Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* The Cayley-Hamilton theorem (for real matrices). *) | |
(* ========================================================================= *) | |
needs "Multivariate/complexes.ml";; | |
needs "Multivariate/msum.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* Powers of a square matrix (mpow). *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("mpow",(24,"left"));; | |
let mpow = define | |
`(!A:real^N^N. A mpow 0 = (mat 1 :real^N^N)) /\ | |
(!A:real^N^N n. A mpow (SUC n) = A ** A mpow n)`;; | |
let MPOW_ADD = prove | |
(`!A:real^N^N m n. A mpow (m + n) = A mpow m ** A mpow n`, | |
GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[ADD_CLAUSES; mpow; MATRIX_MUL_LID] THEN | |
REWRITE_TAC[MATRIX_MUL_ASSOC]);; | |
let MPOW_1 = prove | |
(`!A:real^N^N. A mpow 1 = A`, | |
REWRITE_TAC[num_CONV `1`; mpow] THEN | |
REWRITE_TAC[SYM(num_CONV `1`); MATRIX_MUL_RID]);; | |
let MPOW_SUC = prove | |
(`!A:real^N^N n. A mpow (SUC n) = A mpow n ** A`, | |
REWRITE_TAC[ADD1; MPOW_ADD; MPOW_1]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The main lemma underlying the proof. *) | |
(* ------------------------------------------------------------------------- *) | |
let MATRIC_POLYFUN_EQ_0 = prove | |
(`!n A:num->real^N^M. | |
(!x. msum(0..n) (\i. x pow i %% A i) = mat 0) <=> | |
(!i. i IN 0..n ==> A i = mat 0)`, | |
SIMP_TAC[CART_EQ; MSUM_COMPONENT; MAT_COMPONENT; LAMBDA_BETA; | |
FINITE_NUMSEG; COND_ID; | |
ONCE_REWRITE_RULE[REAL_MUL_SYM] MATRIX_CMUL_COMPONENT] THEN | |
REWRITE_TAC[MESON[] | |
`(!x i. P i ==> !j. Q j ==> R x i j) <=> | |
(!i. P i ==> !j. Q j ==> !x. R x i j)`] THEN | |
REWRITE_TAC[REAL_POLYFUN_EQ_0] THEN MESON_TAC[]);; | |
let MATRIC_POLY_LEMMA = prove | |
(`!(A:real^N^N) B (C:real^N^N) n. | |
(!x. msum (0..n) (\i. (x pow i) %% B i) ** (A - x %% mat 1) = C) | |
==> C = mat 0`, | |
SIMP_TAC[GSYM MSUM_MATRIX_RMUL; FINITE_NUMSEG; MATRIX_SUB_LDISTRIB] THEN | |
REWRITE_TAC[MATRIX_MUL_RMUL] THEN ONCE_REWRITE_TAC[MATRIX_MUL_LMUL] THEN | |
ONCE_REWRITE_TAC[MATRIX_CMUL_ASSOC] THEN | |
REWRITE_TAC[GSYM(CONJUNCT2 real_pow)] THEN | |
SIMP_TAC[MSUM_SUB; FINITE_NUMSEG] THEN REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN | |
`!x. msum(0..SUC n) | |
(\i. x pow i %% (((if i = 0 then (--C:real^N^N) else mat 0) + | |
(if i <= n then B i ** (A:real^N^N) else mat 0)) - | |
(if i = 0 then mat 0 else B(i - 1) ** mat 1))) = | |
mat 0` | |
MP_TAC THENL | |
[SIMP_TAC[MATRIX_CMUL_SUB_LDISTRIB; MSUM_SUB; FINITE_NUMSEG; | |
MATRIX_CMUL_ADD_LDISTRIB; MSUM_ADD] THEN | |
ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[MATRIX_CMUL_RZERO] THEN | |
ONCE_REWRITE_TAC[MESON[] | |
`(if p then mat 0 else x) = (if ~p then x else mat 0)`] THEN | |
