Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Arithmetic-geometric mean inequality. *) | |
(* ========================================================================= *) | |
needs "Library/products.ml";; | |
prioritize_real();; | |
(* ------------------------------------------------------------------------- *) | |
(* There's already one proof of this in "Library/agm.ml". This one is from *) | |
(* an article by Michael Hirschhorn, Math. Intelligencer vol. 29, p7. *) | |
(* ------------------------------------------------------------------------- *) | |
let LEMMA_1 = prove | |
(`!x n. x pow (n + 1) - (&n + &1) * x + &n = | |
(x - &1) pow 2 * sum(1..n) (\k. &k * x pow (n - k))`, | |
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN GEN_TAC THEN INDUCT_TAC THEN | |
REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH_EQ; ADD_CLAUSES] THENL | |
[REAL_ARITH_TAC; REWRITE_TAC[ARITH_RULE `1 <= SUC n`]] THEN | |
SIMP_TAC[ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; SUB_REFL] THEN | |
REWRITE_TAC[real_pow; REAL_MUL_RID] THEN | |
REWRITE_TAC[REAL_ARITH `k * x * x pow n = (k * x pow n) * x`] THEN | |
ASM_REWRITE_TAC[SUM_RMUL; REAL_MUL_ASSOC; REAL_ADD_LDISTRIB] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_SUC; REAL_POW_ADD] THEN REAL_ARITH_TAC);; | |
let LEMMA_2 = prove | |
(`!n x. &0 <= x ==> &0 <= x pow (n + 1) - (&n + &1) * x + &n`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[LEMMA_1] THEN | |
MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE] THEN | |
MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN | |
ASM_SIMP_TAC[REAL_LE_MUL; REAL_POS; REAL_POW_LE]);; | |
let LEMMA_3 = prove | |
(`!n x. 1 <= n /\ (!i. 1 <= i /\ i <= n + 1 ==> &0 <= x i) | |
==> x(n + 1) * (sum(1..n) x / &n) pow n | |
<= (sum(1..n+1) x / (&n + &1)) pow (n + 1)`, | |
REPEAT STRIP_TAC THEN | |
ABBREV_TAC `a = sum(1..n+1) x / (&n + &1)` THEN | |
ABBREV_TAC `b = sum(1..n) x / &n` THEN | |
SUBGOAL_THEN `x(n + 1) = (&n + &1) * a - &n * b` SUBST1_TAC THENL | |
[MAP_EVERY EXPAND_TAC ["a"; "b"] THEN | |
ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; LE_1; | |
REAL_ARITH `~(&n + &1 = &0)`] THEN | |
SIMP_TAC[SUM_ADD_SPLIT; ARITH_RULE `1 <= n + 1`; SUM_SING_NUMSEG] THEN | |
REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `&0 <= a /\ &0 <= b` STRIP_ASSUME_TAC THENL | |
[MAP_EVERY EXPAND_TAC ["a"; "b"] THEN CONJ_TAC THEN | |
MATCH_MP_TAC REAL_LE_DIV THEN | |
(CONJ_TAC THENL [MATCH_MP_TAC SUM_POS_LE_NUMSEG; REAL_ARITH_TAC]) THEN | |
ASM_SIMP_TAC[ARITH_RULE `p <= n ==> p <= n + 1`]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `b = &0` THEN | |
ASM_SIMP_TAC[REAL_POW_ZERO; LE_1; REAL_MUL_RZERO; REAL_POW_LE] THEN | |
MP_TAC(ISPECL [`n:num`; `a / b`] LEMMA_2) THEN ASM_SIMP_TAC[REAL_LE_DIV] THEN | |
REWRITE_TAC[REAL_ARITH `&0 <= x - a + b <=> a - b <= x`; REAL_POW_DIV] THEN | |
SUBGOAL_THEN `&0 < b` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_POW_LT] THEN | |
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[REAL_POW_ADD] THEN UNDISCH_TAC `~(b = &0)` THEN | |
CONV_TAC REAL_FIELD);; | |
let AGM = prove | |
(`!n a. 1 <= n /\ (!i. 1 <= i /\ i <= n ==> &0 <= a(i)) | |
==> product(1..n) a <= (sum(1..n) a / &n) pow n`, | |
INDUCT_TAC THEN REWRITE_TAC[ARITH; PRODUCT_CLAUSES_NUMSEG] THEN | |
REWRITE_TAC[ARITH_RULE `1 <= SUC n`] THEN X_GEN_TAC `x:num->real` THEN | |
ASM_CASES_TAC `n = 0` THENL | |
[ASM_REWRITE_TAC[PRODUCT_CLAUSES_NUMSEG; ARITH; SUM_SING_NUMSEG] THEN | |
REAL_ARITH_TAC; | |
REWRITE_TAC[ADD1] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `x(n + 1) * (sum(1..n) x / &n) pow n` THEN | |
ASM_SIMP_TAC[LEMMA_3; GSYM REAL_OF_NUM_ADD; LE_1; | |
ARITH_RULE `i <= n ==> i <= n + 1`] THEN | |
GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN MATCH_MP_TAC REAL_LE_RMUL THEN | |
ASM_SIMP_TAC[LE_REFL; LE_1; ARITH_RULE `i <= n ==> i <= n + 1`]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Finally, reformulate in the usual way using roots. *) | |
(* ------------------------------------------------------------------------- *) | |
needs "Library/transc.ml";; | |
let AGM_ROOT = prove | |
(`!n a. 1 <= n /\ (!i. 1 <= i /\ i <= n ==> &0 <= a(i)) | |
==> root n (product(1..n) a) <= sum(1..n) a / &n`, | |
INDUCT_TAC THEN REWRITE_TAC[ARITH; ARITH_RULE `1 <= SUC n`] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `root(SUC n) ((sum(1..SUC n) a / &(SUC n)) pow (SUC n))` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC ROOT_MONO_LE THEN | |
ASM_SIMP_TAC[AGM; ARITH_RULE `1 <= SUC n`] THEN | |
MATCH_MP_TAC PRODUCT_POS_LE THEN | |
ASM_REWRITE_TAC[IN_NUMSEG; FINITE_NUMSEG]; | |
MATCH_MP_TAC REAL_EQ_IMP_LE THEN MATCH_MP_TAC POW_ROOT_POS THEN | |
ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS; SUM_POS_LE_NUMSEG]]);; | |