Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
7.06 kB
(* ========================================================================= *)
(* Area of a circle. *)
(* ========================================================================= *)
needs "Multivariate/measure.ml";;
needs "Multivariate/realanalysis.ml";;
(* ------------------------------------------------------------------------- *)
(* Circle area. Should maybe extend WLOG tactics for such scaling. *)
(* ------------------------------------------------------------------------- *)
let AREA_UNIT_CBALL = prove
(`measure(cball(vec 0:real^2,&1)) = pi`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC(INST_TYPE[`:1`,`:M`; `:2`,`:N`] FUBINI_SIMPLE_COMPACT) THEN
EXISTS_TAC `1` THEN
SIMP_TAC[DIMINDEX_1; DIMINDEX_2; ARITH; COMPACT_CBALL; SLICE_CBALL] THEN
REWRITE_TAC[VEC_COMPONENT; DROPOUT_0; REAL_SUB_RZERO] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[MEASURE_EMPTY] THEN
SUBGOAL_THEN `!t. abs(t) <= &1 <=> t IN real_interval[-- &1,&1]`
(fun th -> REWRITE_TAC[th])
THENL [REWRITE_TAC[IN_REAL_INTERVAL] THEN REAL_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[HAS_REAL_INTEGRAL_RESTRICT_UNIV; BALL_1] THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_EQ THEN
EXISTS_TAC `\t. &2 * sqrt(&1 - t pow 2)` THEN CONJ_TAC THENL
[X_GEN_TAC `t:real` THEN SIMP_TAC[IN_REAL_INTERVAL; MEASURE_INTERVAL] THEN
REWRITE_TAC[REAL_BOUNDS_LE; VECTOR_ADD_LID; VECTOR_SUB_LZERO] THEN
DISCH_TAC THEN
W(MP_TAC o PART_MATCH (lhs o rand) CONTENT_1 o rand o snd) THEN
REWRITE_TAC[LIFT_DROP; DROP_NEG] THEN
ANTS_TAC THENL [ALL_TAC; SIMP_TAC[REAL_POW_ONE] THEN REAL_ARITH_TAC] THEN
MATCH_MP_TAC(REAL_ARITH `&0 <= x ==> --x <= x`) THEN
ASM_SIMP_TAC[SQRT_POS_LE; REAL_SUB_LE; GSYM REAL_LE_SQUARE_ABS;
REAL_ABS_NUM];
ALL_TAC] THEN
MP_TAC(ISPECL
[`\x. asn(x) + x * sqrt(&1 - x pow 2)`;
`\x. &2 * sqrt(&1 - x pow 2)`;
`-- &1`; `&1`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR) THEN
REWRITE_TAC[ASN_1; ASN_NEG_1] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[SQRT_0; REAL_MUL_RZERO; REAL_ADD_RID] THEN
REWRITE_TAC[REAL_ARITH `x / &2 - --(x / &2) = x`] THEN
DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_CONTINUOUS_ON_ADD THEN
SIMP_TAC[REAL_CONTINUOUS_ON_ASN; IN_REAL_INTERVAL; REAL_BOUNDS_LE] THEN
MATCH_MP_TAC REAL_CONTINUOUS_ON_MUL THEN
REWRITE_TAC[REAL_CONTINUOUS_ON_ID] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN
MATCH_MP_TAC REAL_CONTINUOUS_ON_COMPOSE THEN
SIMP_TAC[REAL_CONTINUOUS_ON_SUB; REAL_CONTINUOUS_ON_POW;
REAL_CONTINUOUS_ON_ID; REAL_CONTINUOUS_ON_CONST] THEN
REWRITE_TAC[REAL_CONTINUOUS_ON_SQRT];
REWRITE_TAC[IN_REAL_INTERVAL; REAL_BOUNDS_LT] THEN REPEAT STRIP_TAC THEN
REAL_DIFF_TAC THEN
CONV_TAC NUM_REDUCE_CONV THEN
REWRITE_TAC[REAL_MUL_LID; REAL_POW_1; REAL_MUL_RID] THEN
REWRITE_TAC[REAL_SUB_LZERO; REAL_MUL_RNEG; REAL_INV_MUL] THEN
ASM_REWRITE_TAC[REAL_SUB_LT; ABS_SQUARE_LT_1] THEN
MATCH_MP_TAC(REAL_FIELD
`s pow 2 = &1 - x pow 2 /\ x pow 2 < &1
==> (inv s + x * --(&2 * x) * inv (&2) * inv s + s) = &2 * s`) THEN
ASM_SIMP_TAC[ABS_SQUARE_LT_1; SQRT_POW_2; REAL_SUB_LE; REAL_LT_IMP_LE]]);;
let AREA_CBALL = prove
(`!z:real^2 r. &0 <= r ==> measure(cball(z,r)) = pi * r pow 2`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `r = &0` THENL
[ASM_SIMP_TAC[CBALL_SING; REAL_POW_2; REAL_MUL_RZERO] THEN
MATCH_MP_TAC MEASURE_UNIQUE THEN
REWRITE_TAC[HAS_MEASURE_0; NEGLIGIBLE_SING];
