: "\<forall>q. ((List.member qs q) \<longrightarrow> (coprime p q))" | |
fixes I:: "nat list" | |
fixes x:: "real" | |
assumes root_p: "x \<in> {x. poly p x = 0}" | |
assumes welldefined: "list_constr I (length qs)" | |
shows "(poly (prod_list (retrieve_polys qs I)) x > 0) \<or> (poly (prod_list (retrieve_polys qs I)) x < 0)" | |
proof - | |
have "\<And>x. x \<in> set (retrieve_polys qs I) \<Longrightarrow> coprime p x" | |
unfolding retrieve_polys_def | |
by (smt in_set_conv_nth in_set_member length_map list_all_length list_constr_def nth_map pairwise_rel_prime_1 welldefined) | |
then have coprimeh: "coprime p (prod_list (retrieve_polys qs I))" | |
using prod_list_coprime_right by auto | |
thus ?thesis using root_p | |
using coprime_poly_0 linorder_neqE_linordered_idom by blast | |
qed | |
(* The next few lemmas relate z to the signs of the product of subsets of polynomials of qs *) | |
lemma horiz_vector_helper_pos_ind: | |
fixes p:: "real poly" | |
assumes nonzero: "p\<noteq>0" | |
fixes qs:: "real poly list" | |
assumes pairwise_rel_prime_1: "\<forall>q. ((List.member qs q) \<longrightarrow> (coprime p q))" | |
fixes I:: "nat list" | |
fixes sign:: "rat list" | |
fixes x:: "real" | |
assumes root_p: "x \<in> {x. poly p x = 0}" | |
assumes sign_fix: "sign = consistent_sign_vec_copr qs x" | |
shows "(list_constr I (length qs)) \<longrightarrow> (poly (prod_list (retrieve_polys qs I)) x > 0) \<longleftrightarrow> (z I sign = 1)" | |
proof (induct I) | |
case Nil | |
then show ?case | |
by (simp add: retrieve_polys_def z_def) | |
next | |
case (Cons a I) | |
have welldef: "list_constr (a#I) (length qs) \<longrightarrow> (list_constr I (length qs))" | |
unfolding list_constr_def list_all_def by auto | |
have set_hyp: "list_constr I (length qs) \<longrightarrow> sign \<in> set (characterize_consistent_signs_at_roots_copr p qs)" | |
using in_set using nonzero root_p sign_fix by blast | |
have z_hyp: "list_constr I (length qs) \<longrightarrow> ((z I sign = 1) \<or> (z I sign = -1))" | |
using set_hyp z_lemma[where sign="sign", where I = "I", where p="p", where qs="qs"] by blast | |
have sign_hyp: "sign = map (\<lambda> q. if (poly q x > 0) then 1 else -1) qs" | |
using sign_fix unfolding consistent_sign_vec_copr_def by blast | |
have ind_hyp_1: "list_constr (a#I) (length qs) \<longrightarrow> | |
((0 < poly (prod_list (retrieve_polys qs I)) x) = (z I sign = 1))" | |
using welldef Cons.hyps by auto | |
have ind_hyp_2: "list_constr (a#I) (length qs) \<longrightarrow> | |
((0 > poly (prod_list (retrieve_polys qs I)) x) = (z I sign = -1))" | |
using welldef z_hyp Cons.hyps nonzero_product | |
using pairwise_rel_prime_1 nonzero root_p by auto | |
have h1: "prod_list (retrieve_polys qs (a # I)) = (nth qs a)*(prod_list (retrieve_polys qs I))" | |
by (simp add: retrieve_polys_def) | |
have h2: "(z (a # I) sign) = (nth sign a)*(z I sign)" | |
by (metis (mono_tags, opaque_lifting) list.simps(9) prod_list.Cons z_def) | |
have h3help: "list_constr (a#I) (length qs) \<longrightarrow> a < length qs" unfolding list_constr_def | |
by simp | |
then have h3: "list_constr (a#I) (length qs) \<longrightarrow> | |
((nth sign a) = (if (poly (nth qs a) x > 0) then 1 else -1))" | |
using nth_map sign_hyp by auto | |
have h2: "(0 < poly ((nth qs a)*(prod_list (retrieve_polys qs I))) x) \<longleftrightarrow> | |
((0 < poly (nth qs a) x \<and> (0 < poly (prod_list (retrieve_polys qs I)) x)) \<or> | |
(0 > poly (nth qs a) x \<and> (0 > poly (prod_list (retrieve_polys qs I)) x)))" | |
by (simp add: zero_less_mult_iff) | |
have final_hyp_a: "list_constr (a#I) (length qs) \<longrightarrow> (((0 < poly (nth qs a) x \<and> (0 < poly (prod_list (retrieve_polys qs I)) x)) | |
\<or> (0 > poly (nth qs a) x \<and> (0 > poly (prod_list (retrieve_polys qs I)) x))) = | |
