Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* #61: Ceva's theorem. *) | |
(* ========================================================================= *) | |
needs "Multivariate/convex.ml";; | |
needs "Examples/sos.ml";; | |
prioritize_real();; | |
(* ------------------------------------------------------------------------- *) | |
(* We use the notion of "betweenness". *) | |
(* ------------------------------------------------------------------------- *) | |
let BETWEEN_THM = prove | |
(`between x (a,b) <=> | |
?u. &0 <= u /\ u <= &1 /\ x = u % a + (&1 - u) % b`, | |
REWRITE_TAC[BETWEEN_IN_CONVEX_HULL] THEN | |
ONCE_REWRITE_TAC[SET_RULE `{a,b} = {b,a}`] THEN | |
REWRITE_TAC[CONVEX_HULL_2_ALT; IN_ELIM_THM] THEN | |
AP_TERM_TAC THEN ABS_TAC THEN REWRITE_TAC[CONJ_ASSOC] THEN | |
AP_TERM_TAC THEN VECTOR_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lemmas to reduce geometric concepts to more convenient forms. *) | |
(* ------------------------------------------------------------------------- *) | |
let NORM_CROSS = prove | |
(`norm(a) * norm(b) * norm(c) = norm(d) * norm(e) * norm(f) <=> | |
(a dot a) * (b dot b) * (c dot c) = (d dot d) * (e dot e) * (f dot f)`, | |
let lemma = prove | |
(`!x y. &0 <= x /\ &0 <= y ==> (x pow 2 = y pow 2 <=> x = y)`, | |
REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[REAL_POW_2] THEN | |
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC | |
(SPECL [`x:real`; `y:real`] REAL_LT_TOTAL) THEN | |
ASM_MESON_TAC[REAL_LT_MUL2; REAL_LT_REFL]) in | |
REWRITE_TAC[GSYM NORM_POW_2; GSYM REAL_POW_MUL] THEN | |
MATCH_MP_TAC(GSYM lemma) THEN SIMP_TAC[NORM_POS_LE; REAL_LE_MUL]);; | |
let COLLINEAR = prove | |
(`!a b c:real^2. | |
collinear {a:real^2,b,c} <=> | |
((a$1 - b$1) * (b$2 - c$2) = (a$2 - b$2) * (b$1 - c$1))`, | |
let lemma = prove | |
(`~(y1 = &0) /\ x2 * y1 = x1 * y2 ==> ?c. x1 = c * y1 /\ x2 = c * y2`, | |
STRIP_TAC THEN EXISTS_TAC `x1 / y1` THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD) in | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:real^2 = b` THENL | |
[ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO; REAL_MUL_LZERO] THEN | |
REWRITE_TAC[COLLINEAR_SING; COLLINEAR_2; INSERT_AC]; | |
ALL_TAC] THEN | |
REWRITE_TAC[collinear] THEN EQ_TAC THENL | |
[DISCH_THEN(CHOOSE_THEN (fun th -> | |
MP_TAC(SPECL [`a:real^2`; `b:real^2`] th) THEN | |
MP_TAC(SPECL [`b:real^2`; `c:real^2`] th))) THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN REPEAT STRIP_TAC THEN | |
ASM_SIMP_TAC[GSYM VECTOR_SUB_COMPONENT; DIMINDEX_2; ARITH] THEN | |
SIMP_TAC[VECTOR_MUL_COMPONENT; DIMINDEX_2; ARITH] THEN | |
REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
DISCH_TAC THEN EXISTS_TAC `a - b:real^2` THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN | |
REPEAT GEN_TAC THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [CART_EQ]) THEN | |
REWRITE_TAC[DIMINDEX_2; FORALL_2; ARITH; DE_MORGAN_THM] THEN STRIP_TAC THEN | |
SIMP_TAC[CART_EQ; DIMINDEX_2; FORALL_2; VECTOR_MUL_COMPONENT; | |
VECTOR_SUB_COMPONENT; ARITH] | |
THENL [ALL_TAC; ONCE_REWRITE_TAC[CONJ_SYM]] THEN | |
FIRST_X_ASSUM(CONJUNCTS_THEN(REPEAT_TCL STRIP_THM_THEN SUBST1_TAC)) THEN | |
MATCH_MP_TAC lemma THEN REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD);; | |
(* ------------------------------------------------------------------------- *) | |
(* More or less automatic proof of the main direction. *) | |
(* ------------------------------------------------------------------------- *) | |
let CEVA_WEAK = prove | |
(`!A B C X Y Z P:real^2. | |