ALL_TAC] THEN
SUBGOAL_THEN `&0 < r` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
MP_TAC(ISPECL [`cball(vec 0:real^2,&1)`; `r:real`; `z:real^2`; `pi`]
HAS_MEASURE_AFFINITY) THEN
REWRITE_TAC[HAS_MEASURE_MEASURABLE_MEASURE; MEASURABLE_CBALL;
AREA_UNIT_CBALL] THEN
ASM_REWRITE_TAC[real_abs; DIMINDEX_2] THEN
DISCH_THEN(MP_TAC o CONJUNCT2) THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [REAL_MUL_SYM] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN AP_TERM_TAC THEN
MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN
REWRITE_TAC[IN_CBALL_0; IN_IMAGE] THEN REWRITE_TAC[IN_CBALL] THEN
REWRITE_TAC[NORM_ARITH `dist(z,a + z) = norm a`; NORM_MUL] THEN
ONCE_REWRITE_TAC[REAL_ARITH `abs r * x <= r <=> abs r * x <= r * &1`] THEN
ASM_SIMP_TAC[real_abs; REAL_LE_LMUL; dist] THEN X_GEN_TAC `w:real^2` THEN
DISCH_TAC THEN EXISTS_TAC `inv(r) % (w - z):real^2` THEN
ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_RINV] THEN
CONJ_TAC THENL [NORM_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[NORM_MUL; REAL_ABS_INV] THEN ASM_REWRITE_TAC[real_abs] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
ASM_SIMP_TAC[GSYM real_div; REAL_LE_LDIV_EQ; REAL_MUL_LID] THEN
ONCE_REWRITE_TAC[NORM_SUB] THEN ASM_REWRITE_TAC[]);;
let AREA_BALL = prove
(`!z:real^2 r. &0 <= r ==> measure(ball(z,r)) = pi * r pow 2`,
SIMP_TAC[GSYM INTERIOR_CBALL; GSYM AREA_CBALL] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC MEASURE_INTERIOR THEN
SIMP_TAC[BOUNDED_CBALL; NEGLIGIBLE_CONVEX_FRONTIER; CONVEX_CBALL]);;
(* ------------------------------------------------------------------------- *)
(* Volume of a ball too, just for fun. *)
(* ------------------------------------------------------------------------- *)
let VOLUME_CBALL = prove
(`!z:real^3 r. &0 <= r ==> measure(cball(z,r)) = &4 / &3 * pi * r pow 3`,
GEOM_ORIGIN_TAC `z:real^3` THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC(INST_TYPE[`:2`,`:M`; `:3`,`:N`] FUBINI_SIMPLE_COMPACT) THEN
EXISTS_TAC `1` THEN
SIMP_TAC[DIMINDEX_2; DIMINDEX_3; ARITH; COMPACT_CBALL; SLICE_CBALL] THEN
REWRITE_TAC[VEC_COMPONENT; DROPOUT_0; REAL_SUB_RZERO] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[MEASURE_EMPTY] THEN
SUBGOAL_THEN `!t. abs(t) <= r <=> t IN real_interval[--r,r]`
(fun th -> REWRITE_TAC[th])
THENL [REWRITE_TAC[IN_REAL_INTERVAL] THEN REAL_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[HAS_REAL_INTEGRAL_RESTRICT_UNIV] THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_EQ THEN
EXISTS_TAC `\t. pi * (r pow 2 - t pow 2)` THEN CONJ_TAC THENL
[X_GEN_TAC `t:real` THEN REWRITE_TAC[IN_REAL_INTERVAL; REAL_BOUNDS_LE] THEN
SIMP_TAC[AREA_CBALL; SQRT_POS_LE; REAL_SUB_LE; GSYM REAL_LE_SQUARE_ABS;
SQRT_POW_2; REAL_ARITH `abs x <= r ==> abs x <= abs r`];
ALL_TAC] THEN
MP_TAC(ISPECL
[`\t. pi * (r pow 2 * t - &1 / &3 * t pow 3)`;
`\t. pi * (r pow 2 - t pow 2)`;
`--r:real`; `r:real`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN
CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC REAL_RING;
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
CONV_TAC REAL_RING]);;
let VOLUME_BALL = prove
(`!z:real^3 r. &0 <= r ==> measure(ball(z,r)) = &4 / &3 * pi * r pow 3`,
SIMP_TAC[GSYM INTERIOR_CBALL; GSYM VOLUME_CBALL] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC MEASURE_INTERIOR THEN
SIMP_TAC[BOUNDED_CBALL; NEGLIGIBLE_CONVEX_FRONTIER; CONVEX_CBALL]);;