REWRITE_TAC[GSYM MSUM_RESTRICT_SET; IN_NUMSEG] THEN | |
REWRITE_TAC[ARITH_RULE `(0 <= i /\ i <= SUC n) /\ i = 0 <=> i = 0`; | |
ARITH_RULE `(0 <= i /\ i <= SUC n) /\ i <= n <=> 0 <= i /\ i <= n`; | |
ARITH_RULE `(0 <= i /\ i <= SUC n) /\ ~(i = 0) <=> | |
1 <= i /\ i <= SUC n`] THEN | |
REWRITE_TAC[SING_GSPEC; GSYM numseg; MSUM_SING; real_pow] THEN | |
REWRITE_TAC[MATRIX_CMUL_LID] THEN | |
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC ONCE_DEPTH_CONV [GSYM th]) THEN | |
REWRITE_TAC[MATRIX_NEG_SUB] THEN REWRITE_TAC[MATRIX_SUB; AC MATRIX_ADD_AC | |
`(((A:real^N^N) + --B) + B) + C = (--B + B) + A + C`] THEN | |
REWRITE_TAC[MATRIX_ADD_LNEG; MATRIX_ADD_LID] THEN | |
REWRITE_TAC[num_CONV `1`] THEN REWRITE_TAC[ADD1; MSUM_OFFSET] THEN | |
REWRITE_TAC[ADD_CLAUSES; ADD_SUB; MATRIX_ADD_RNEG]; | |
REWRITE_TAC[MATRIC_POLYFUN_EQ_0; IN_NUMSEG; LE_0] THEN DISCH_TAC THEN | |
SUBGOAL_THEN `!i:num. B(n - i) = (mat 0:real^N^N)` MP_TAC THENL | |
[MATCH_MP_TAC num_INDUCTION THEN CONJ_TAC THENL | |
[FIRST_X_ASSUM(MP_TAC o SPEC `SUC n`) THEN | |
REWRITE_TAC[LE_REFL; SUB_0; NOT_SUC; ARITH_RULE `~(SUC n <= n)`] THEN | |
REWRITE_TAC[MATRIX_ADD_LID; SUC_SUB1; MATRIX_MUL_RID] THEN | |
REWRITE_TAC[MATRIX_SUB_LZERO; MATRIX_NEG_EQ_0]; | |
X_GEN_TAC `m:num` THEN DISCH_TAC THEN | |
DISJ_CASES_TAC(ARITH_RULE `n - SUC m = n - m \/ m < n`) THEN | |
ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `n - m:num`) THEN | |
ASM_SIMP_TAC[ARITH_RULE `m < n ==> ~(n - m = 0)`; | |
ARITH_RULE `n - m <= SUC n /\ n - m <= n`] THEN | |
REWRITE_TAC[MATRIX_MUL_LZERO; MATRIX_ADD_LID; MATRIX_SUB_LZERO] THEN | |
REWRITE_TAC[MATRIX_MUL_RID; MATRIX_NEG_EQ_0] THEN | |
ASM_SIMP_TAC[ARITH_RULE `n - m - 1 = n - SUC m`]]; | |
DISCH_THEN(MP_TAC o SPEC `n:num`) THEN REWRITE_TAC[SUB_REFL] THEN | |
DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `0`) THEN | |
ASM_REWRITE_TAC[LE_0; MATRIX_MUL_LZERO; MATRIX_ADD_RID] THEN | |
REWRITE_TAC[MATRIX_SUB_RZERO; MATRIX_NEG_EQ_0]]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Show that cofactor and determinant are n-1 and n degree polynomials. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLYFUN_N_CONST = prove | |
(`!c n. ?b. !x. c = sum(0..n) (\i. b i * x pow i)`, | |
REPEAT STRIP_TAC THEN | |
EXISTS_TAC `\i. if i = 0 then c else &0` THEN | |
REWRITE_TAC[COND_RAND; COND_RATOR; REAL_MUL_LZERO] THEN | |
REWRITE_TAC[GSYM SUM_RESTRICT_SET; IN_NUMSEG] THEN | |
REWRITE_TAC[ARITH_RULE `(0 <= i /\ i <= n) /\ i = 0 <=> i = 0`] THEN | |
REWRITE_TAC[SING_GSPEC; SUM_SING; real_pow; REAL_MUL_RID]);; | |
let POLYFUN_N_ADD = prove | |
(`!f g. (?b. !x. f(x) = sum(0..n) (\i. b i * x pow i)) /\ | |
(?c. !x. g(x) = sum(0..n) (\i. c i * x pow i)) | |
==> ?d. !x. f(x) + g(x) = sum(0..n) (\i. d i * x pow i)`, | |
REPEAT STRIP_TAC THEN | |