~(collinear {A,B,C}) /\ | |
between X (B,C) /\ between Y (A,C) /\ between Z (A,B) /\ | |
between P (A,X) /\ between P (B,Y) /\ between P (C,Z) | |
==> dist(B,X) * dist(C,Y) * dist(A,Z) = | |
dist(X,C) * dist(Y,A) * dist(Z,B)`, | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC[dist; NORM_CROSS; COLLINEAR; BETWEEN_THM] THEN STRIP_TAC THEN | |
REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o check (is_var o lhs o concl))) THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN | |
SIMP_TAC[dot; SUM_2; VECTOR_SUB_COMPONENT; DIMINDEX_2; VECTOR_ADD_COMPONENT; | |
CART_EQ; FORALL_2; VECTOR_MUL_COMPONENT; ARITH] THEN | |
FIRST_X_ASSUM(MP_TAC o check(is_neg o concl)) THEN | |
CONV_TAC REAL_RING);; | |
(* ------------------------------------------------------------------------- *) | |
(* More laborious proof of equivalence. *) | |
(* ------------------------------------------------------------------------- *) | |
let CEVA = prove | |
(`!A B C X Y Z:real^2. | |
~(collinear {A,B,C}) /\ | |
between X (B,C) /\ between Y (C,A) /\ between Z (A,B) | |
==> (dist(B,X) * dist(C,Y) * dist(A,Z) = | |
dist(X,C) * dist(Y,A) * dist(Z,B) <=> | |
(?P. between P (A,X) /\ between P (B,Y) /\ between P (C,Z)))`, | |
REPEAT GEN_TAC THEN | |
MAP_EVERY ASM_CASES_TAC [`A:real^2 = B`; `A:real^2 = C`; `B:real^2 = C`] THEN | |
ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_SING; COLLINEAR_2] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[BETWEEN_THM] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `x:real`) MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `y:real`) | |
(X_CHOOSE_TAC `z:real`)) THEN | |
REPEAT(FIRST_X_ASSUM(CONJUNCTS_THEN STRIP_ASSUME_TAC)) THEN | |
REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN REWRITE_TAC[dist] THEN | |
REWRITE_TAC[VECTOR_ARITH `B - (x % B + (&1 - x) % C) = (&1 - x) % (B - C)`; | |
VECTOR_ARITH `(x % B + (&1 - x) % C) - C = x % (B - C)`] THEN | |
REWRITE_TAC[NORM_MUL] THEN | |
REWRITE_TAC[REAL_ARITH `(a * a') * (b * b') * (c * c') = | |
(a * b * c) * (a' * b' * c')`] THEN | |
REWRITE_TAC[REAL_MUL_ASSOC; REAL_EQ_MUL_RCANCEL; REAL_ENTIRE] THEN | |
ASM_REWRITE_TAC[NORM_EQ_0; VECTOR_SUB_EQ] THEN | |
ASM_REWRITE_TAC[REAL_ARITH `&0 <= &1 - x <=> x <= &1`; real_abs] THEN | |
EQ_TAC THENL | |
[ALL_TAC; | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [COLLINEAR]) THEN | |
SIMP_TAC[dot; SUM_2; VECTOR_SUB_COMPONENT; DIMINDEX_2; FORALL_2; | |
VECTOR_ADD_COMPONENT; CART_EQ; VECTOR_MUL_COMPONENT; ARITH] THEN | |
CONV_TAC REAL_RING] THEN | |
DISCH_TAC THEN REWRITE_TAC[VECTOR_ADD_LDISTRIB; VECTOR_MUL_ASSOC] THEN | |
SUBGOAL_THEN | |
`?u v w. w = (&1 - u) * (&1 - x) /\ | |
v = (&1 - u) * x /\ | |
u = (&1 - v) * (&1 - y) /\ | |
u = (&1 - w) * z /\ | |
v = (&1 - w) * (&1 - z) /\ | |
w = (&1 - v) * y /\ | |
&0 <= u /\ u <= &1 /\ &0 <= v /\ v <= &1 /\ &0 <= w /\ w <= &1` | |
(STRIP_ASSUME_TAC o GSYM) THENL | |
[ALL_TAC; | |
EXISTS_TAC `u % A + v % B + w % C:real^2` THEN REPEAT CONJ_TAC THENL | |
[EXISTS_TAC `u:real`; EXISTS_TAC `v:real`; EXISTS_TAC `w:real`] THEN | |
ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC] THEN | |
REWRITE_TAC[UNWIND_THM2] THEN | |
MATCH_MP_TAC(MESON[] | |
`(!x. p x /\ q x ==> r x) /\ (?x. p x /\ q x) | |
==> (?x. p x /\ q x /\ r x)`) THEN | |
CONJ_TAC THENL | |
[GEN_TAC THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o check (not o is_neg o concl))) THEN | |
REWRITE_TAC[IMP_IMP] THEN | |
REPEAT(MATCH_MP_TAC(TAUT `(a ==> b /\ c) /\ (a /\ b /\ c ==> d) | |
==> a ==> b /\ c /\ d`) THEN | |
CONJ_TAC THENL | |