((nth sign a)*(z I sign) = 1))" | |
proof - | |
have extra_hyp_a: "list_constr (a#I) (length qs) \<longrightarrow> (0 < poly (nth qs a) x = ((nth sign a) = 1))" using h3 | |
by simp | |
have extra_hyp_b: "list_constr (a#I) (length qs) \<longrightarrow> (0 > poly (nth qs a) x = ((nth sign a) = -1))" | |
using h3 apply (auto) using coprime_poly_0 h3help in_set_member nth_mem pairwise_rel_prime_1 root_p by fastforce | |
have ind_hyp_1: "list_constr (a#I) (length qs) \<longrightarrow> (((0 < poly (nth qs a) x \<and> (z I sign = 1)) \<or> | |
(0 > poly (nth qs a) x \<and> (z I sign = -1))) | |
= ((nth sign a)*(z I sign) = 1))" using extra_hyp_a extra_hyp_b | |
using zmult_eq_1_iff | |
by (simp add: h3) | |
then show ?thesis | |
using ind_hyp_1 ind_hyp_2 by (simp add: Cons.hyps welldef) | |
qed | |
then show ?case | |
using h1 z_def by (simp add: zero_less_mult_iff) | |
qed | |
lemma horiz_vector_helper_pos: | |
fixes p:: "real poly" | |
assumes nonzero: "p\<noteq>0" | |
fixes qs:: "real poly list" | |
assumes pairwise_rel_prime_1: "\<forall>q. ((List.member qs q) \<longrightarrow> (coprime p q))" | |
fixes I:: "nat list" | |
fixes sign:: "rat list" | |
fixes x:: "real" | |
assumes root_p: "x \<in> {x. poly p x = 0}" | |
assumes sign_fix: "sign = consistent_sign_vec_copr qs x" | |
assumes welldefined: "list_constr I (length qs)" | |
shows "(poly (prod_list (retrieve_polys qs I)) x > 0) \<longleftrightarrow> (z I sign = 1)" | |
using horiz_vector_helper_pos_ind | |
using pairwise_rel_prime_1 nonzero root_p sign_fix welldefined by blast | |
lemma horiz_vector_helper_neg: | |
fixes p:: "real poly" | |
assumes nonzero: "p\<noteq>0" | |
fixes qs:: "real poly list" | |
assumes pairwise_rel_prime_1: "\<forall>q. ((List.member qs q) \<longrightarrow> (coprime p q))" | |
fixes I:: "nat list" | |
fixes sign:: "rat list" | |
fixes x:: "real" | |
assumes root_p: "x \<in> {x. poly p x = 0}" | |
assumes sign_fix: "sign = consistent_sign_vec_copr qs x" | |
assumes welldefined: "list_constr I (length qs)" | |
shows "(poly (prod_list (retrieve_polys qs I)) x < 0) \<longleftrightarrow> (z I sign = -1)" | |
proof - | |
have set_hyp: "list_constr I (length qs) \<longrightarrow> sign \<in> set (characterize_consistent_signs_at_roots_copr p qs)" | |
using in_set using nonzero root_p sign_fix by blast | |
have z_hyp: "list_constr I (length qs) \<longrightarrow> ((z I sign = 1) \<or> (z I sign = -1))" | |
using set_hyp z_lemma[where sign="sign", where I = "I", where p="p", where qs="qs"] by blast | |
have poly_hyp: "(poly (prod_list (retrieve_polys qs I)) x > 0) \<or> (poly (prod_list (retrieve_polys qs I)) x < 0)" | |
using nonzero_product | |
using pairwise_rel_prime_1 nonzero root_p | |
using welldefined by blast | |
have pos_hyp: "(poly (prod_list (retrieve_polys qs I)) x > 0) \<longleftrightarrow> (z I sign = 1)" using horiz_vector_helper_pos | |
using pairwise_rel_prime_1 nonzero root_p sign_fix welldefined by blast | |
show ?thesis using z_hyp poly_hyp pos_hyp apply (auto) | |
using welldefined by blast | |
qed | |
(* Recharacterize the dot product *) | |
lemma vec_of_list_dot_rewrite: | |
assumes "length xs = length ys" | |
shows "vec_of_list xs \<bullet> vec_of_list ys = | |
sum_list (map2 (*) xs ys)" | |
using assms | |
proof (induction xs arbitrary:ys) | |
case Nil | |
then show ?case by auto | |
next | |
case (Cons a xs) | |
then show ?case apply auto | |
by (smt (verit, best) Suc_length_conv list.simps(9) old.prod.case scalar_prod_vCons sum_list.Cons vec_of_list_Cons zip_Cons_Cons) | |
qed | |
lemma lhs_dot_rewrite: | |
fixes p:: "real poly" | |
fixes qs:: "real poly list" | |
fixes I:: "nat list" | |
fixes signs:: "rat list list" | |
assumes nonzero: "p\<noteq>0" | |
shows | |
"(vec_of_list (mtx_row signs I) \<bullet> (construct_lhs_vector p qs signs)) = | |