EXISTS_TAC `\i. (b:num->real) i + c i` THEN | |
ASM_REWRITE_TAC[SUM_ADD_NUMSEG; REAL_ADD_RDISTRIB]);; | |
let POLYFUN_N_CMUL = prove | |
(`!f c. (?b. !x. f(x) = sum(0..n) (\i. b i * x pow i)) | |
==> ?b. !x. c * f(x) = sum(0..n) (\i. b i * x pow i)`, | |
REPEAT STRIP_TAC THEN | |
EXISTS_TAC `\i. c * (b:num->real) i` THEN | |
ASM_REWRITE_TAC[SUM_LMUL; GSYM REAL_MUL_ASSOC]);; | |
let POLYFUN_N_SUM = prove | |
(`!f s. FINITE s /\ | |
(!a. a IN s ==> ?b. !x. f x a = sum(0..n) (\i. b i * x pow i)) | |
==> ?b. !x. sum s (f x) = sum(0..n) (\i. b i * x pow i)`, | |
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
SIMP_TAC[SUM_CLAUSES; FORALL_IN_INSERT; NOT_IN_EMPTY; POLYFUN_N_CONST] THEN | |
REPEAT GEN_TAC THEN REPEAT DISCH_TAC THEN | |
MATCH_MP_TAC POLYFUN_N_ADD THEN ASM_SIMP_TAC[]);; | |
let POLYFUN_N_PRODUCT = prove | |
(`!f s n. FINITE s /\ | |
(!a:A. a IN s ==> ?c d. !x. f x a = c + d * x) /\ CARD(s) <= n | |
==> ?b. !x. product s (f x) = sum(0..n) (\i. b i * x pow i)`, | |
GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
SIMP_TAC[PRODUCT_CLAUSES; POLYFUN_N_CONST; FORALL_IN_INSERT] THEN | |
REPEAT GEN_TAC THEN DISCH_THEN(fun th -> | |
DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN MP_TAC th) THEN | |
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN | |
ASM_SIMP_TAC[CARD_CLAUSES] THEN | |
INDUCT_TAC THENL [ARITH_TAC; REWRITE_TAC[LE_SUC]] THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `n:num`) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_TAC `b:num->real`) THEN | |
FIRST_X_ASSUM(X_CHOOSE_THEN `c:real` (X_CHOOSE_TAC `d:real`)) THEN | |
ASM_REWRITE_TAC[] THEN | |
EXISTS_TAC `\i. (if i <= n then c * b i else &0) + | |
(if ~(i = 0) then d * b(i - 1) else &0)` THEN | |
X_GEN_TAC `x:real` THEN | |
REWRITE_TAC[REAL_ADD_RDISTRIB; SUM_ADD_NUMSEG] THEN | |
REWRITE_TAC[COND_RAND; COND_RATOR; GSYM SUM_LMUL; REAL_MUL_LZERO] THEN | |
REWRITE_TAC[GSYM SUM_RESTRICT_SET; IN_NUMSEG] THEN | |
REWRITE_TAC[ARITH_RULE | |
`((0 <= i /\ i <= SUC n) /\ i <= n <=> 0 <= i /\ i <= n) /\ | |
((0 <= i /\ i <= SUC n) /\ ~(i = 0) <=> 1 <= i /\ i <= SUC n)`] THEN | |
REWRITE_TAC[GSYM numseg] THEN | |
REWRITE_TAC[MESON[num_CONV `1`; ADD1] `1..SUC n = 0+1..n+1`] THEN | |
REWRITE_TAC[SUM_OFFSET; ADD_SUB; REAL_POW_ADD] THEN | |
BINOP_TAC THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN REAL_ARITH_TAC);; | |
let COFACTOR_ENTRY_AS_POLYFUN = prove | |
(`!A:real^N^N x i j. | |
1 <= i /\ i <= dimindex(:N) /\ | |
1 <= j /\ j <= dimindex(:N) | |
==> ?c. !x. cofactor(A - x %% mat 1)$i$j = | |
sum(0..dimindex(:N)-1) (\i. c(i) * x pow i)`, | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[cofactor; LAMBDA_BETA; det] THEN | |
MATCH_MP_TAC POLYFUN_N_SUM THEN | |
SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG; FORALL_IN_GSPEC] THEN | |