[CONV_TAC REAL_RING ORELSE CONV_TAC REAL_SOS; ALL_TAC]) THEN | |
CONV_TAC REAL_SOS; | |
ALL_TAC] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[COLLINEAR]) THEN | |
ASM_CASES_TAC `x = &0` THENL | |
[EXISTS_TAC `&1 - y / (&1 - x + x * y)` THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o check (not o is_neg o concl))) THEN | |
CONV_TAC REAL_FIELD; ALL_TAC] THEN | |
EXISTS_TAC `&1 - (&1 - z) / (x + (&1 - x) * (&1 - z))` THEN | |
SUBGOAL_THEN `~(x + (&1 - x) * (&1 - z) = &0)` MP_TAC THENL | |
[ALL_TAC; | |
REPEAT(FIRST_X_ASSUM(MP_TAC o check (not o is_neg o concl))) THEN | |
CONV_TAC REAL_FIELD] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`z * (&1 - x) < &1 ==> ~(x + (&1 - x) * (&1 - z) = &0)`) THEN | |
ASM_CASES_TAC `z = &0` THEN ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_LT_01] THEN | |
MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `&1 * (&1 - x)` THEN | |
ASM_SIMP_TAC[REAL_LE_RMUL; REAL_ARITH `x <= &1 ==> &0 <= &1 - x`] THEN | |
ASM_REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Just for geometric intuition, verify metrical version of "between". *) | |
(* This isn't actually needed in the proof. Moreover, this is now actually *) | |
(* the definition of "between" so this is all a relic. *) | |
(* ------------------------------------------------------------------------- *) | |
let BETWEEN_SYM = prove | |
(`!u v w. between v (u,w) <=> between v (w,u)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[BETWEEN_THM] THEN EQ_TAC THEN | |
DISCH_THEN(X_CHOOSE_TAC `u:real`) THEN EXISTS_TAC `&1 - u` THEN | |
ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THEN TRY VECTOR_ARITH_TAC THEN | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC);; | |
let BETWEEN_METRICAL = prove | |
(`!u v w:real^N. between v (u,w) <=> dist(u,v) + dist(v,w) = dist(u,w)`, | |
REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN | |
ONCE_REWRITE_TAC[BETWEEN_SYM] THEN REWRITE_TAC[BETWEEN_THM; dist] THEN | |
REWRITE_TAC[VECTOR_ARITH `x % u + (&1 - x) % v = v + x % (u - v)`] THEN | |
SUBST1_TAC(VECTOR_ARITH `u - w:real^N = (u - v) + (v - w)`) THEN | |
CONV_TAC(LAND_CONV SYM_CONV) THEN REWRITE_TAC[NORM_TRIANGLE_EQ] THEN | |
EQ_TAC THENL | |
[ALL_TAC; | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[VECTOR_ARITH `u - (u + x):real^N = --x`; NORM_NEG; | |
VECTOR_ARITH `(u + c % (w - u)) - w = (&1 - c) % (u - w)`] THEN | |
REWRITE_TAC[VECTOR_ARITH `a % --(c % (x - y)) = (a * c) % (y - x)`] THEN | |
REWRITE_TAC[VECTOR_MUL_ASSOC; NORM_MUL] THEN | |
ASM_SIMP_TAC[REAL_ARITH `c <= &1 ==> abs(&1 - c) = &1 - c`; | |
REAL_ARITH `&0 <= c ==> abs c = c`] THEN | |
REWRITE_TAC[NORM_SUB; REAL_MUL_AC]] THEN | |
DISCH_TAC THEN ASM_CASES_TAC `&0 < norm(u - v:real^N) + norm(v - w)` THENL | |
[ALL_TAC; | |
FIRST_X_ASSUM(MP_TAC o MATCH_MP (REAL_ARITH | |
`~(&0 < x + y) ==> &0 <= x /\ &0 <= y ==> x = &0 /\ y = &0`)) THEN | |
REWRITE_TAC[NORM_POS_LE; NORM_EQ_0; VECTOR_SUB_EQ] THEN | |
STRIP_TAC THEN EXISTS_TAC `&0` THEN ASM_REWRITE_TAC[REAL_POS] THEN | |
VECTOR_ARITH_TAC] THEN | |
EXISTS_TAC `norm(u - v:real^N) / (norm(u - v) + norm(v - w))` THEN | |
ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ; REAL_MUL_LZERO; | |
REAL_MUL_LID; REAL_LE_ADDR; NORM_POS_LE] THEN | |
MATCH_MP_TAC VECTOR_MUL_LCANCEL_IMP THEN | |
EXISTS_TAC `norm(u - v:real^N) + norm(v - w)` THEN | |
ASM_SIMP_TAC[REAL_LT_IMP_NZ] THEN | |
REWRITE_TAC[VECTOR_ARITH `x % (y + z % v) = x % y + (x * z) % v`] THEN | |
ASM_SIMP_TAC[REAL_LT_IMP_NZ; REAL_DIV_LMUL] THEN | |
FIRST_X_ASSUM(MP_TAC o SYM) THEN VECTOR_ARITH_TAC);; | |