sum_list (map (\<lambda>s. (z I s) * rat_of_int (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) signs)" | |
proof - | |
have "p \<noteq> 0" using nonzero by auto | |
from construct_lhs_vector_cleaner[OF this] | |
have rhseq: "construct_lhs_vector p qs signs = | |
vec_of_list | |
(map (\<lambda>s. rat_of_int (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) signs)" by auto | |
have "(vec_of_list (mtx_row signs I) \<bullet> (construct_lhs_vector p qs signs)) = | |
sum_list (map2 (*) (mtx_row signs I) (map (\<lambda>s. rat_of_int (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) signs))" | |
unfolding rhseq | |
apply (intro vec_of_list_dot_rewrite) | |
by (auto simp add: mtx_row_def) | |
thus ?thesis unfolding mtx_row_def | |
using map2_map_map | |
by (auto simp add: map2_map_map) | |
qed | |
lemma sum_list_distinct_filter: | |
fixes f:: "'a \<Rightarrow> int" | |
assumes "distinct xs" "distinct ys" | |
assumes "set ys \<subseteq> set xs" | |
assumes "\<And>x. x \<in> set xs - set ys \<Longrightarrow> f x = 0" | |
shows "sum_list (map f xs) = sum_list (map f ys)" | |
by (metis List.finite_set assms(1) assms(2) assms(3) assms(4) sum.mono_neutral_cong_left sum_list_distinct_conv_sum_set) | |
(* If we have a superset of the signs, we can drop to just the consistent ones *) | |
lemma construct_lhs_vector_drop_consistent: | |
fixes p:: "real poly" | |
fixes qs:: "real poly list" | |
fixes I:: "nat list" | |
fixes signs:: "rat list list" | |
assumes nonzero: "p\<noteq>0" | |
assumes distinct_signs: "distinct signs" | |
assumes all_info: "set (characterize_consistent_signs_at_roots_copr p qs) \<subseteq> set(signs)" | |
assumes welldefined: "list_constr I (length qs)" | |
shows | |
"(vec_of_list (mtx_row signs I) \<bullet> (construct_lhs_vector p qs signs)) = | |
(vec_of_list (mtx_row (characterize_consistent_signs_at_roots_copr p qs) I) \<bullet> | |
(construct_lhs_vector p qs (characterize_consistent_signs_at_roots_copr p qs)))" | |
proof - | |
have h0: "\<forall> sgn. sgn \<in> set signs \<and> sgn \<notin> consistent_sign_vec_copr qs ` set (characterize_root_list_p p) \<and> 0 < rat_of_nat (card | |
{xa. poly p xa = 0 \<and> consistent_sign_vec_copr qs xa = sgn}) \<longrightarrow> z I sgn = 0" | |
proof - | |
have "\<forall> sgn. sgn \<in> set signs \<and> sgn \<notin> consistent_sign_vec_copr qs ` set (characterize_root_list_p p) \<and> 0 < rat_of_int (card | |
{xa. poly p xa = 0 \<and> consistent_sign_vec_copr qs xa = sgn}) \<longrightarrow> {xa. poly p xa = 0 \<and> consistent_sign_vec_copr qs xa = sgn} \<noteq> {}" | |
by fastforce | |
then show ?thesis | |
proof - | |
{ fix iis :: "rat list" | |
have ff1: "0 \<noteq> p" | |
using nonzero rsquarefree_def by blast | |
obtain rr :: "(real \<Rightarrow> bool) \<Rightarrow> real" where | |
ff2: "\<And>p. p (rr p) \<or> Collect p = {}" | |
by moura | |
{ assume "\<exists>is. is = iis \<and> {r. poly p r = 0 \<and> consistent_sign_vec_copr qs r = is} \<noteq> {}" | |
then have "\<exists>is. consistent_sign_vec_copr qs (rr (\<lambda>r. poly p r = 0 \<and> consistent_sign_vec_copr qs r = is)) = iis \<and> {r. poly p r = 0 \<and> consistent_sign_vec_copr qs r = is} \<noteq> {}" | |
using ff2 | |
by (metis (mono_tags, lifting)) | |
then have "\<exists>r. poly p r = 0 \<and> consistent_sign_vec_copr qs r = iis" | |
using ff2 by smt | |
then have "iis \<in> consistent_sign_vec_copr qs ` set (sorted_list_of_set {r. poly p r = 0})" | |
using ff1 poly_roots_finite by fastforce } | |
then have "iis \<notin> set signs \<or> iis \<in> consistent_sign_vec_copr qs ` set (characterize_root_list_p p) \<or> \<not> 0 < rat_of_int (int (card {r. poly p r = 0 \<and> consistent_sign_vec_copr qs r = iis}))" | |