X_GEN_TAC `p:num->num` THEN DISCH_TAC THEN | |
MATCH_MP_TAC POLYFUN_N_CMUL THEN | |
SUBGOAL_THEN `1..dimindex(:N) = i INSERT ((1..dimindex(:N)) DELETE i)` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_INSERT; IN_DELETE; IN_NUMSEG] THEN ASM_ARITH_TAC; | |
SIMP_TAC[PRODUCT_CLAUSES; FINITE_DELETE; FINITE_NUMSEG]] THEN | |
ASM_REWRITE_TAC[IN_DELETE; IN_NUMSEG] THEN | |
MATCH_MP_TAC POLYFUN_N_CMUL THEN | |
MATCH_MP_TAC POLYFUN_N_PRODUCT THEN | |
SIMP_TAC[CARD_DELETE; FINITE_DELETE; FINITE_NUMSEG] THEN | |
ASM_REWRITE_TAC[IN_NUMSEG; IN_DELETE; CARD_NUMSEG_1; LE_REFL] THEN | |
X_GEN_TAC `k:num` THEN STRIP_TAC THEN | |
SUBGOAL_THEN `(p:num->num) k IN 1..dimindex(:N)` MP_TAC THENL | |
[ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_NUMSEG]; ALL_TAC] THEN | |
ASM_SIMP_TAC[IN_NUMSEG; LAMBDA_BETA] THEN STRIP_TAC THEN | |
ASM_CASES_TAC `(p:num->num) k = j` THEN ASM_REWRITE_TAC[] THENL | |
[REPEAT(EXISTS_TAC `&0`) THEN REAL_ARITH_TAC; ALL_TAC] THEN | |
ASM_SIMP_TAC[MATRIX_SUB_COMPONENT; MATRIX_CMUL_COMPONENT; MAT_COMPONENT] THEN | |
REWRITE_TAC[REAL_ARITH `a - x * d:real = a + (--d) * x`] THEN MESON_TAC[]);; | |
let DETERMINANT_AS_POLYFUN = prove | |
(`!A:real^N^N. | |
?c. !x. det(A - x %% mat 1) = | |
sum(0..dimindex(:N)) (\i. c(i) * x pow i)`, | |
GEN_TAC THEN REWRITE_TAC[det] THEN | |
MATCH_MP_TAC POLYFUN_N_SUM THEN | |
SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG; FORALL_IN_GSPEC] THEN | |
X_GEN_TAC `p:num->num` THEN DISCH_TAC THEN | |
MATCH_MP_TAC POLYFUN_N_CMUL THEN MATCH_MP_TAC POLYFUN_N_PRODUCT THEN | |
SIMP_TAC[FINITE_NUMSEG; CARD_NUMSEG_1; LE_REFL; IN_NUMSEG] THEN | |
X_GEN_TAC `k:num` THEN STRIP_TAC THEN | |
SUBGOAL_THEN `(p:num->num) k IN 1..dimindex(:N)` MP_TAC THENL | |
[ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_NUMSEG]; ALL_TAC] THEN | |
ASM_SIMP_TAC[IN_NUMSEG; LAMBDA_BETA] THEN STRIP_TAC THEN | |
ASM_SIMP_TAC[MATRIX_SUB_COMPONENT; MATRIX_CMUL_COMPONENT; MAT_COMPONENT] THEN | |
REWRITE_TAC[REAL_ARITH `a - x * d:real = a + (--d) * x`] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence define characteristic polynomial coefficients. *) | |
(* ------------------------------------------------------------------------- *) | |
let char_poly = new_specification ["char_poly"] | |
(REWRITE_RULE[SKOLEM_THM] DETERMINANT_AS_POLYFUN);; | |
(* ------------------------------------------------------------------------- *) | |
(* Now the Cayley-Hamilton proof. *) | |
(* ------------------------------------------------------------------------- *) | |
let COFACTOR_AS_MATRIC_POLYNOMIAL = prove | |
(`!A:real^N^N. ?C. | |
!x. cofactor(A - x %% mat 1) = | |
msum(0..dimindex(:N)-1) (\i. x pow i %% C i)`, | |
GEN_TAC THEN SIMP_TAC[CART_EQ; MSUM_COMPONENT; FINITE_NUMSEG] THEN | |
