Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* #55: Theorem on product of segments of chords. *) | |
(* ========================================================================= *) | |
needs "Multivariate/convex.ml";; | |
prioritize_real();; | |
(* ------------------------------------------------------------------------- *) | |
(* Geometric concepts. *) | |
(* ------------------------------------------------------------------------- *) | |
let BETWEEN_THM = prove | |
(`between x (a,b) <=> | |
?u. &0 <= u /\ u <= &1 /\ x = u % a + (&1 - u) % b`, | |
REWRITE_TAC[BETWEEN_IN_CONVEX_HULL] THEN | |
ONCE_REWRITE_TAC[SET_RULE `{a,b} = {b,a}`] THEN | |
REWRITE_TAC[CONVEX_HULL_2_ALT; IN_ELIM_THM] THEN | |
AP_TERM_TAC THEN ABS_TAC THEN REWRITE_TAC[CONJ_ASSOC] THEN | |
AP_TERM_TAC THEN VECTOR_ARITH_TAC);; | |
let length = new_definition | |
`length(A:real^2,B:real^2) = norm(B - A)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* One more special reduction theorem to avoid square roots. *) | |
(* ------------------------------------------------------------------------- *) | |
let lemma = prove | |
(`!x y. &0 <= x /\ &0 <= y ==> (x pow 2 = y pow 2 <=> x = y)`, | |
REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[REAL_POW_2] THEN | |
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC | |
(SPECL [`x:real`; `y:real`] REAL_LT_TOTAL) THEN | |
ASM_MESON_TAC[REAL_LT_MUL2; REAL_LT_REFL]);; | |
let NORM_CROSS = prove | |
(`norm(a) * norm(b) = norm(c) * norm(d) <=> | |
(a dot a) * (b dot b) = (c dot c) * (d dot d)`, | |
REWRITE_TAC[GSYM NORM_POW_2; GSYM REAL_POW_MUL] THEN | |
MATCH_MP_TAC(GSYM lemma) THEN SIMP_TAC[NORM_POS_LE; REAL_LE_MUL]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Now the main theorem. *) | |
(* ------------------------------------------------------------------------- *) | |
let SEGMENT_CHORDS = prove | |
(`!centre radius q r s t b. | |
between b (q,r) /\ between b (s,t) /\ | |
length(q,centre) = radius /\ length(r,centre) = radius /\ | |
length(s,centre) = radius /\ length(t,centre) = radius | |
==> length(q,b) * length(b,r) = length(s,b) * length(b,t)`, | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC[length; NORM_CROSS; BETWEEN_THM] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 | |
(X_CHOOSE_THEN `u:real` STRIP_ASSUME_TAC) MP_TAC) THEN | |
FIRST_X_ASSUM SUBST_ALL_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN2 | |
(X_CHOOSE_THEN `v:real` STRIP_ASSUME_TAC) MP_TAC) THEN | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN | |
(MP_TAC o AP_TERM `\x. x pow 2`)) THEN | |
FIRST_X_ASSUM(MP_TAC o SYM) THEN REWRITE_TAC[NORM_POW_2] THEN | |
ABBREV_TAC `rad = radius pow 2` THEN POP_ASSUM_LIST(K ALL_TAC) THEN | |
SIMP_TAC[dot; SUM_2; VECTOR_SUB_COMPONENT; DIMINDEX_2; VECTOR_ADD_COMPONENT; | |
CART_EQ; FORALL_2; VECTOR_MUL_COMPONENT; ARITH] THEN | |
CONV_TAC REAL_RING);; | |