by (metis (no_types) \<open>\<forall>sgn. sgn \<in> set signs \<and> sgn \<notin> consistent_sign_vec_copr qs ` set (characterize_root_list_p p) \<and> 0 < rat_of_int (int (card {xa. poly p xa = 0 \<and> consistent_sign_vec_copr qs xa = sgn})) \<longrightarrow> {xa. poly p xa = 0 \<and> consistent_sign_vec_copr qs xa = sgn} \<noteq> {}\<close> characterize_root_list_p_def) } | |
then show ?thesis | |
by fastforce | |
qed | |
qed | |
then have "\<forall> sgn. sgn \<in> set signs \<and> sgn \<notin> consistent_sign_vec_copr qs ` set (characterize_root_list_p p) \<longrightarrow> ((0 = rat_of_nat (card | |
{xa. poly p xa = 0 \<and> consistent_sign_vec_copr qs xa = sgn}) \<or> z I sgn = 0))" | |
by auto | |
then have hyp: "\<forall> s. s \<in> set signs \<and> s \<notin> consistent_sign_vec_copr qs ` set (characterize_root_list_p p) \<longrightarrow> (z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}) = 0)" | |
by auto | |
then have "(\<Sum>s\<in> set(signs). z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) = | |
(\<Sum>s\<in>(set (signs) \<inter> (consistent_sign_vec_copr qs ` set (characterize_root_list_p p))). z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}))" | |
proof - | |
have "set(signs) =(set (signs) \<inter> (consistent_sign_vec_copr qs ` set (characterize_root_list_p p))) \<union> | |
(set(signs)-(consistent_sign_vec_copr qs ` set (characterize_root_list_p p)))" | |
by blast | |
then have sum_rewrite: "(\<Sum>s\<in> set(signs). z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) = | |
(\<Sum>s\<in> (set (signs) \<inter> (consistent_sign_vec_copr qs ` set (characterize_root_list_p p))) \<union> | |
(set(signs)-(consistent_sign_vec_copr qs ` set (characterize_root_list_p p))). z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}))" | |
by auto | |
then have sum_split: "(\<Sum>s\<in> (set (signs) \<inter> (consistent_sign_vec_copr qs ` set (characterize_root_list_p p))) \<union> | |
(set(signs)-(consistent_sign_vec_copr qs ` set (characterize_root_list_p p))). z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) | |
= | |
(\<Sum>s\<in> (set (signs) \<inter> (consistent_sign_vec_copr qs ` set (characterize_root_list_p p))). z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) | |
+ (\<Sum>s\<in> (set(signs)-(consistent_sign_vec_copr qs ` set (characterize_root_list_p p))). z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}))" | |
by (metis (no_types, lifting) List.finite_set sum.Int_Diff) | |
have sum_zero: "(\<Sum>s\<in> (set(signs)-(consistent_sign_vec_copr qs ` set (characterize_root_list_p p))). z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) = 0" | |
using hyp | |
by (simp add: hyp) | |
show ?thesis using sum_rewrite sum_split sum_zero by linarith | |
qed | |
then have set_eq: "set (remdups | |
(map (consistent_sign_vec_copr qs) | |
(characterize_root_list_p p))) = set (signs) \<inter> (consistent_sign_vec_copr qs ` set (characterize_root_list_p p))" | |
using all_info | |
by (simp add: characterize_consistent_signs_at_roots_copr_def subset_antisym) | |
have hyp1: "(\<Sum>s\<leftarrow>signs. z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) = | |
(\<Sum>s\<in>set (signs). z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}))" | |
using distinct_signs sum_list_distinct_conv_sum_set by blast | |
have hyp2: "(\<Sum>s\<leftarrow>remdups | |
(map (consistent_sign_vec_copr qs) | |
(characterize_root_list_p p)). z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) | |
= (\<Sum>s\<in> set (remdups | |
(map (consistent_sign_vec_copr qs) | |
(characterize_root_list_p p))). z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}))" | |
using sum_list_distinct_conv_sum_set by blast | |
have set_sum_eq: "(\<Sum>s\<in>(set (signs) \<inter> (consistent_sign_vec_copr qs ` set (characterize_root_list_p p))). z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) = | |
