Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
theory Renegar_Algorithm | |
imports BKR_Algorithm | |
begin | |
(* There is significant overlap between Renegar's algorithm and BKR's. | |
However, the RHS vector is constructed differently in Renegar. The base case is also different. | |
In general, the _R's on definition and lemma names in this file are to emphasize that we are | |
working with Renegar style. | |
*) | |
definition construct_NofI_R:: "real poly \<Rightarrow> real poly list \<Rightarrow> real poly list \<Rightarrow> rat" | |
where "construct_NofI_R p I1 I2 = ( | |
let new_p = sum_list (map (\<lambda>x. x^2) (p # I1)) in | |
rat_of_int (changes_R_smods new_p ((pderiv new_p)*(prod_list I2))))" | |
(* Renegar's RHS vector will have type (nat list * nat list) list. | |
Note the change from BKR, where the RHS vector had type nat list list*) | |
definition construct_rhs_vector_R:: "real poly \<Rightarrow> real poly list \<Rightarrow> (nat list * nat list) list \<Rightarrow> rat vec" | |
where "construct_rhs_vector_R p qs Is = | |
vec_of_list (map (\<lambda>(I1,I2). | |
(construct_NofI_R p (retrieve_polys qs I1) (retrieve_polys qs I2))) Is)" | |
section "Base Case" | |
(* Renegar's matrix is 3x3 instead of 2x2 *) | |
definition base_case_info_R:: "(rat mat \<times> ((nat list * nat list) list \<times> rat list list))" | |
where "base_case_info_R = | |
((mat_of_rows_list 3 [[1,1,1], [0,1,0], [1,0,-1]]),([([], []),([0], []),([], [0])], [[1],[0],[-1]]))" | |
(* When p, q are coprime, this will actually be an int vec, which is why taking the floor is okay *) | |
definition base_case_solve_for_lhs:: "real poly \<Rightarrow> real poly \<Rightarrow> rat vec" | |
where "base_case_solve_for_lhs p q = (mult_mat_vec (mat_of_rows_list 3 [[1/2, -1/2, 1/2], [0, 1, 0], [1/2, -1/2, -1/2]]) (construct_rhs_vector_R p [q] [([], []),([0], []),([], [0])]))" | |
(* Solve for LHS in general: mat_inverse returns an option type, and we pattern match on this. | |
Notice that when we call this function in the algorithm, the matrix we pass will always be invertible, | |
given how the construction works. *) | |
definition solve_for_lhs_R:: "real poly \<Rightarrow> real poly list \<Rightarrow> (nat list * nat list) list \<Rightarrow> rat mat \<Rightarrow> rat vec" | |
where "solve_for_lhs_R p qs subsets matr = | |
mult_mat_vec (matr_option (dim_row matr) (mat_inverse_var matr)) (construct_rhs_vector_R p qs subsets)" | |
section "Smashing" | |
definition subsets_smash_R::"nat \<Rightarrow> (nat list*nat list) list \<Rightarrow> (nat list*nat list) list \<Rightarrow> (nat list*nat list) list" | |
where "subsets_smash_R n s1 s2 = concat (map (\<lambda>l1. map (\<lambda> l2. (((fst l1) @ (map ((+) n) (fst l2))), (snd l1) @ (map ((+) n) (snd l2)))) s2) s1)" | |
definition smash_systems_R:: "real poly \<Rightarrow> real poly list \<Rightarrow> real poly list \<Rightarrow> (nat list * nat list) list \<Rightarrow> (nat list * nat list) list \<Rightarrow> | |
rat list list \<Rightarrow> rat list list \<Rightarrow> rat mat \<Rightarrow> rat mat \<Rightarrow> | |
real poly list \<times> (rat mat \<times> ((nat list * nat list) list \<times> rat list list))" | |
where "smash_systems_R p qs1 qs2 subsets1 subsets2 signs1 signs2 mat1 mat2 = | |