MP_TAC(ISPEC `A:real^N^N` COFACTOR_ENTRY_AS_POLYFUN) THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
REWRITE_TAC[IMP_IMP] THEN REWRITE_TAC[LAMBDA_SKOLEM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `c:(num->real)^N^N` ASSUME_TAC) THEN | |
EXISTS_TAC `(\i. lambda j k. ((c:(num->real)^N^N)$j$k) i):num->real^N^N` THEN | |
MAP_EVERY X_GEN_TAC [`x:real`; `i:num`] THEN STRIP_TAC THEN | |
X_GEN_TAC `j:num` THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN | |
MATCH_MP_TAC SUM_EQ_NUMSEG THEN REPEAT STRIP_TAC THEN | |
ASM_SIMP_TAC[MATRIX_CMUL_COMPONENT; LAMBDA_BETA] THEN REAL_ARITH_TAC);; | |
let MATRIC_POWER_DIFFERENCE = prove | |
(`!A:real^N^N x n. | |
A mpow (SUC n) - x pow (SUC n) %% mat 1 = | |
msum (0..n) (\i. x pow i %% A mpow (n - i)) ** (A - x %% mat 1)`, | |
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THENL | |
[REWRITE_TAC[MSUM_CLAUSES_NUMSEG; real_pow; SUB_0; mpow] THEN | |
REWRITE_TAC[MATRIX_MUL_RID; MATRIX_CMUL_LID; MATRIX_MUL_LID] THEN | |
REWRITE_TAC[REAL_MUL_RID]; | |
MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC | |
`(A mpow SUC n - x pow SUC n %% mat 1) ** A + | |
(x pow (SUC n) %% mat 1 :real^N^N) ** (A - x %% mat 1:real^N^N)` THEN | |
CONJ_TAC THENL | |
[GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MPOW_SUC] THEN | |
REWRITE_TAC[MATRIX_SUB_RDISTRIB; MATRIX_SUB_LDISTRIB] THEN | |
REWRITE_TAC[MATRIX_SUB; MATRIX_MUL_LMUL; MATRIX_MUL_LID] THEN | |
REWRITE_TAC[GSYM MATRIX_ADD_ASSOC] THEN AP_TERM_TAC THEN | |
REWRITE_TAC[MATRIX_ADD_ASSOC; MATRIX_ADD_LNEG; MATRIX_ADD_LID] THEN | |
REWRITE_TAC[real_pow; MATRIX_CMUL_ASSOC] THEN REWRITE_TAC[REAL_MUL_AC]; | |
ASM_REWRITE_TAC[MSUM_CLAUSES_NUMSEG; LE_0] THEN | |
REWRITE_TAC[SUB_REFL; mpow; MATRIX_ADD_RDISTRIB] THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN | |
SIMP_TAC[GSYM MSUM_MATRIX_RMUL; FINITE_NUMSEG] THEN | |
MATCH_MP_TAC MSUM_EQ THEN REWRITE_TAC[FINITE_NUMSEG] THEN | |
X_GEN_TAC `i:num` THEN REWRITE_TAC[IN_NUMSEG] THEN STRIP_TAC THEN | |
ASM_SIMP_TAC[MATRIX_MUL_LMUL] THEN AP_TERM_TAC THEN | |
ASM_SIMP_TAC[ARITH_RULE `i <= n ==> SUC n - i = SUC(n - i)`] THEN | |
REWRITE_TAC[MPOW_SUC; GSYM MATRIX_MUL_ASSOC] THEN AP_TERM_TAC THEN | |
REWRITE_TAC[MATRIX_SUB_LDISTRIB; MATRIX_SUB_RDISTRIB] THEN | |
REWRITE_TAC[MATRIX_MUL_RMUL; MATRIX_MUL_LMUL] THEN | |
REWRITE_TAC[MATRIX_MUL_LID; MATRIX_MUL_RID]]]);; | |
let MATRIC_CHARPOLY_DIFFERENCE = prove | |
(`!A:real^N^N. ?B. | |
!x. msum(0..dimindex(:N)) (\i. char_poly A i %% A mpow i) - | |
sum(0..dimindex(:N)) (\i. char_poly A i * x pow i) %% mat 1 = | |
msum(0..(dimindex(:N)-1)) (\i. x pow i %% B i) ** (A - x %% mat 1)`, | |
GEN_TAC THEN SPEC_TAC(`dimindex(:N)`,`n:num`) THEN | |
SPEC_TAC(`char_poly(A:real^N^N)`,`c:num->real`) THEN | |