(\<Sum>s\<in> set (remdups | |
(map (consistent_sign_vec_copr qs) | |
(characterize_root_list_p p))). z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}))" | |
using set_eq by auto | |
then have "(\<Sum>s\<leftarrow>signs. z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) = | |
(\<Sum>s\<leftarrow>remdups | |
(map (consistent_sign_vec_copr qs) | |
(characterize_root_list_p p)). z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}))" | |
using set_sum_eq hyp1 hyp2 | |
using \<open>(\<Sum>s\<in>set signs. z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) = (\<Sum>s\<in>set signs \<inter> consistent_sign_vec_copr qs ` set (characterize_root_list_p p). z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}))\<close> by linarith | |
then have "consistent_sign_vec_copr qs ` set (characterize_root_list_p p) \<subseteq> set signs \<Longrightarrow> | |
(\<And>p qss. | |
characterize_consistent_signs_at_roots_copr p qss = | |
remdups (map (consistent_sign_vec_copr qss) (characterize_root_list_p p))) \<Longrightarrow> | |
(\<Sum>s\<leftarrow>signs. z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) = | |
(\<Sum>s\<leftarrow>remdups | |
(map (consistent_sign_vec_copr qs) | |
(characterize_root_list_p p)). z I s * rat_of_nat (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}))" | |
by linarith | |
then show ?thesis unfolding lhs_dot_rewrite[OF nonzero] | |
apply (auto intro!: sum_list_distinct_filter simp add: distinct_signs characterize_consistent_signs_at_roots_copr_def) | |
using all_info characterize_consistent_signs_at_roots_copr_def by auto[1] | |
qed | |
(* Both matrix_equation_helper_step and matrix_equation_main_step relate the matrix construction | |
to the Tarski queries, i.e. relate the product of a row of the matrix and the LHS vector to a | |
Tarski query on the RHS *) | |
lemma matrix_equation_helper_step: | |
fixes p:: "real poly" | |
fixes qs:: "real poly list" | |
fixes I:: "nat list" | |
fixes signs:: "rat list list" | |
assumes nonzero: "p\<noteq>0" | |
assumes distinct_signs: "distinct signs" | |
assumes all_info: "set (characterize_consistent_signs_at_roots_copr p qs) \<subseteq> set(signs)" | |
assumes welldefined: "list_constr I (length qs)" | |
assumes pairwise_rel_prime_1: "\<forall>q. ((List.member qs q) \<longrightarrow> (coprime p q))" | |
shows "(vec_of_list (mtx_row signs I) \<bullet> (construct_lhs_vector p qs signs)) = | |
rat_of_int (card {x. poly p x = 0 \<and> poly (prod_list (retrieve_polys qs I)) x > 0}) - | |
rat_of_int (card {x. poly p x = 0 \<and> poly (prod_list (retrieve_polys qs I)) x < 0})" | |
proof - | |
have "finite (set (map (consistent_sign_vec_copr qs) (characterize_root_list_p p)))" by auto | |
let ?gt = "(set (map (consistent_sign_vec_copr qs) (characterize_root_list_p p)) \<inter> {s. z I s = 1})" | |
let ?lt = " (set (map (consistent_sign_vec_copr qs) (characterize_root_list_p p)) \<inter> {s. z I s = -1})" | |
have eq: "set (map (consistent_sign_vec_copr qs) (characterize_root_list_p p)) = ?gt \<union> ?lt" | |
apply auto | |
by (metis characterize_root_list_p_def horiz_vector_helper_neg horiz_vector_helper_pos_ind nonzero nonzero_product pairwise_rel_prime_1 poly_roots_finite sorted_list_of_set(1) welldefined) | |
(* First, drop the signs that are irrelevant *) | |
from construct_lhs_vector_drop_consistent[OF assms(1-4)] have | |
"vec_of_list (mtx_row signs I) \<bullet> construct_lhs_vector p qs signs = | |
vec_of_list (mtx_row (characterize_consistent_signs_at_roots_copr p qs) I) \<bullet> | |
construct_lhs_vector p qs (characterize_consistent_signs_at_roots_copr p qs)" . | |
(* Now we split the sum *) | |
from lhs_dot_rewrite[OF assms(1)] | |
moreover have "... = | |
(\<Sum>s\<leftarrow>characterize_consistent_signs_at_roots_copr p qs. | |