(qs1@qs2, (kronecker_product mat1 mat2, (subsets_smash_R (length qs1) subsets1 subsets2, signs_smash signs1 signs2)))" | |
fun combine_systems_R:: "real poly \<Rightarrow> (real poly list \<times> (rat mat \<times> ((nat list * nat list) list \<times> rat list list))) \<Rightarrow> (real poly list \<times> (rat mat \<times> ((nat list * nat list) list \<times> rat list list))) | |
\<Rightarrow> (real poly list \<times> (rat mat \<times> ((nat list * nat list) list \<times> rat list list)))" | |
where "combine_systems_R p (qs1, m1, sub1, sgn1) (qs2, m2, sub2, sgn2) = | |
(smash_systems_R p qs1 qs2 sub1 sub2 sgn1 sgn2 m1 m2)" | |
(* Overall: | |
Start with a matrix equation. | |
Input a matrix, subsets, and signs. | |
Drop columns of the matrix based on the 0's on the LHS---so extract a list of 0's. Reduce signs accordingly. | |
Then find a list of rows to delete based on using rank (use the transpose result, pivot positions!), | |
and delete those rows. Reduce subsets accordingly. | |
End with a reduced system! *) | |
section "Reduction" | |
fun reduction_step_R:: "rat mat \<Rightarrow> rat list list \<Rightarrow> (nat list*nat list) list \<Rightarrow> rat vec \<Rightarrow> rat mat \<times> ((nat list*nat list) list \<times> rat list list)" | |
where "reduction_step_R A signs subsets lhs_vec = | |
(let reduce_cols_A = (reduce_mat_cols A lhs_vec); | |
rows_keep = rows_to_keep reduce_cols_A in | |
(take_rows_from_matrix reduce_cols_A rows_keep, | |
(take_indices subsets rows_keep, | |
take_indices signs (find_nonzeros_from_input_vec lhs_vec))))" | |
fun reduce_system_R:: "real poly \<Rightarrow> (real poly list \<times> (rat mat \<times> ((nat list*nat list) list \<times> rat list list))) \<Rightarrow> (rat mat \<times> ((nat list*nat list) list \<times> rat list list))" | |
where "reduce_system_R p (qs,m,subs,signs) = | |
reduction_step_R m signs subs (solve_for_lhs_R p qs subs m)" | |
section "Overall algorithm " | |
(* Find matrix, subsets, signs. | |
The "rat mat" in the output is the matrix. The "(nat list*nat list) list" is the list of subsets. | |
The "rat list list" is the list of signs. | |
*) | |
fun calculate_data_R:: "real poly \<Rightarrow> real poly list \<Rightarrow> (rat mat \<times> ((nat list*nat list) list \<times> rat list list))" | |
where | |
"calculate_data_R p qs = | |
( let len = length qs in | |
if len = 0 then | |
(\<lambda>(a,b,c).(a,b,map (drop 1) c)) (reduce_system_R p ([1],base_case_info_R)) | |
else if len \<le> 1 then reduce_system_R p (qs,base_case_info_R) | |
else | |
(let q1 = take (len div 2) qs; left = calculate_data_R p q1; | |
q2 = drop (len div 2) qs; right = calculate_data_R p q2; | |
comb = combine_systems_R p (q1,left) (q2,right) in | |
reduce_system_R p comb | |
) | |
)" | |
(* Extract the list of consistent sign assignments *) | |
definition find_consistent_signs_at_roots_R:: "real poly \<Rightarrow> real poly list \<Rightarrow> rat list list" | |
where [code]: | |
"find_consistent_signs_at_roots_R p qs = | |
( let (M,S,\<Sigma>) = calculate_data_R p qs in \<Sigma> )" | |
lemma find_consistent_signs_at_roots_thm_R: | |
shows "find_consistent_signs_at_roots_R p qs = snd (snd (calculate_data_R p qs))" | |
by (simp add: case_prod_beta find_consistent_signs_at_roots_R_def) | |
end |