GEN_TAC THEN INDUCT_TAC THEN | |
SIMP_TAC[MSUM_CLAUSES_NUMSEG; SUM_CLAUSES_NUMSEG; LE_0] THENL | |
[EXISTS_TAC `(\i. mat 0):num->real^N^N` THEN | |
CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[MSUM_CLAUSES_NUMSEG] THEN | |
REWRITE_TAC[real_pow; MATRIX_MUL_LMUL; MATRIX_MUL_LZERO; mpow; | |
REAL_MUL_RID; MATRIX_CMUL_RZERO; MATRIX_SUB_REFL]; | |
FIRST_X_ASSUM(X_CHOOSE_TAC `B:num->real^N^N`) THEN | |
REWRITE_TAC[MATRIX_SUB; MATRIX_NEG_ADD; MATRIX_CMUL_ADD_RDISTRIB] THEN | |
ONCE_REWRITE_TAC[AC MATRIX_ADD_AC | |
`(A + B) + (C + D):real^N^N = (A + C) + (B + D)`] THEN | |
ASM_REWRITE_TAC[GSYM MATRIX_SUB] THEN | |
REWRITE_TAC[GSYM MATRIX_CMUL_ASSOC; GSYM MATRIX_CMUL_SUB_LDISTRIB] THEN | |
REWRITE_TAC[MATRIC_POWER_DIFFERENCE; SUC_SUB1] THEN | |
EXISTS_TAC `(\i. (if i <= n - 1 then B i else mat 0) + | |
c(SUC n) %% A mpow (n - i)):num->real^N^N` THEN | |
X_GEN_TAC `x:real` THEN REWRITE_TAC[MATRIX_CMUL_ADD_LDISTRIB] THEN | |
SIMP_TAC[MSUM_ADD; FINITE_NUMSEG; MATRIX_ADD_RDISTRIB] THEN | |
REWRITE_TAC[GSYM MATRIX_MUL_LMUL] THEN | |
BINOP_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THENL | |
[REWRITE_TAC[COND_RAND; COND_RATOR; MATRIX_CMUL_RZERO] THEN | |
REWRITE_TAC[GSYM MSUM_RESTRICT_SET; IN_NUMSEG] THEN | |
REWRITE_TAC[numseg; ARITH_RULE | |
`(0 <= i /\ i <= n) /\ i <= n - 1 <=> 0 <= i /\ i <= n - 1`]; | |
SIMP_TAC[GSYM MSUM_LMUL; FINITE_NUMSEG; MATRIX_CMUL_ASSOC] THEN | |
REWRITE_TAC[REAL_MUL_SYM]]]);; | |
let CAYLEY_HAMILTON = prove | |
(`!A:real^N^N. msum(0..dimindex(:N)) (\i. char_poly A i %% A mpow i) = mat 0`, | |
GEN_TAC THEN MATCH_MP_TAC MATRIC_POLY_LEMMA THEN MATCH_MP_TAC(MESON[] | |
`!g. (!x. g x = k) /\ (?a b c. !x. f a b c x = g x) | |
==> ?a b c. !x. f a b c x = k`) THEN | |
EXISTS_TAC | |
`\x. (msum(0..dimindex(:N)) (\i. char_poly A i %% (A:real^N^N) mpow i) - | |
sum(0..dimindex(:N)) (\i. char_poly A i * x pow i) %% mat 1) + | |
sum(0..dimindex(:N)) (\i. char_poly A i * x pow i) %% mat 1` THEN | |
REWRITE_TAC[] THEN CONJ_TAC THENL | |
[REWRITE_TAC[MATRIX_SUB; GSYM MATRIX_ADD_ASSOC; MATRIX_ADD_LNEG] THEN | |
REWRITE_TAC[MATRIX_ADD_RID]; | |
X_CHOOSE_THEN `B:num->real^N^N` (fun th -> ONCE_REWRITE_TAC[th]) | |
(ISPEC `A:real^N^N` MATRIC_CHARPOLY_DIFFERENCE) THEN | |
REWRITE_TAC[GSYM char_poly; GSYM MATRIX_MUL_LEFT_COFACTOR] THEN | |
REWRITE_TAC[GSYM MATRIX_ADD_RDISTRIB] THEN | |
REWRITE_TAC[GSYM COFACTOR_TRANSP; TRANSP_MATRIX_SUB] THEN | |
REWRITE_TAC[TRANSP_MATRIX_CMUL; TRANSP_MAT] THEN | |
X_CHOOSE_THEN `C:num->real^N^N` (fun th -> ONCE_REWRITE_TAC[th]) | |
(ISPEC `transp A:real^N^N` COFACTOR_AS_MATRIC_POLYNOMIAL) THEN | |
MAP_EVERY EXISTS_TAC | |
[`A:real^N^N`; `(\i. B i + C i):num->real^N^N`; `dimindex(:N)-1`] THEN | |
SIMP_TAC[GSYM MSUM_ADD; FINITE_NUMSEG; MATRIX_CMUL_ADD_LDISTRIB]]);; | |