z I s * rat_of_int (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}))" . | |
moreover have "... = | |
(\<Sum>s\<in>set (map (consistent_sign_vec_copr qs) (characterize_root_list_p p)). | |
z I s * rat_of_int (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}))" unfolding characterize_consistent_signs_at_roots_copr_def sum_code[symmetric] | |
by (auto) | |
ultimately have "... = | |
(\<Sum>s\<in>?gt. z I s * rat_of_int (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) + | |
(\<Sum>s\<in>?lt. z I s * rat_of_int (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}))" | |
apply (subst eq) | |
apply (rule sum.union_disjoint) | |
by auto | |
(* Now recharacterize lt, gt*) | |
have setroots: "set (characterize_root_list_p p) = {x. poly p x = 0}" unfolding characterize_root_list_p_def | |
using poly_roots_finite nonzero rsquarefree_def set_sorted_list_of_set by blast | |
have *: "\<And>s. {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s} = | |
{x \<in>{x. poly p x = 0}. consistent_sign_vec_copr qs x = s}" | |
by auto | |
have lem_e1: "\<And>x. x \<in> {x. poly p x = 0} \<Longrightarrow> | |
card | |
{s \<in> consistent_sign_vec_copr qs ` {x. poly p x = 0} \<inter> {s. z I s = 1}. | |
consistent_sign_vec_copr qs x = s} = | |
(if 0 < poly (prod_list (retrieve_polys qs I)) x then 1 else 0)" | |
proof - | |
fix x | |
assume rt: "x \<in> {x. poly p x = 0}" | |
then have 1: "{s \<in> consistent_sign_vec_copr qs ` {x. poly p x = 0} \<inter> {s. z I s = 1}. consistent_sign_vec_copr qs x = s} = | |
{s. z I s = 1 \<and> consistent_sign_vec_copr qs x = s}" | |
by auto | |
from horiz_vector_helper_pos[OF assms(1) assms(5) rt] | |
have 2: "... = {s. (0 < poly (prod_list (retrieve_polys qs I)) x) \<and> consistent_sign_vec_copr qs x = s}" | |
using welldefined by blast | |
have 3: "... = (if (0 < poly (prod_list (retrieve_polys qs I)) x) then {consistent_sign_vec_copr qs x} else {})" | |
by auto | |
thus "card {s \<in> consistent_sign_vec_copr qs ` {x. poly p x = 0} \<inter> {s. z I s = 1}. consistent_sign_vec_copr qs x = s} = | |
(if 0 < poly (prod_list (retrieve_polys qs I)) x then 1 else 0) " using 1 2 3 by auto | |
qed | |
have e1: "(\<Sum>s\<in>consistent_sign_vec_copr qs ` {x. poly p x = 0} \<inter> {s. z I s = 1}. | |
card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}) = | |
(sum (\<lambda>x. if (poly (prod_list (retrieve_polys qs I)) x) > 0 then 1 else 0) {x. poly p x = 0})" | |
unfolding * apply (rule sum_multicount_gen) | |
using \<open>finite (set (map (consistent_sign_vec_copr qs) (characterize_root_list_p p)))\<close> setroots apply auto[1] | |
apply (metis List.finite_set setroots) | |
using lem_e1 by auto | |
have gtchr: "(\<Sum>s\<in>?gt. z I s * rat_of_int (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) = | |
rat_of_int (card {x. poly p x = 0 \<and> 0 < poly (prod_list (retrieve_polys qs I)) x})" | |
apply (auto simp add: setroots) | |
apply (subst of_nat_sum[symmetric]) | |
apply (subst of_nat_eq_iff) | |
apply (subst e1) | |
apply (subst card_eq_sum) | |
apply (rule sum.mono_neutral_cong_right) | |
apply (metis List.finite_set setroots) | |
by auto | |
have lem_e2: "\<And>x. x \<in> {x. poly p x = 0} \<Longrightarrow> | |
card | |
{s \<in> consistent_sign_vec_copr qs ` {x. poly p x = 0} \<inter> {s. z I s = -1}. | |
consistent_sign_vec_copr qs x = s} = | |
(if poly (prod_list (retrieve_polys qs I)) x < 0 then 1 else 0)" | |
proof - | |
fix x | |
assume rt: "x \<in> {x. poly p x = 0}" | |
then have 1: "{s \<in> consistent_sign_vec_copr qs ` {x. poly p x = 0} \<inter> {s. z I s = -1}. consistent_sign_vec_copr qs x = s} = | |
{s. z I s = -1 \<and> consistent_sign_vec_copr qs x = s}" | |
by auto | |
from horiz_vector_helper_neg[OF assms(1) assms(5) rt] | |
have 2: "... = {s. (0 > poly (prod_list (retrieve_polys qs I)) x) \<and> consistent_sign_vec_copr qs x = s}" | |
using welldefined by blast | |
have 3: "... = (if (0 > poly (prod_list (retrieve_polys qs I)) x) then {consistent_sign_vec_copr qs x} else {})" | |
by auto | |
thus "card {s \<in> consistent_sign_vec_copr qs ` {x. poly p x = 0} \<inter> {s. z I s = -1}. consistent_sign_vec_copr qs x = s} = | |
(if poly (prod_list (retrieve_polys qs I)) x < 0 then 1 else 0)" using 1 2 3 by auto | |
qed | |
have e2: " (\<Sum>s\<in>consistent_sign_vec_copr qs ` {x. poly p x = 0} \<inter> {s. z I s = - 1}. | |
card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}) = | |
(sum (\<lambda>x. if (poly (prod_list (retrieve_polys qs I)) x) < 0 then 1 else 0) {x. poly p x = 0})" | |
unfolding * apply (rule sum_multicount_gen) | |
using \<open>finite (set (map (consistent_sign_vec_copr qs) (characterize_root_list_p p)))\<close> setroots apply auto[1] | |
apply (metis List.finite_set setroots) | |
using lem_e2 by auto | |
have ltchr: "(\<Sum>s\<in>?lt. z I s * rat_of_int (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) = | |
- rat_of_int (card {x. poly p x = 0 \<and> 0 > poly (prod_list (retrieve_polys qs I)) x})" | |
apply (auto simp add: setroots sum_negf) | |
apply (subst of_nat_sum[symmetric]) | |
apply (subst of_nat_eq_iff) | |
apply (subst e2) | |
apply (subst card_eq_sum) | |
apply (rule sum.mono_neutral_cong_right) | |
apply (metis List.finite_set setroots) | |
by auto | |
show ?thesis using gtchr ltchr | |
using \<open>(\<Sum>s\<in>set (map (consistent_sign_vec_copr qs) (characterize_root_list_p p)). z I s * rat_of_int (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) = (\<Sum>s\<in>set (map (consistent_sign_vec_copr qs) (characterize_root_list_p p)) \<inter> {s. z I s = 1}. z I s * rat_of_int (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) + (\<Sum>s\<in>set (map (consistent_sign_vec_copr qs) (characterize_root_list_p p)) \<inter> {s. z I s = - 1}. z I s * rat_of_int (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}))\<close> \<open>(\<Sum>s\<leftarrow>characterize_consistent_signs_at_roots_copr p qs. z I s * rat_of_int (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s})) = (\<Sum>s\<in>set (map (consistent_sign_vec_copr qs) (characterize_root_list_p p)). z I s * rat_of_int (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}))\<close> \<open>vec_of_list (mtx_row (characterize_consistent_signs_at_roots_copr p qs) I) \<bullet> construct_lhs_vector p qs (characterize_consistent_signs_at_roots_copr p qs) = (\<Sum>s\<leftarrow>characterize_consistent_signs_at_roots_copr p qs. z I s * rat_of_int (card {x. poly p x = 0 \<and> consistent_sign_vec_copr qs x = s}))\<close> \<open>vec_of_list (mtx_row signs I) \<bullet> construct_lhs_vector p qs signs = vec_of_list (mtx_row (characterize_consistent_signs_at_roots_copr p qs) I) \<bullet> construct_lhs_vector p qs (characterize_consistent_signs_at_roots_copr p qs)\<close> | |
by linarith | |
qed | |
(* A clean restatement of the helper lemma *) | |
lemma matrix_equation_main_step: | |
fixes p:: "real poly" | |
fixes qs:: "real poly list" | |
fixes I:: "nat list" | |
fixes signs:: "rat list list" | |
assumes nonzero: "p\<noteq>0" | |
assumes distinct_signs: "distinct signs" | |
assumes all_info: "set (characterize_consistent_signs_at_roots_copr p qs) \<subseteq> set(signs)" | |
assumes welldefined: "list_constr I (length qs)" | |
assumes pairwise_rel_prime_1: "\<forall>q. ((List.member qs q) \<longrightarrow> (coprime p q))" | |
shows "(vec_of_list (mtx_row signs I) \<bullet> (construct_lhs_vector p qs signs)) = | |
construct_NofI p (retrieve_polys qs I)" | |
unfolding construct_NofI_prop[OF nonzero] | |
using matrix_equation_helper_step[OF assms] | |
by linarith | |
lemma map_vec_vec_of_list_eq_intro: | |
assumes "map f xs = map g ys" | |
shows "map_vec f (vec_of_list xs) = map_vec g (vec_of_list ys)" | |
by (metis assms vec_of_list_map) | |
(* Shows that as long as we have a "basis" of sign assignments (see assumptions all_info, welldefined), | |
and some other mild assumptions on our inputs (given in nonzero, distinct_signs, pairwise_rel_prime), | |
the construction will be satisfied *) | |
theorem matrix_equation: | |
fixes p:: "real poly" | |
fixes qs:: "real poly list" | |
fixes subsets:: "nat list list" | |
fixes signs:: "rat list list" | |
assumes nonzero: "p\<noteq>0" | |
assumes distinct_signs: "distinct signs" | |
assumes all_info: "set (characterize_consistent_signs_at_roots_copr p qs) \<subseteq> set(signs)" | |
assumes pairwise_rel_prime: "\<forall>q. ((List.member qs q) \<longrightarrow> (coprime p q))" | |
assumes welldefined: "all_list_constr (subsets) (length qs)" | |
shows "satisfy_equation p qs subsets signs" | |
unfolding satisfy_equation_def matrix_A_def | |
construct_lhs_vector_def construct_rhs_vector_def all_list_constr_def | |
apply (subst mult_mat_vec_of_list) | |
apply (auto simp add: mtx_row_length intro!: map_vec_vec_of_list_eq_intro) | |
using matrix_equation_main_step[OF assms(1-3) _ assms(4), unfolded construct_lhs_vector_def] | |
using all_list_constr_def in_set_member welldefined by fastforce | |
(* Prettifying some theorems*) | |
definition roots:: "real poly \<Rightarrow> real set" | |
where "roots p = {x. poly p x = 0}" | |
definition sgn::"'a::linordered_field \<Rightarrow> rat" | |
where "sgn x = (if x > 0 then 1 | |
else if x < 0 then -1 | |
else 0)" | |
definition sgn_vec::"real poly list \<Rightarrow> real \<Rightarrow> rat list" | |
where "sgn_vec qs x \<equiv> map (sgn \<circ> (\<lambda>q. poly q x)) qs" | |
definition consistent_signs_at_roots:: "real poly \<Rightarrow> real poly list \<Rightarrow> rat list set" | |
where "consistent_signs_at_roots p qs = | |
(sgn_vec qs) ` (roots p)" | |
lemma consistent_signs_at_roots_eq: | |
assumes "p \<noteq> 0" | |
shows "consistent_signs_at_roots p qs = | |
set (characterize_consistent_signs_at_roots p qs)" | |
unfolding consistent_signs_at_roots_def characterize_consistent_signs_at_roots_def | |
characterize_root_list_p_def | |
apply auto | |
apply (subst set_sorted_list_of_set) | |
using assms poly_roots_finite apply blast | |
unfolding sgn_vec_def sgn_def signs_at_def squash_def o_def | |
using roots_def apply auto[1] | |
by (smt Collect_cong assms image_iff poly_roots_finite roots_def sorted_list_of_set(1)) | |
abbreviation w_vec:: "real poly \<Rightarrow> real poly list \<Rightarrow> rat list list \<Rightarrow> rat vec" | |
where "w_vec \<equiv> construct_lhs_vector" | |
abbreviation v_vec:: "real poly \<Rightarrow> real poly list \<Rightarrow> nat list list \<Rightarrow> rat vec" | |
where "v_vec \<equiv> construct_rhs_vector" | |
abbreviation M_mat:: "rat list list \<Rightarrow> nat list list \<Rightarrow> rat mat" | |
where "M_mat \<equiv> matrix_A" | |
theorem matrix_equation_pretty: | |
assumes "p\<noteq>0" | |
assumes "\<And>q. q \<in> set qs \<Longrightarrow> coprime p q" | |
assumes "distinct signs" | |
assumes "consistent_signs_at_roots p qs \<subseteq> set signs" | |
assumes "\<And>l i. l \<in> set subsets \<Longrightarrow> i \<in> set l \<Longrightarrow> i < length qs" | |
shows "M_mat signs subsets *\<^sub>v w_vec p qs signs = v_vec p qs subsets" | |
unfolding satisfy_equation_def[symmetric] | |
apply (rule matrix_equation[OF assms(1) assms(3)]) | |
apply (metis assms(1) assms(2) assms(4) consistent_signs_at_roots_eq csa_list_copr_rel member_def) | |
apply (simp add: assms(2) in_set_member) | |
using Ball_set all_list_constr_def assms(5) list_constr_def member_def by fastforce | |
end |